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Preface

These lecture notes are an evolution of the set of notes by Professor James
Walters who taught this module at Queen’s for many years. In delivering
Electromagnetic Theory, Professor Walters followed two principal sources:

1. C. A. Coulson and T. J. M. Boyd, Electricity, 2nd ed. (Longman, Lon-
don, 1979).

2. J. R. Reitz, F. J. Milford, R. W. Christy, Foundations of electromagnetic

theory, 4th ed. (Addison-Wesley, Reading, 1993).

My own understanding of Electromagnetism has been formed by a number of
other books, and I am happy to recommend these to the reader:

3. E. M. Purcell, Electricity and Magnetism, 2nd ed. (McGraw-Hill, New
York, 1985).

4. R. P. Feynman, The Feynman lectures on physics, Volume 2 (Basic-
Books, New York, 2011).
Read online: http://www.feynmanlectures.caltech.edu

5. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th
ed. (Pergamon, Oxford, 1975).

While delivering the module for the first time in 2015–2016, I consulted these
titles:

6. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York,
1999).

7. A. Sommerfeld, Electrodynamics (Academic Press, New York, 1952).

I am also happy to mention another book that was recommended to me by a
colleague who taught this subject at Oakland University in the US:

8. G. L. Pollack and D. R. Stump, Electromagnetism (Addison Wesley, San
Francisco, 2002).

Finally, I am grateful to my wife Anna, who proofread most of the notes,
spotting numerous typos and helping me to identify and improve many in-
stances of obscure or akward phrasing. Naturally, all the remaining defects
and deficiencies are my sole responsibility.
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0 Introduction: electromagnetism in one lecture

0.1 Maxwell’s equations

Charge is a fundamental property of matter.

Electric and magnetic fields (E and B) are produced by stationary or moving
charges, but can also be sustained in vacuum in the absence of charges as
electromagnetic waves (see below).

Force acting on a particle with charge q (Lorentz’s force) is

F = qE +
q

c
v ×B, (0.1)

where v is the velocity of the particle and c is the speed of light. In this section
we use CGS system, in which E and B are measured in the same units. This is
quite natural, since the electric and magnetic fields transform into each other
if we consider them in different inertial frames of reference. Also, in these units
the magnitudes of the electric and magnetic fields in an electromagnetic wave
are equal. Equation (0.1) then shows that for slow-moving particles (v ≪ c)
the electric force (first term) is much greater than the magnetic force (second
term).

Maxwell found that all the information about electric and magnetic phenom-
ena could be presented concisely as1

∇ ·E = 4πρ, (0.2)

∇ ·B = 0, (0.3)

∇×B =
4π

c
j +

1

c

∂E

∂t
, (0.4)

∇×E = −1

c

∂B

∂t
, (0.5)

where ρ is the electric charge density and j is the current density2.

Equation (0.2) is the differential form of Coulomb’s law. It shows that the
electric field originates on the charges. It “diverges” from the regions in space
that have charge, as ∇ · E ≡ divE, is the divergence of E. By analogy,
Eq. (0.3) implies that there are no magnetic charges (or monopoles).

Equation (0.4) without the second term on the right-hand side (which was
added by Maxwell, see below) shows that magnetic fields are caused by cur-
rents, and is equivalent to the Biot-Savart-Laplace-Ampere law.

1The equations were cast in this form by Oliver Heaviside (1850–1925), who developed
vector calculus (with J. W. Gibbs), while Maxwell originally wrote them in components.
The equations shown here apply in the absence of dielectric or magnetic materials.

2Recall also the vector differentiation (nabla) operator ∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂x
.
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Equation (0.5) is Faraday’s law of induction. It shows that a time-dependent
magnetic field gives rise to an electric field. This field is different from that
generated by charges in that its work over a closed contour is not zero.

If ∇· is applied to Eq. (0.4) (without the second term), one obtains3

∇ · j = 0.

This equation is in general incorrect. It works for stationary current, but
does not describe the situation when charges flow (“diverge”) out of a certain
region of space, causing a decrease in the charge density there. This means
that Eq. (0.4) with only the first term on the right-hand side is incomplete.

The correct form of charge conservation is

∇ · j = −∂ρ
∂t
. (0.6)

It shows that, as expected, a decreasing charge density cause the emergence
of a current out of this region of space.

To make Eq. (0.4) compatible with (0.6), Maxwell added the second term on
the right-hand side of (0.4). It involves the time-derivative of the electric field,
and is known as the displacement current.

Applying ∇× to Eq. (0.5) and using Eqs. (0.2) and (0.4) in vacuum where
ρ = 0 and j = 0, gives4

∇2E − 1

c2
∂2E

∂2t
= 0. (0.7)

This is the wave equation. It shows that electric fields accompanied by mag-
netic fields can propagate in vacuum as electromagnetic waves, travelling at the
speed of light. This mathematical discovery immediately told Maxwell that
light, whose nature was not known until then, is an electromagnetic wave!

3We make use of the identity ∇ · (∇×B) = (∇×∇) ·B = 0.
4We also use the identity ∇× (∇×E) = ∇(∇ ·E)−∇2E.
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1 Electrostatics

Electrostatics is the study of electric fields created by stationary charges.

1.1 Electric charge

Electric charge is a property of matter. It can be positive or negative. The
charge characterises the ability of particles to participate in the electromag-
netic interaction, or, at the elementary particle level, the ability to emit or
absorb photons5.

photon

−

e−

e

The usual notation for the charge is q or Q.

The unit of charge in SI is coulomb (C). It is defined in terms of the units of
current (ampere, A) and time (s), as

1 C = 1 A× 1 s.

The smallest observable amount of charge, or the elementary charge, is the
charge of the electron −e, or that of the proton6 e, where

e ≈ 1.6× 10−19 C.

1.2 Coulomb’s law

Coulomb’s law states that the force between charges is proportional to their
magnitudes and inversely proportional to the distance squared.

F
q

O

r

r
r

F

1q

2

2

1−

−r1

2
Mathematically, the force on charge q2 with position vector r2 due to charge
q1 at r1 is (in SI units)

F =
q1q2
4πε0

r2 − r1
|r2 − r1|3

, (1.8)

where
ε0 = 8.854× 10−12 N−1C2m−2, (1.9)

which gives 1/(4πε0) = 9× 109 NC−2m2.

For q1q2 > 0 (charges of the same sign) the force is repulsive, and for q1q2 < 0
(charges of opposite sign) it is attractive.

The force acting on q1 is obtained from Eq. (1.8) by interchanging indices 1
and 2, and is just the negative of F , in accordance with Newton’s 3rd law.

5The Feynman diagram on the left shows the interaction between two electrons (solid
lines) via exchange of a photon (dashed line).

6The proton p is not an elementary particle. It consists of three quarks, which have
fractional charges: p = uud, where u is the “up” quark with the charge 2

3
e and d is the

“down” quark with the charge − 1

3
e. The neutron n also consists of three quarks, n = udd.

However, free quarks are never observed. They are always confined within protons or
neutrons, or other particles, in sets of three or two (as quark-antiquark pairs). This ensures
that observed charges are always integer multiples of e.

8



1.3 Electric field

According to Coulomb’s law, the force on charge q at point r due to charge
q1 at point r1 is

F =
qq1
4πε0

r − r1
|r − r1|3

. (1.10)

It is convenient mathematically and correct physically to write this force as

F = qE(r), (1.11)

where

E(r) =
q1

4πε0

r − r1
|r − r1|3

, (1.12)

is the electric field that charge q1 creates at point r.

The physical reason for writing the force as (1.11) is that the charge q does
not “know” that there is charge q1 somewhere in the distance, but is affected
by something acting on it locally at r. This “something” is the electric field.
(If q1 is moved, q does not “feel” this change instantaneously7.)

Looking at Eq. (1.11), we can state the following:

Definition: electric field is the force acting on a unit positive charge.

The force on q from a system of N charges qi at ri (i = 1, . . . , N) is

F =
N∑

i=1

qqi
4πε0

r − ri
|r − ri|3

, (1.13)

which assumes that the charges qi act on q independently. Their electric field
then is

E(r) =
N∑

i=1

qi
4πε0

r − ri
|r − ri|3

. (1.14)

Equation (1.14) is a manifestation of the principle of superposition, which
states that the electric field due to a system of charges is equal to the sum of
the fields created by each of these charges8.

Electric fields can be visualised by drawing a number of field lines (or lines of
force) to which vector E is tangential at every point. These lines must begin
and end on charges or at infinity. The density of field lines characterises the
strength of the electric field. Some examples are shown in Fig. 1.

7According to Einstein’s theory of relativity, no signal can propagate faster than light,
so the charge q at r will not “learn” about this change until |r − r1|/c time later.

8The strong interaction between protons and neutrons (collectively known as nucleons)
in a nucleus does not obey the superposition principle. These particles consist of quarks
which interact with each other by means of gluons. This interaction is described by Quantum
Chromodynamics and is strongly nonlinear, since gluons can emit gluons and interact with
each other. Although the basic structure of this theory has been known since late 1960’s,
reasonably accurate calculations of nucleons’ masses, have only become feasible now [see,
e.g., Sz. Borsanyi et al., Ab initio calculation of the neutron-proton mass difference, Science,
Vol. 347, Issue 6229, pp. 1452–1455 (2015)].
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q q−

+q

q−

+

Figure 1: Field lines for the positive charge +q, negative charge −q, and the
system of two charges +1 and −q.

1.4 Electrostatic potential

Let us compute the gradient of the function 1/r. This can be done directly
using Cartesian coordinates,

∇1

r
= ∇ 1

√

x2 + y2 + z2
= . . . .

However, it is instructive to do this in a slightly different way.

Since the function 1/r depends on x, y and z through r, we can use chain rule:

∇1

r
≡ d

dr

1

r
=

d

dr

(
1

r

)
dr

dr
= − 1

r2
∇r,

where we wrote∇ formally as the “vector derivative” d/dr. The last derivative
is

∇r = ∇
√

x2 + y2 + z2

= i
2x

2
√

x2 + y2 + z2
+ j

2y

2
√

x2 + y2 + z2
+ k

2z

2
√

x2 + y2 + z2

=
xi+ yj + zk
√

x2 + y2 + z2

=
r

r
,

which is a unit vector in the direction of r. Hence, we have9

∇1

r
= − r

r3
. (1.15)

Shifting the origin to an arbitrary point ri gives

∇ 1

|r − ri|
= − r − ri

|r − ri|3
. (1.16)

9In a similar way, the gradient of any function f(r) that depends on the distance from
the origin is ∇f(r) = f ′(r)∇r = f ′(r)r/r.
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Comparing this identity with Eq. (1.14), we can see that the electric field can
be written as

E(r) = −∇φ(r), (1.17)

where

φ(r) =
N∑

i=1

qi
4πε0

1

|r − ri|
. (1.18)

is the electrostatic potential of N point charges qi at ri.

Unlike the electric field, which is a vector, the electrostatic potential is a
scalar. When finding the electric field for a system of charges, it is often easier
to determine its electrostatic potential first [e.g., by means of Eq. (1.18)], and
then find the electric field from Eq. (1.17).

The SI units of the potential is volt (V), which is equal to JC−1 (J is joule,
the SI unit of energy or work).

Equation (1.17) shows that the unit of the electric field is Vm−1. Alternatively
it be written as NC−1, as seen from Eq. (1.11).

B

A

Let us now consider work by the electric field on moving charge q from point
A to point B along some path. From the definition of work, we have

W =

∫ B

A

F · dr,

and using Eq. (1.11) and then Eq. (1.17), we obtain 10

W =

∫ B

A

qE ·dr = −q
∫ B

A

∇φ ·dr = −q
∫ B

A

dφ = −q[φ(rB)−φ(rA)]. (1.19)

The quantity in brackets is the potential difference between points B and A.

Equation (1.19) shows that the work by the electric field does not depend on
the shape of the path, but only on the initial and final points. Forces or fields
for which this is true are called conservative. Hence, the electric field E(r) is
conservative.

φ =

+

const

q

The condition that E is conservative can be written in a compact mathemat-
ical form. We know that

∇×∇ψ = 0,

for any scalar function ψ. From Eq. (1.17), we then have

∇×E = 0. (1.20)

Electric fields can be visualised by showing the equipotential surfaces on which

φ(r) = const. (1.21)

Field lines are perpendicular to equipotential surfaces, since dφ = ∇φ · dr =
−E · dr = 0 means E ⊥ dr, where dr lies on the equipotential serface.

10Recall that the differential of φ (i.e., the change of φ related to the displacement
dr = dxi+ dyj + dzk) is

dφ =
∂φ

∂x
dx+

∂φ

∂y
dy +

∂φ

∂z
dz = ∇φ · dr.
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1.5 Volume and surface distributions of charge

When charge is distributed continuously in space, it is characterised by the
volume charge density ρ (charge per unit volume). The charge of a volume
element dV is then given by dq = ρdV .

When charge is distributed continuously over a surface, it is characterised by
the surface charge density σ (charge per unit area)11. The charge of a surface
element dS is then found as dq = σdS.

In accordance with Eq. (1.12), the electric field due to charge dq′ = ρ(r′)dV ′

within a small volume element dV ′ located at r′, is

1

4πε0

ρ(r′)dV ′(r − r′)
|r − r′|3 .

By the superposition principle, the total electric field is found as

E(r) =
1

4πε0

∫

V

ρ(r′)(r − r′)
|r − r′|3 dV ′ +

1

4πε0

∫

S

σ(r′)(r − r′)
|r − r′|3 dS ′, (1.22)

where the first integral is over all volume charges, and where we have also
added the contribution of the surface charges (second term). The correspond-
ing electrostatic potential is given by

φ(r) =
1

4πε0

∫

V

ρ(r′)

|r − r′|dV
′ +

1

4πε0

∫

S

σ(r′)

|r − r′|dS
′. (1.23)

The charge density can also describe point charges. Thus, the density of point
charge q at r′ can be written as

ρ(r) = qδ(r − r′), (1.24)

where δ(r − r′) is the Dirac delta function defined by

δ(r − r′) =
{

0 for r 6= r′
+∞ for r = r′

, (1.25)

and ∫

δ(r − r′)dV = 1. (1.26)

Note that although the above integral is over the whole space, it is only an
arbitrarily small vicinity of the point r = r′ that contributes to it, since the
delta function vanishes everywhere else12.

δ(  )x

x

From Eqs. (1.25) and (1.26), for any continuous function f(r),

∫

V

f(r)δ(r − r′)dV =

{

f(r′), if r′ is inside V

0, if r′ is outside V
. (1.27)

11In some problems we also consider charges distributed on a line, which are characterised
by linear charge density λ.

12The graph on the left shows the function δ(x) in one dimension as a spike which should
be infinitely tall and infinitely narrow, with a unit area underneath:

∫
δ(x)dx = 1. The

three-dimensional delta function is δ(r) = δ(x)δ(y)δ(z).
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The first line above is obtained by realising that the only point that contributes
to the intergral is that where r = r′, since δ(r − r′) = 0 elsewhere. The
function f(r) in the integrand can then be evaluated at r = r′ this point and,
as a constant, taken outside the integral, which then reduces to (1.26).

For a system of N point charges qi at ri, the charge density is

ρ(r) =
N∑

i=1

qiδ(r − ri). (1.28)

It is a simple exercise to verify that substitution of this in (1.22) gives (1.14).

1.6 Solid angle

The planar angle is defined as the ratio of the length l of an arc subtended by
the angle, to the radius of the circle r, i.e., θ = l/r (in radians). In particular,
the full angle is 2π radians.

O

l

θ
r

Similarly, in three dimensions the magnitude of a solid angle is given by the
ratio of the area A that it subtends on the surface of a sphere to the square of
its radius r: Ω = A/r2. The unit of the solid angle is steradian, and the full
angle is 4πr2/r2 = 4π steradians.

O

r

Ω

A
For the element of solid angle dΩ (i.e., an arbitrarily small solid angle) we
have

dΩ =
dS⊥

r2
=
dS cos θ

r2
=
r̂ · dS
r2

=
r · dS
r3

. (1.29)

Here dS⊥ is the cross sectional area of the solid angle perpendicular to the
radius, θ is the angle between the unit vector r̂ = r/r and dS, where dS is
the element of a surface subtended by the solid angle, and dS = ndS, n being
a unit normal to the surface.

dS
r

Ω

θ
r

dS

d

The magnitude of a finite solid angle subtended by surface S is given by the
integral over this surface

Ω =

∫

S

r · dS
r3

. (1.30)

For a closed surface, and taking the direction of dS as the outward normal,
we have

Ω =

∮

S

r · dS
r3

=

{

4π, if the origin O is inside S,

0, if the origin O is outside S.
(1.31)

Indeed, when the surface enloses the origin, the above integral gives the full
solid angle. When the origin is outside the surface, there are contributions
from parts of the surface facing the origin and those facing away from it that
are equal in magnitude but opposite in sign. They cancel each other, and the
resulting integral is zero.O

S
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1.7 Gauss’s Law

The flux of the electric field E across surface S is defined as 13

∫

S

E · dS. (1.32)

Let us consider the flux of the electric field due to N point charges qi with
positions ri, Eq. (1.14), through a closed surface S:

∮

S

E · dS =

∮

S

N∑

i=1

qi
4πε0

r − ri
|r − ri|3

· dS =
1

4πε0

N∑

i=1

qi

∮

S

(r − ri) · dS
|r − ri|3

. (1.33)

According to Eq. (1.31), the integral on the right-hand side of (1.33) is equal
to 4π if ri is inside S, and is equal to zero if ri is outside S.

Hence, only the charges that are enclosed by S contribute to the sum over i,
and we have ∮

E · dS =
Q

ε0
, (1.34)

where Q is the total charge enclosed by S.

Equation (1.34) is Gauss’s law : the flux of the electric field out of any closed
surface is equal to the total charge enclosed by this surface, divided by ε0.

Gauss’s law can be used to determine the electric field in cases where it pos-
sesses some symmetry due to the symmetry of the charge distribution.

Example 1. Electric field of a spherically symmetric charge distribution.

A spherically symmetric charge density ρ(r) depends on the distance from the
origin r, but not on the direction of r. The corresponding electric field is in
the radial direction, E(r) = E(r)r̂, and its magnitude depends on r only.

Choose the Gaussian surface S as a sphere of radius r (on which dS = r̂dS),
we obtain the flux as

∮

S

E · dS =

∮

S

E(r)r̂ · r̂dS = E(r)

∮

S

dS = E(r)4πr2, (1.35)

where we used the fact that E(r) is constant on this sphere.

The charge inside the sphere is found by integration over the volume V of this
sphere,

Q =

∫

V

ρ(r′)dV ′ =

∫ r

0

ρ(r′)4πr′2dr′, (1.36)

where dV ′ = 4πr′2dr′ is the volume of a spherical shell of radius r′ and thick-
ness dr′.

13“In the case of fluxes, we have to take the integral, over a surface, of the flux through
every element of the surface. The result of this operation is called the surface integral of
the flux. It represents the quantity which passes through the surface.” (J. C. Maxwell,
Treatise on Electricity and Magnetism, 1873). For example, if we consider the motion of a
fluid with velocity v, the intergal

∫

S
v · dS will give the volume of fluid that flows across S

in unit time.
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Substituting the flux (1.35) and the charge (1.36) into Gauss’s law (1.34), we
obtain

E(r) =
1

4πε0r2

∫ r

0

ρ(r′)4πr′2dr′. (1.37)

Example 2. Electric field of a uniformly charged plane.

S

dS

dS

E

E

d

A

Consider an infinite plane with surface charge density σ. By symmetry, the
electric field produced by this charge distribution must be perpendicular to
the plane, and its magnitude can depend only on the distance from the plane.

We choose the Gaussian surface as a right cylinder, placed symmetrically
with respect to the plane, with flat surfaces parallel to it. On each of the
flat surfaces of area A, the electric field is constant and perpendicular to it
(i.e., parallel to dS), and the corresponding flux is EA. The flux across the
curved surface is zero, since E and dS are perpendicular to each other (so
that E · dS = 0). Hence, the total flux is 2EA.

The charge enclosed by the cylinder is σA, and from (1.34), we have

2EA =
σA

ε0
,

which gives

E =
σ

2ε0
. (1.38)

We see that on either side of the plane, the electric field is uniform (i.e.,
E = const). It is directed away from the plane for σ > 0, and towards the
plane for σ < 0.

Let us now derive the differential form of Gauss’s law. Assuming the charge
is distributed with density ρ, the charge Q in Eq. (1.34) is given by

Q =

∫

V

ρdV,

where V is the volume bounded by S. Using Gauss’s theorem14, the left-hand
side of Eq. (1.34) is transformed into a volume integral. Thus, we obtain

∫

V

∇ ·E dV =
1

ε0

∫

V

ρdV,

or ∫

V

(

∇ ·E − ρ

ε0

)

dV = 0.

Since this is true for any volume V , the expression in brackets must vanish,
which gives Gauss’s law in differential form:

∇ ·E = ρ/ε0. (1.39)

14Gauss’s theorem is one of a family of formulae that relates an integral of the derivative
of a function over an interval, an area, or a volume, to the contribution of the function
on the boundary of this interval, area of volume. The simplest of such formulae is the

“fundamental theorem of calculus”,
∫ b

a
(dF/dx)dx = F (b) − F (a). Gauss’s (or divergence)

theorem states that for a vector field a, the volume integral of its divergence, diva ≡ ∇·a,
is equal to the integral of a over the surface S bounding V :

∫

V
∇ · a dV =

∮

S
a · dS.
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Though very different from Eq. (1.12) in appearence, it is completely equiva-
lent to Coulomb’s law that states that the field of a charge is proportional to
its magnitude and inversely proportional to the squared distance from it.

Substituting (1.17) into (1.39) gives Poisson’s equation for the electrostatic
potential15,

∇2φ = −ρ/ε0. (1.40)

In vacuum where ρ = 0, this becomes Laplace’s equation:

∇2φ = 0. (1.41)

Although this equation looks very simple, its solutions (known as harmonic
functions) are not trivial. They have interesting properties and we will exam-
ine some of them in Ch. 3.

1.8 Dipoles

Let us determine the electrostatic potential of two charges, q and−q, separated
by distance l. This system is known as the electric dipole16. If the negative
charge is at the origin and the positive charge has position l, the potential is

φ(r) =
q

4πε0|r − l|
− q

4πε0r
=

q

4πε0

(
1

|r − l| −
1

r

)

. (1.42)

q−
O

r

l

r l

φ(  )r

q

−

The size of the dipole is usually regarded as small compared with other dis-
tances, so we are interested in the potential φ(r) for r ≫ l. Hence, we expand
the first term in brackets in (1.42) in Taylor series to first order in l17:

1

|r − l| =
1

r
+∇1

r
· (−l) + . . . ≃ 1

r
+
r

r3
· l,

where we used (1.15) and neglected terms with powers of l higher than unity.
Substituting this into (1.42) gives the electrostatic potential of the dipole,

φ(r) =
p · r
4πε0r3

, (1.43)

where
p = ql, (1.44)

is the electric dipole moment of the system. Note that vector l is directed
from the negative to the positive charge.

15The scalar product of nabla operators is the Laplacian,

∇ · ∇ ≡ ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

16This is a model of a polar molecule, such as NaCl or HCl, in which one of the atoms
(Na or H) is positively charged, while the other one (Cl) is negatively charged.

17Expanding a scalar function in Taylor series gives f(r + a) = f(r) +∇f · a+ . . . .
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The corresponding electric field is found from Eq. (1.17),

E(r) = −∇φ(r) = − 1

4πε0
∇
[
1

r3
p · r

]

= − 1

4πε0

[

∇
(

1

r3

)

p · r + 1

r3
∇(p · r)

]

= − 1

4πε0

[

− 3

r4
r

r
p · r + 1

r3
p

]

,

where we used product rule and the fact that ∇(p · r) = p, which is easily
verified in Cartesian coordinates (see also9). Hence, the field of the dipole is

E(r) =
3(p · r)r − pr2

4πε0r5
. (1.45)

The dipole moment can also be defined for a system of N charges qi with
positions ri, as

p =
N∑

i=1

qiri. (1.46)

For the charges q and −q separated by l this definition agrees with (1.44). It
is also easy to check that the dipole moment (1.46) does not depend on the
position of the origin if the total charge of the system is zero, i.e.,

∑N
i=1 qi = 0.

1.9 Conductors

Depending on their response to external electric fields, all materials can be
divided into two classes, conductors and dielectrics (or insulators)18.

A conductor is a material that contains many “free” charges, i.e., electrons
that can move freely inside the material.

By contrast, the charges in dielectrics are “bound” (see Ch. 2).

When a conductor is placed in an electric field, the charges will move until
the field inside it becomes zero. In practice, this happens in a small fraction
of a second.

const−

−
−

E

= 0E
φ = 

−
−

−

+

+

+

+
+

+
+

+−
−

−

As a result, in electrostatics, we have the following.

1. The field inside a conductor is zero, E = 0.

2. By Eq. (1.39), the charge density inside the conductor is zero, ρ = 0,
and the charges can only be found on its surface.

3. By Eq. (1.17), the potential of the conductor is constant, φ = const.

4. The electric field immediately outside the conductor is perpendicular
to its surface (since this surface is an equipotential surface, see end of
Sec. 1.4), and is given by

E = σ/ε0, (1.47)

where σ is the surface charge density.

18There are also semiconductors. They behave as insulators at very low temperatures,
but at raised temperatures they can conduct electricity, though not as well as metals.
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To prove the latter point, we consider a small cylinder with flat surfaces par-
allel to the surface of the conductor and apply Gauss’s law (1.34). The only
contribution to the flux comes from the flat surface outside the conductor,
and is given by EA, where A is the area of the flat surface. The charge inside
the cylinder is σA, which yields (1.47).

E

L

+

+

+

+

+
+

+

+

S
= 0

+

+

+
+

+
+

+

+

+

+

−

= ?

−
−

+
+

+

E

We can show that if a conductor has a cavity inside, the electric field inside it
must be zero. First, the total charge on the inner surface is zero (by Gauss’s
law applied to a surface S that lies entirely within the conductor and encloses
the cavity). Hence, the inner surface can only have equal amounts of positive
and negative charges on it. If such charges were present, then a certain electric
field would be present in the cavity (its field lines starting on positive charges
and ending on negative charges). This means that the integral along the loop
L that follows one of the field lines inside the cavity and closes inside the
body of the conductor would be nonzero,

∮

L
E · dr 6= 0 (since the field inside

the conductor is zero). However, the electric field is conservative, and such
integral must always be zero. Hence, there can be no field inside the cavity
and no charges on the inside surface19.

19This principle lies behind the idea of electromagnetic shielding which was discovered
by Michael Faraday in 1836. A metal enclosure or a metal mesh cage (known as Faraday
cage) placed around a piece of equipment ensures that it is unaffected by external electric
fields.
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2 Dielectrics

2.1 Polarisation

When a dielectric is placed in an electric field, the positive and negative charges
inside it separate. This effect is known as polarisation.

−

− −
+ −− −

− −

− −
+

−− −
− −

− −
+

−− −
− −

− −
+ −− −

− −

− −
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−− −
− −

− −
+ −− −

− −

− −
+

−− −
− −

− −
+ −− −

− −

− −
+ −− −

− −

− −
+ −− −

− −

− −
+

−E − −
− −

− −
+
−− −

−

Polarisation occures when the negatively charged atomic electrons are dis-
placed relative to the positively charged nuclei. In dielectrics which consist of
molecular dipoles, polarisation can also occur as the dipoles develop a prefer-
ential orientation due to the external field20.

−
+

−
+

− +

−
+ −

+− +

−
+E

−
+

−+−
+ −

+

− +−+ Quantitatively, the polarisation vector is the dipole moment per unit volume.
It can be written as

P = npm, (2.1)

where n is the number density of atomic or molecular (mean) dipoles pm.

The polarisation increases with the electric field, and for isotropic dielectrics
we write

P = ε0χ(E)E, (2.2)

where χ(E) is the susceptibility21.

For many materials the vector P is proportional to E (if the field is not too
strong), so one can assume that χ = const. Such dielectrics are called linear.

The SI units of the dipole moment are Cm, and the units of polarisation are
C/m2, i.e., the same as the units of ε0E [see, e.g., Eq. (1.12) or (1.38)]. This
shows that susceptibility χ defined by Eq. (2.2) is dimensionless.

2.2 Polarisation charge densities

Let us find the electrostatic potential produced by a polarised piece of dielec-
tric of volume V .

A small volume element dV ′ of the dielectric at point r′ has the dipole mo-
mement P (r′)dV ′. According to Eq. (1.43), its contribution to the potential
at point r is

dφ =
P (r′) · (r − r′)dV ′

4πε0|r − r′|3
.

20Without the external field the dipoles are randomly oriented. Thermal motion prevents
complete orientation of the dipoles by the field. Molecular orientation takes time (e.g., about
10−11 s for water molecules at room temperature). A time-dependent, oscillating external
field keeps reorienting the molecular dipoles. Heat generated in this process is dissipated in
the medium. This is the principle behind heating of food (which contains large amounts of
water) in a microwave oven.

21In anistropic dielectrics the charges are displaced more easily along some directions
than along others, and the connection between the components of P and E is given by
Pi = ε0

∑3

j=1
χijEj , where χij is the susceptibility tensor (represented by a 3× 3 matrix).
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The total potential of the dielectric is obtained by integrating dφ over its
volume,

φ(r) =
1

4πε0

∫

V

P (r′) · (r − r′)
|r − r′|3 dV ′. (2.3)

This expression can be re-written using the relation

∇′ 1

|r − r′| =
r − r′
|r − r′|3 (2.4)

where the operator ∇′ acts on r′ [cf. Eq. (1.16)], which gives

φ(r) =
1

4πε0

∫

V

P (r′) · ∇′ 1

|r − r′|dV
′.

We now use the vector identity (“product rule”)

∇ · (P f) = P · ∇f + f∇ · P , (2.5)

in which f is any scalar function, and obtain

φ(r) =
1

4πε0

∫

V

∇′ ·
[

P (r′)
1

|r − r′|

]

dV ′ − 1

4πε0

∫

V

1

|r − r′|∇
′ · P (r′)dV ′.

Using Gauss’s theorem we transform the first integral into the integral over
the surface S of the dielectric, which gives

φ(r) = − 1

4πε0

∫

V

∇′ · P (r′)

|r − r′| dV ′ +
1

4πε0

∮

S

P (r′) · dS′

|r − r′| . (2.6)

Comparison with Eq. (1.23) shows that

ρp = −∇ · P , (2.7)

is the volume density of polarisation charges, and

σp = P · n, (2.8)

is their surface density, where n is the outward unit normal to the surface of
the dielectric [as dS′ = ndS ′ in (2.6)].

2.3 Electric displacement

In the presence of dielectrics, Eq. (1.39) can be written as

∇ ·E =
1

ε0
(ρ+ ρp),

where ρ now denotes the density of free charges and ρp is the density of
polarisation charges. Substituting (2.7) and rearranging, we obtain

∇ ·D = ρ, (2.9)

where
D = ε0E + P (2.10)

20



is the electric displacement vector.

Equation (2.9) replaces Eq. (1.39) in the presence of dialectrics. For an
isotropic medium,

D = ε0(1 + χ)E = εE, (2.11)

where ε = (1 + χ)ε0 is permittivity, and the ratio

κ ≡ ε

ε0
= 1 + χ, (2.12)

is the dielectric constant (also known as the relative permittivity).

Using (1.17), we have from Eq. (2.11),

D = −ε∇φ, (2.13)

and (2.9) yields
∇ · (ε∇φ) = −ρ. (2.14)

For a homogeneous dielectric (ε = const) we have Poisson’s equation

∇2φ = −ρ/ε. (2.15)

Note that inside a conductor we have E = 0 and P = 0, hence,

D = 0. (2.16)

2.4 Gauss’s law

Integrating Eq. (2.9) over volume V bounded by surface S, and using Gauss’s
theorem, we obtain ∮

S

D · dS = Qf , (2.17)

where Qf =
∫

V
ρdV is the total free charge enclosed by S.

Equation (2.17) is the form of Gauss’s law used in the presence of dielectrics.

2.5 Electric displacement outside a conducting surface

Consider a conductor embedded in a dielectric and apply Gauss’s law (2.17)
to a cylindrical surface with faces parallel to the surface (cf. diagram in
Sec. 1.9). Similarly to Eq. (1.47), we find the normal component of the electric
displacement near the conductor’s surface,

Dn = σ, (2.18)

where σ is the surface density of free charge on the conductor.

The electric field outside a conducting surface is normal to it,

E = En. (2.19)

Using (2.11) for an isotropic dielectric,

D = εEn, (2.20)

we obtain
E = σ/ε, (2.21)

which replaces Eq. (1.47) when a dielectric is present.
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2.6 Boundary conditions

At the boundary between two dielectrics, the tangential components

E1t − E2t = 0, (2.22)

and the normal components

D1n −D2n = σ, (2.23)

where the subscripts 1 and 2 refer to quantities in dielectrics 1 and 2, respec-
tively, the unit normal n is from dielectric 2 into 1, and σ is the surface density
of free charge on the boundary.

n

B

2

D C

A

1

l

t

Proof. To prove (2.22), we use the fact that the electric field is conservative,
and hence that ∮

L

E · dr = 0 (2.24)

for any closed loop L.22 We choose L as a rectangle ABCD with long sides
AB and CD parallel to the interface, as shown in the diagram. We also set
AB = CD ≡ l ≫ BC = DA, which ensures that the contribution of BC and
DA to the integral can be neglected. At the same time we assume that l is
sufficiently small, so that the electric field remains approximately constant on
AB and CD. On AB we have dr = tdr, and on CD dr = −tdr, where t is a
unit vector tangential to the surface (see diagram). Hence, we obtain

∮

L

E · dr =

∫ B

A

E · dr −
∫ B

A

E · dr =

∫ B

A

E · tdr −
∫ B

A

E · tdr

= E1t

∫ B

A

dr − E2t

∫ D

C

dr = (E1t − E2t)l = 0,

which proves (2.22).

n

dS

dS
2

1
A

t
Equation (2.23) is proved by using Gauss’s law (2.17) and choosing the surface
S as a cylinder with flat faces parallel to the interface (see diagram). We
assume that the height of the cylinder is small, so that the contribution of
the flux across the curved surface can be neglected. In this case only the flux
across the two flat surfaces (each of area A) must be included, and we have

∮

S

D · dS =

∫

top

D · dS +

∫

bottom

D · dS

=

∫

top

D · ndS +

∫

bottom

D · (−n)dS = (D1n −D2n)A = σA,

where the right-hand side is the free charge enclosed by the cylinder. Dividing
both sides of the last equality by A gives (2.23).

The potential φ is continuous across the interface. This follows from (1.19),

since the integral
∫ B

A
E · dr vanishes if we consider the points A and B in

dielectrics 1 and 2, respectively, but arbitrarily close to each other.

22This follows from Eq. (1.19) if we consider a path for which points A and B coincide.
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2.7 Capacitors

A capacitor (or condenser) consists of two conductors, called plates, separated
by vacuum or dielectric. It is charged by placing a positive charge Q on one
of them and the charge −Q on the other.

The electric field in this system is proportional to Q, and so is the potential
difference ∆φ ≡ V between the plates. Hence, we introduce the capacitance,

C = Q/V, (2.25)

depends only on the shape and position of the plates and the dielectrics used.

The SI unit of capacitance is farad (F), 1 F = 1 CV−1.

Example 1: Isolated sphere.

Let us determine the capacitance of a conducting sphere of radius a surrounded
by vacuum. The second plate of such capacitor is assumed to be at infinity.

If the sphere carries charge Q, the electric field outside it is given by23

E =
Q

4πε0r2
r̂.

The potential difference between the sphere and a point at infinity is

V =

∫ ∞

a

E · dr =

∫ ∞

a

Q

4πε0r2
dr =

Q

4πε0a
,

which gives24

C =
Q

V
= 4πε0a. (2.26)

Example 2: Parallel plate capacitor.

d

σ

E

−σ

A parallel plate capacitor consists of two parallel planar conductors separated
by distance d. The electric field in this system is found as a superposition of
the fields of two uniformly charged planes (Example 2 in Sec. 1.7) with surface
charge densities σ and −σ. The fields outside the plates cancel, and the fields
between them add to give

E = σ/ε0. (2.27)

The potential difference between the plates is

V =

∫

L

E · dr = Ed =
σd

ε0
, (2.28)

where the path L connects any point on the positively charged plate with a
point on the negatively charged plate, e.g., is a straight line perpendicular
to the plates. If the total charge on the positively charged plate is Q, then

23This result immediatly follows from the spherical symmetry of the system and appli-
cation of Gauss’s law (1.34) to a spherical Gaussian surface of radius r.

24Note that in CGS the capacitance of an isolated sphere is equal to its radius, C = a.
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σ = Q/A, where A is the area of the plate. Substituting this into (2.28), we
find the capacitance

C =
Q

V
=
ε0A

d
. (2.29)

This result is valid for capacitors with plates whose linear dimensions are much
greater than the spacing between them, which allows one to neglect the edge
effects (e.g., that Eq. (2.27) does not hold near the edges of the plates).

Example 3: Parallel plate capacitor with dielectric.

Consider a parallel plate capacitor in which a layer of dielectric of thickness b
and dielectric constant κ is inserted parallel to the plates and separated from
them by vacuum gaps of thickness a and c (see diagram).

σ

−σ

3

2

a

b

c

D

1

If we neglect the edge effects, D = 0 outside the plates, and

D = σ (2.30)

between the plates, where σ = Q/A and A is the area of each plate25. From
(2.11) the electric field in the gaps (denoted 1 and 3) is

E1 = E3 = D/ε0 = σ/ε0, (2.31)

and the field in the dielectric (denoted 2) is

E2 = D/ε0κ = σ/ε0κ. (2.32)

The potential difference between plates is

V = E1a+ E2b+ E3c =
σ

ε0
(a+ b/κ+ c) =

Q

ε0A
(a+ b/κ+ c), (2.33)

so that

C =
Q

V
=

ε0A

a+ b/κ+ c
. (2.34)

Note that for b = 0 (no dielectric) and a + c = d, the above result coincides
with Eq. (2.29). However, if we set a = c = 0 and b = d in Eq. (2.34), we
obtain

C =
κε0A

d
=
εA

d
. (2.35)

which shows that the capacitance of a capacitor filled with dielectric is κ times
greater than that with vacuum between the plates.

Example 4: Concentric spherical capacitor.
Q

b

a
Q

−
D

A spherical capacitor consists of two conducting spheres of radii a and b (a < b)
with dielectric of constant κ in between (diagram shows the cross section).

We assume that the inner sphere carries charge Q and the outer one −Q. Due
to the symmetry of the system, the fields E andD are radial, i.e., E = E(r)r̂
and D = D(r)r̂. Applying Gauss’s law (2.17) to a sphere of radius r, we find
for a < r < b,

D(r) =
Q

4πr2
, (2.36)

25This result can be obtained using the symmetry of the system and Gauss’s law (2.17).
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and from (2.11),

E(r) =
Q

4πε0κr2
, (2.37)

while the fields inside the inner sphere and outside the outer sphere are zero.

Using E = −∇φ = −(∂φ/∂r)r̂ (i.e., keeping only the radial component of the
gradient in spherical coordinates, since E is radial), we have

dφ

dr
= − Q

4πε0κr2
,

so that

φ(r) =
Q

4πε0κr
+ const. (2.38)

This gives the potential difference26

V = φ(a)− φ(b) =
Q

4πε0κ

(
1

a
− 1

b

)

,

and capacitance

C =
Q

V
=

4πε0κab

b− a
. (2.39)

Note that if we let b → ∞ and set κ = 1, the above formula reproduces
Eq. (2.26), as expected. If on the other hand, we consider a thin spherical
capacitor for which b ≈ a and b− a ≡ d≪ a, b, then Eq. (2.39) gives

C =
4πε0κa

2

b− a
=
ε0κA

d
,

where A = 4πa2 is the surface area of the sphere. This result is in agreement
with the capacitance of a parallel plate capacitor filled with dielectric.

26This could also be obtained from V =
∫ b

a
E · dr =

∫ b

a
E(r)dr using Eq. (2.37).
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3 Solutions of electrostatic problems – Potential theory

3.1 Properties of the electrostatic potential

In this section we summarise the properties of the electrostatic potential de-
rived in chapters 1 and 2.

According to Eqs. (2.14) and (2.15), for linear isotropic media, we have

∇ · (ε∇φ) = −ρ, (3.1)

and if ε = const, then
∇2φ = −ρ/ε, (3.2)

where ρ is the volume density of free charges.

For ρ = 0 the potential satisfies Laplace’s equation

∇2φ = 0. (3.3)

Additionally:

(i) On a conductor
φ = const. (3.4)

(ii) The surface charge density on the surface of a conductor is [by Eqs. (1.17)
and (2.21)],

σ = −ε∂φ
∂n
, (3.5)

where ∂φ/∂n is the derivative along the direction of the outward normal
(∂φ/∂n = n · ∇φ), taken at the conductor’s surface.

Hence, the total charge on the conductor is

Q = −
∮

S

ε
∂φ

∂n
dS, (3.6)

where the integral is over the surface of the conductor.

(iii) For a finite system of charges

φ→ 0 at infinity, (3.7)

see, e.g., Eq. (1.18) for a system of point charges. Note that the potential
decreases as 1/r if the total charge of the system is nonzero, and faster
if the system is neutral [cf. Eq. (1.43) for the potential of the dipole].

(iv) If there is a uniform field E0 in the z direction at infinity, then

φ ≃ −E0z as z → ±∞. (3.8)

Indeed, for this potential we have E = −∇(−E0z) = E0k ≡ E0.
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(v) Potential φ has no singularities, except at point charges,

φ ≃ q

4πε

1

r
as r → 0, (3.9)

where r is the distance from a point charge q.

(vi) At the boundary between two media the potential is continuous,

φ1 = φ2, (3.10)

where φ1 and φ2 are the potentials in the two media (see end of Sec. 2.6).

Also, from (2.23), using (2.13), we have

ε2
∂φ2

∂n
= ε1

∂φ1

∂n
+ σ, (3.11)

where the direction of n is from 2 into 1, and σ is the surface density of
free charges at the boundary.

3.2 Uniqueness theorem

Consider a system which consists of a set of conductors, each carrying a given
charge, another set of conductors, each kept at a given potential, and a given
volume distribution of charge, in the presence of given linear isotropic di-
electrics. Then there cannot be more than one potential function φ for this
system. This statement is known as the uniqueness theorem.

The uniqueness theorem means that if, for a given system, we have found a
potential that satisfies the equations and conditions listed in Sec. 3.1, this
potential gives the solution to the problem.

Proof. Suppose there are two potentials, φ1 and φ2, which satisfy Eq. (3.1),
i.e.,

∇ · (ε∇φ1) = −ρ and ∇ · (ε∇φ2) = −ρ, (3.12)

as well as the conditions (i)–(iii) and (v) from Sec. 3.1.

Let
φ = φ1 − φ2. (3.13)

From (3.12), we have
∇ · (ε∇φ) = 0. (3.14)

Since φ1 and φ2 satisfy identical conditions [given by Eq. (3.4) or by Eq. (3.6),
as well as (3.7) and (3.9)], we find

(i) φ = 0 on the surfaces of all conductors with fixed potentials;

(ii) on any conductor with a given charge,

∮

S

ε
∂φ

∂n
dS = 0, (3.15)

(iii) φ→ 0 as 1/r or faster at infinity;

(iv) φ has no singularities.
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8

c

c

c

c

S

V

Consider the integral ∫

V

ε∇φ · ∇φ dV, (3.16)

over the volume outside the conductors (c) and bounded by a sphere at infinity
S∞ (which is a sphere whose radius can be made arbitrarily large). From

∇ · (φε∇φ) = ε∇φ · ∇φ+ φ∇ · (ε∇φ) = ε∇φ · ∇φ, (3.17)

where we used (3.14), we have (using Gauss’s theorem):
∫

V

ε∇φ · ∇φ dV =

∫

V

∇ · (φε∇φ)dV =

∮

S

φε∇φ · dS =

∮

S

φε
∂φ

∂n
dS

=
∑

i

∮

Si

φε
∂φ

∂n
dS +

∮

S∞

φε
∂φ

∂n
dS, (3.18)

where the integral is over the surfaces of all conductors (Si) and S∞ that
bound V , and the direction of the normal n is out of volume V .

Note that for the contribution of the surface of each conductor Si to (3.18),
∮

Si

φε
∂φ

∂n
dS = φ

∮

Si

ε
∂φ

∂n
dS,

since φ = const there, and all such contributions vanish because of (i) or (ii).

The contribution of the sphere at infinity to (3.18) vanishes because of (iii).
Indeed, for φ ∼ 1/r, its derivative behaves as ∇φ ∼ 1/r2, and the integrand
decreases as 1/r3 with the radius r of the sphere, while the surface area of S∞

increases only as ∼ r2. Hence, in the limit r → ∞ this integral is zero.

Therefore, ∫

V

ε(∇φ)2dV = 0, (3.19)

and since ε > 0,
∇φ = 0

everywhere, so that
φ = φ1 − φ2 = const.

Since φ→ 0 at infinity, this constant must be zero, which means that

φ1 = φ2. (3.20)

3.3 Method of images

Images in a plane.

q q

plane of
symmetry

−

φ = 0

The electrostatic potential of two charges q and −q is given by

φ =
1

4πε0

(
q

r1
− q

r2

)

, (3.21)

where r1 and r2 are the distances from the two charges. For any point that
lies in the plane of symmetry of the system (i.e., the plane that bisects the
line between q and −q and is perpendiculr to it), r1 = r2, which gives φ = 0.
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q

conducting
plane

a

φ = 0

Consider the problem of finding the electric field for a system that consists of
a point charge q > 0 at a distance a from an infinite conducting plane held
at zero potential. The presence of the positive charge will cause accumulation
of negative charges in the plane near the point closest to charge q. The cor-
responding surface charge density σ will be such that the condition φ = 0 is
satisfied everywhere in the plane. However, what is this charge distribution?

q q

conducting
plane

aa−

φ = 0

Looking at Eq. (3.21), it is easy to see that this potential provides the solution
for the electrostatic problem in the half-space where the positive charge is, if
we assume that the charge −q is placed symmetrically to q on the other side
of the plane. Indeed, (3.21) satisfies the condition φ = 0 on the plane and has
the correct behaviour near the point charge q [see (i) and (v) in Sec. 3.1].

This means that in the presence of q, the charges in the plane distribute
themselves in such a way that their potential coincides with the potential of
charge −q placed at a distance a behind the plane. This fictitious charge is
known as the image charge27.

If we place the origin in the plane and choose the z axis perpendicular to it
and through the charge q, the potential (3.21) will be given by

φ(r) =
q

4πε0

(

1
√

ρ2 + (a− z)2
− 1
√

ρ2 + (a+ z)2

)

, (3.22)

where ρ is the distance from the z axis28.

The surface charge density on the plane can be found from (3.22) using
Eq. (3.5), where the direction of n is along the z axis. This gives

σ(ρ) = − ε0
∂φ

∂z

∣
∣
∣
∣
z=0

= − aq

2π(a2 + ρ2)3/2
. (3.23)

As expected, the density of surface charges on the conducting plane is negative
(for q > 0) and is largest for ρ = 0, at the foot of the perpendicular from q29.

The electric field in the system coincides with the field of two point charges,
with the negative (image) charge contribution being due to the charges in the
plane. Hence, the force acting on charge q is towards the plane and given by

F =
q2

4πε0(2a)2
=

q2

16πε0a2
. (3.24)

Images with spheres and cylinders.

Consider a system which consists of charge q at a distance b from the centre
of a conducting sphere of radius a, held at zero potential (with b > a). We

27Equation (3.21) also provides the solution to the problem of a negative charge outside
an infinite conducting plane, in which case it is the positive charge q that plays the role of
the image charge.

28In cylindrical coordinates ρ, ψ and z, the Cartesian components r = (ρ cosψ, ρ sinψ, z),
a = (0, 0, a) (for the position of charge q), with r1 = |r − a| and r2 = |r + a|.

29It is easy to show that the total charge on the plane is −q, e.g., using integration in

plane polar coordinates:
∫
σdS =

∫ 2π

0

∫
∞

0
σ(ρ)ρ dρdψ = −q.
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will show that by placing an image charge −q′ inside the sphere at a distance
b′ from its centre, we can make φ = 0 on the surface of the sphere.

’−q
’b

r

θ
a

φ = 0

O

q

r

b

1r2

The potential of the real and image charges is

φ(r) =
1

4πε0

(
q

r1
− q′

r2

)

, (3.25)

where r1 and r2 are the distances from the charges q and −q′, respectively. If
vector r forms angle θ with the direction towards q, we have

φ(r) =
1

4πε0

(
q√

r2 + b2 − 2rb cos θ
− q′√

r2 + b′2 − 2rb′ cos θ

)

. (3.26)

To set this potential to zero on the surface of the sphere (r = a), we require

q√
a2 + b2 − 2ab cos θ

=
q′√

a2 + b′2 − 2ab′ cos θ
, (3.27)

or equivalently,

√

a2 + b2

q2
− 2ab

q2
cos θ =

√

a2 + b′2

q′2
− 2ab′

q′2
cos θ.

For this to be satisfied for all angles θ, we must have

a2 + b2

q2
=
a2 + b′2

q′2
and

ab

q2
=
ab′

q′2
.

Solving these equations simultaneously, we find30

q′ =
aq

b
, b′ =

a2

b
, (3.28)

for the magnitude and position of the image charge31.

Substitution of (3.28) into Eq. (3.28) gives the potential outside the sphere as

φ =
1

4πε0

(

q√
r2 + b2 − 2rb cos θ

− q
√

(rb/a)2 + a2 − 2rb cos θ

)

. (3.29)

30A simple way to see this is to introduce the position vectors b and b′ of the charges q
and −q′, and vector a for an arbitrary point on the sphere. Condition (3.27) then reads

q

|a− b| =
q′

|b′ − a| or

∣
∣
∣
∣

a

q
− b

q

∣
∣
∣
∣
=

∣
∣
∣
∣

b′

q′
− a

q′

∣
∣
∣
∣
.

Since the angles between the vectors a/q and b/q, and b′/q′ and a/q′ are the same, the
above equation will hold if their lengths are pairwise equal, i.e., a/q = b′/q′ and b/q = a/q′,
which gives (3.28).

31If charge q is just outside the sphere, i.e., b is only slighly greater than a, b = a(1+ ξ),
where ξ ≪ 1, then from Eq. (3.28) q′ = q/(1+ ξ) ≃ q and b′ = a/(1+ ξ) ≃ a(1− ξ). [Recall
the binomial expansion (1 + ξ)−1 = 1 − ξ + ξ2 − ξ3 + . . . .] We see that in this case the
magnitude of the image charge is equal to that of charge q, and that its distance from the
surface of the sphere is the same as that of charge q (both equal to ξa), as in the case of an
image charge in a plane.
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Using this, we find the charge density on the sphere from Eq. (3.5):

σ = −ε0
∂φ

∂n
= −ε0

∂φ

∂r

∣
∣
∣
∣
r=a

= − q(b2 − a2)

4πa(a2 + b2 − 2ab cos θ)3/2
. (3.30)

The total charge on the sphere
∫
σdS =

∫ 2π

0

∫ π

0
σa2 sin θdθdψ = −qa/b = −q′,

as it should be. (Apply Gauss’s law to a surface enclosing the sphere.)

If the potential of the sphere is nonzero, we can place a second image charge
q′′ at the centre of the sphere, making the potential

φ =
1

4πε0

(

q√
r2 + b2 − 2rb cos θ

− q
√

(rb/a)2 + a2 − 2rb cos θ
+
q′′

r

)

. (3.31)

The total image charge enclosed by the sphere is now −q′ + q′′. By setting
q′′ = Q + aq/b, we obtain the potential for a conducting sphere of radius a,
carrying charge Q, and a point charge q at a distance b from its centre.

A similar system of image charges can be constructed for a uniformly charged
line parallel to a conducting cylinder.

Combining images.

By combining two or more sets of images, more complicated problems can be
solved, e.g., that of a dipole near a conducting plane, whose image is a dipole.

3.4 Solution of Laplace’s equation in spherical polar coordinates

y

x

z

θ r

ψ

Electrostatics problems for linear isotropic media with constant permittivity
and no free volume charges give rise to Laplace’s equation (3.3). Some of them
can be solved by considering Laplace’s equation in spherical polar coordinates,

1

r2
∂

∂r

(

r2
∂φ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂φ

∂θ

)

+
1

r2 sin2 θ

∂2φ

∂ψ2
= 0. (3.32)

If the system is symmetric about the z axis, i.e., φ = φ(r, θ), it becomes

1

r2
∂

∂r

(

r2
∂φ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂φ

∂θ

)

= 0. (3.33)

Particular solutions of this equation can be found by variable separation, seek-
ing solution in the form

φ(r, θ) = R(r)Θ(θ). (3.34)

Substituting this into Eq. (3.33) and dividing it through by R(r)Θ(θ) gives

1

R(r)

1

r2
d

dr

(

r2
dR

dr

)

︸ ︷︷ ︸

depends only on r

+
1

r2
1

Θ(θ)

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

︸ ︷︷ ︸

depends only on θ

= 0. (3.35)

For this equation to hold for all r and θ, the term that depends on θ only must
be equal to a constant. Denoting this constant −λ, we obtain the equation
for Θ(θ),

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ λΘ(θ) = 0. (3.36)
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One can show that this equation has solutions that are finite on the interval
0 ≤ θ ≤ π only for λ = n(n + 1), where n = 0, 1, 2, . . . . Written in the
standartd form, these solutions are known as Legendre polynomials Pn(cos θ)

32.
Explicitly, the first three of them are

P0(cos θ) = 1, (3.37)

P1(cos θ) = cos θ, (3.38)

P2(cos θ) =
1

2
(3 cos2 θ − 1). (3.39)

Legendre polynomials with even n are even functions, and those with odd n
are odd functions of cos θ. They have the following orthogonality property,

∫ π

0

Pn(cos θ)Pm(cos θ) sin θdθ =
2δnm
2n+ 1

, (3.40)

where δnm = 1 for n = m and 0 for n 6= m (Kronecker delta). In particular,
∫ π

0

Pn(cos θ) sin θdθ = 0 for n 6= 0. (3.41)

For θ = 0 or π,

Pn(cos 0) = Pn(1) = 1, (3.42)

Pn(cos π) = Pn(−1) = (−1)n. (3.43)

Substituting −λ = −n(n + 1) in place of the θ-dependent term in Eq. (3.35)
yields the equation for R(r):

d

dr

(

r2
dR

dr

)

− n(n+ 1)R(r) = 0. (3.44)

We seek its solution in the form R(r) = rs, which gives a quadratic equation

s(s+ 1) = n(n+ 1),

with solutions s = n and s = −n − 1, corresponding to R(r) = rn and
R(r) = r−n−1. Combining the radial and angular parts we see that Laplace’s
equation (3.33) possesses independent solutions of the form

rnPn(cos θ) and r−n−1Pn(cos θ) (n = 0, 1, 2, . . . ).

The most general solution of equation (3.33) is obtained by taking a linear
combination of these with arbitrary coefficients An and Bn:

φ =
∞∑

n=0

(

Anr
n +

Bn

rn+1

)

Pn(cos θ). (3.45)

32By variable substitution x = cos θ, Eq. (3.36) is cast in the form

d

dx

[

(1− x2)
dΘ

dx

]

+ λΘ(x) = 0.

Seeking its solution in the form Θ(x) =
∑

∞

k=0
akx

k gives the recurrency relation ak+2 =
ak[k(k+1)−λ]/[(k+1)(k+2)], which leads to polynomial solutions (finite on −1 ≤ x ≤ 1)
only if λ = n(n+ 1), where n is a non-negative integer (the degree of the polynomial).
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Dielectric sphere in a uniform field.

Consider a dielectric sphere of radius a and constant κ2 in a medium with
dielectric constant κ1 in a uniform electric field E0 along the z axis.

0

θ
a

O

r

z

κ
κ

1
2

E
Let us choose the z axis in the direction of E0 through the centre of the sphere.
The system is symmetric about the z axis (i.e., axially symmetric), and the
potential inside and outside the sphere satisfies Eq. (3.33). Hence, we can
write the potential φ1 in dielectric 1 and φ2 in dielectric 2 in the form (3.45):

φ1 =
∞∑

n=0

(

A1
nr

n +
B1

n

rn+1

)

Pn(cos θ) (r > a), (3.46)

φ2 =
∞∑

n=0

(

A2
nr

n +
B2

n

rn+1

)

Pn(cos θ) (r < a), (3.47)

where A1
n, B

1
n, A

2
n and B2

n are some coefficients.

From the boundary condition at infinity (φ1 ≃ −E0z = −E0r cos θ) we obtain

A1
1 = −E0, A1

n = 0 for n ≥ 2,

since there no terms in (3.46) may increase faster than r at large distances.
The potential (3.47) should have no singularity at the origin (r = 0), so

B2
n = 0 for all n.

Hence, we have

φ1 = A1
0 − E0r cos θ +

∞∑

n=0

B1
n

rn+1
Pn(cos θ), (3.48)

φ2 =
∞∑

n=0

A2
nr

nPn(cos θ). (3.49)

The boundary conditions on the sphere r = a are (3.10) and (3.11) (with
σ = 0),

φ1 = φ2 and κ1
∂φ1

∂r

∣
∣
∣
∣
r=a

= κ2
∂φ2

∂r

∣
∣
∣
∣
r=a

.

Substituting φ1 and φ2 from Eqs.(3.48) and (3.49) into these equation, we
have

A1
0 − E0a cos θ +

∞∑

n=0

B1
n

an+1
Pn(cos θ) =

∞∑

n=0

A2
na

nPn(cos θ),

κ1

[

−E0 cos θ −
∞∑

n=0

(n+ 1)B1
n

an+2
Pn(cos θ)

]

= κ2

[
∞∑

n=0

nA2
na

n−1Pn(cos θ)

]

.

For these equation to hold for all θ, the coefficients that multiply each of the
Legendre polynomials, including P0 and P1 [recall Eqs. (3.37) and (3.38)] on
the left- and right-hand sides must be equal. Hence, for n = 0, we have

A1
0 +

B1
0

a
= A2

0 and − κ1
B1

0

a2
= 0,
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which gives
B1

0 = 0, A1
0 = A2

0 ≡ A0. (3.50)

For n = 1, we have

−E0a+
B1

1

a2
= A2

1a, (3.51)

κ1

(

−E0 −
2B1

1

a3

)

= κ2A
2
1 (3.52)

and solving these simultaneously33, we find

B1
1 =

κ2 − κ1
2κ1 + κ2

E0a
3, A2

1 = − 3κ1
2κ1 + κ2

E0. (3.53)

Finally, for n ≥ 2, we have

B1
n

an+1
= A2

na
n and − κ1

(n+ 1)B1
n

an+2
= κ2nA

2
na

n−1,

which gives34

A2
n = 0, B1

n = 0 for all n ≥ 2. (3.54)

Substituting all of these coefficients into Eqs (3.48) and (3.49) gives the po-
tential outisde and inside the sphere,

φ = A0 − E0r cos θ +
κ2 − κ1
κ2 + 2κ1

E0a
3 cos θ

r2
, (r > a) (3.55)

φ = A0 −
3κ1

κ2 + 2κ1
E0r cos θ, (r < a) (3.56)

where A0 can be set to zero35.

Note that inside the sphere,

φ = − 3κ1E0

κ2 + 2κ1
E0z,

the field is uniform,

E = −∇φ =
3κ1

κ2 + 2κ1
E0k. (3.57)

For κ2 > κ1 the field is reduced compared to E0, for κ2 < κ1 it is enhanced.

The potential outside the sphere (3.55) is the sum of the potential of the
uniform external field E0 and the potential of the dipole (last term) due to
polarisation of the sphere. Comparison with Eq. (1.43) shows that the dipole
moment induced on the sphere is

p = 4πε0
κ2 − κ1
κ2 + 2κ1

a3E0, (3.58)

33The quickest way to do this is probably by dividing Eq. (3.51) by a and Eq. (3.52) by
κ2 and subtracting them to find B1

1 , and then substituting it into (3.51) to find A2
1.

34According to the first equation, B1
n and A2

n have the same sign, but according to the
second one, they have opposite signs, which is only possible if both coefficients are zero.

35Adding an arbitrary constant to φ does not change the electric field E = −∇φ.
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and is in the direction of E0 (for κ2 > κ1).

Letting κ2 → ∞ in Eqs. (3.55) and (3.56) gives the solution for a con-
ducting (e.g., metallic) sphere. Indeed, in this limit the potential inside the
sphere [Eq. (3.56)] is constant and the field inside [Eq. (3.57)] vanishes. From
Eq. (3.58), the dipole moment of the metallic sphere is p = 4πε0a

3E0. It is
proportional to the external electric field36.

3.5 Solution of Laplace’s equation in cylindrical polar coordinates

z

ρ

x

y

z

ψ

In cylindrical coordinates (ρ, ψ, z), Laplace’s equation is

1

ρ

∂

∂ρ

(

ρ
∂φ

∂ρ

)

+
1

ρ2
∂2φ

∂ψ2
+
∂2φ

∂z2
= 0. (3.59)

For systems with translational symmetry along the z axis, the potential φ does
not depend on z, and Laplace’s equation reads

1

ρ

∂

∂ρ

(

ρ
∂φ

∂ρ

)

+
1

ρ2
∂2φ

∂ψ2
= 0. (3.60)

This equation possesses independent solutions37

ln ρ, ρn sinnψ, ρn cosnψ (n ∈ Z). (3.61)

The most general solution of equation (3.60) is then

φ = C ln ρ+
∞∑

n=−∞

(An cosnψ + Bn sinnψ)ρ
n, (3.62)

where C, An and Bn are arbitrary coefficients.

Equation (3.62) can be used, e.g., to solve the problem of a dielectric cylinder
in the uniform electric field perpendicular to its axis.

36In general, this relation is written as p = αE0, where the coefficient α is known as
the dipole polarisability. The dipole polarisability of a metallic sphere is proportional to the
cube of radius α = 4πε0a

3 (in SI) or, in CGS units, equals it: α = a3. Interestingly, this
relation holds approximately for atoms, which have electrons in them, but do not really
look like metallic spheres (and must be described quantum-mechanically). If we adopt CGS
but use atomic units (a.u.) of length, the mean radius of the hydrogen atom is 1.5 and
polarisability is 4.5 a.u., while for caesium (Cs), the largest atom in the periodic table, the
mean radius is 6.3 and polarisability is 400 a.u. (atomic units cubed still denoted as a.u.).

37To derive this, use variable separation. Seek solution of Eq. (3.60) in the form φ(ρ, ψ) =
R(ρ)Φ(ψ). Following the same steps as in Sec. 3.4, one obtains the equation for Φ(ψ),

Φ′′ + λΦ(ψ) = 0,

with solutions sin(
√
λψ) and cos(

√
λψ), which are periodic with period 2π only if λ = n2,

where n is an integer. The coresponding radial equation is

ρ
d

dρ

(

ρ
dR

dρ

)

+ n2R(ρ) = 0.

For n = 0 its two independent solutions are 1 and ln ρ, while for n 6= 0 these are ρn and ρ−n

(found by seeking solution in the form R(ρ) = ρs). Note that the unit solution R(ρ) = 1
(for n = 0) is included in Eq. (3.61), since ρn cosnψ = 1 for n = 0.
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4 Electrostatic energy

4.1 Energy of a charge distribution

Definition: Electrostatic energy of a charge distribution is the work required
to assemble the distribution from separated charges initially at rest at infinity.

For a general distribution of free charges with volume density ρ and surface
density σ, this energy is given by

U =
1

2

∫

V

ρ(r)φ(r)dV +
1

2

∫

S

σ(r)φ(r)dS. (4.1)

Proof. The work by an electric field on moving charge q between points A and
B is [see Eq. (1.19)]

W = −q[φ(rB)− φ(rA)].

When we consider work by external forces against the electric field, the sign
of this expression must be reversed. If point A is at infinity where φ(rA) = 0,
and point B has position r, the work required to move charge dq to this point
is

dqφ(r). (4.2)

Let us assume that the charge distributions which appear in Eq. (4.1) are built
gradually, with the densities increasing from 0 to their final values as

αρ(r) and ασ(r),

as the parameter α increases from 0 to 1. For a given value of α the electro-
static potential is αφ(r), since the potential depends linearly on the charge
density [see Eq. (2.15)].

When α increases by a small amount dα, the extra charge in the volume dV
at point r is

dq = dαρ(r)dV

with a similar increase dασdS of the charge on dS. Hence, by Eq. (4.2), the
work required to produce such increase in the whole space is

dU =

∫

V

dαρ(r)αφ(r)dV +

∫

S

dασ(r)αφ(r)dS.

The total work is the sum of dU for all α from 0 to 1, i.e., the integral

U =

∫

dU =

∫ 1

0

[∫

V

dαρ(r)αφ(r)dV +

∫

S

dασ(r)αφ(r)dS

]

=

∫ 1

0

αdα

[∫

V

dρ(r)φ(r)dV +

∫

S

σ(r)φ(r)dS

]

, (4.3)

which gives Eq. (4.1), since
∫ 1

0
αdα = 1

2
.

36



If the only free charges in the system are on conducting surfaces Si, Eq. (4.1)
becomes

U =
1

2

∑

i

Qiφi, (4.4)

where Qi and φi are the charge and potential of conductor i.

We can write a similar expression for a system of N point charges qi at posi-
tions ri in vacuum, assuming that point charges are very small metalic spheres:

U =
1

2

N∑

i=1

qiφ(ri) =
1

2

N∑

i=1

qi
1

4πε0

N∑

j=1

qj
|ri − rj|

.

[see Eq. (1.18)]. However, for point charges the term with j = i in the last
expression gives a zero in the denominator. This contribution corresponds to
the interaction of a charge qi with itself. Such contributions do not depend on
the actual positions of the charges, so it would be meaningful not to include
them in the total electrostatic energy38. Hence, the energy of the system of
point charges in vacuum is given by

U =
1

2

N∑

i=1

qi
1

4πε0

N∑

j=1
j 6=i

qj
|ri − rj|

=
1

2

N∑

i,j=1
j 6=i

qiqj
4πε0|ri − rj|

(4.5)

Note that the last sum is a double sum over all i and j from 1 to N , excluding
j = i. In this sum each pair of charges is included twice, and the factor 1

2

removes this “double counting”. Alternatively, one can write the energy of
the system of point charges as a sum over all distinct pairs of charges:

U =
N∑

i<j

qiqj
4πε0|ri − rj|

. (4.6)

Example. By Eq. (4.4), the electrostatic energy of a capacitor with charges Q
and −Q on the plates, which have potentials φ1 and φ2, respectively, is

U =
1

2
(Qφ1 −Qφ2) =

1

2
Q(φ1 − φ2)

=
1

2
QV =

1

2
CV 2 =

Q2

2C
, (4.7)

where V = φ1−φ2 is the potential difference between the plates, and Eq. (2.25)
was used.

38In doing so, we neglect the mathematically infinite amount of energy required to put
together each of the point charges. For moving charges, the problem of self-interaction
becomes significantly more difficult, and there is no consistent solution to it, see, e.g.,
R. P. Feynman, The Feynman lectures on physics, Vol. 2, Ch. 28 (Ref. [4] on page 5).
When charged particles, such as electrons, are accelerated, they emit electromagnetic radi-
ation (see Ch. 11), which means that charges lose energy and should experience a radiation
resistance force, which can only be due to the action of the electromagnetic field on the
electron. So, it is not possible to totally neglect the self-interation in electrodynamics. The
problem persists when electrons are described quantum-mechanically, or using the rela-
tivisitic quantum theory known as Quantum Electrodynamics (QED), which describes the
interactions of electrons, their antiparticles (positrons) and photons. There is a rigorous
mathematical procedure of dealing with infinite contributions in QED, called renormalisa-
tion. It takes account of the radiative corrections (i.e., self-interaction) and allows one to
predict all measurable quantities, except the mass and charge of the electron itself!
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4.2 Energy density of the electrostatic field

Consider a finite distribution of charge in which all the surface charges σ are
on conducting surfaces Sc and ρ is the volume density of free charges39. Its
electrostatic energy is

U =
1

2

∫

V

ρ(r)φ(r)dV +
1

2

∫

Sc

σ(r)φ(r)dS, (4.8)

where V is the volume outside the conductors enclosed in a sphere of an
arbitrarily large radius (sphere at infinity S∞).

Equation (4.8), as well as Eqs. (4.4) and (4.6), suggest that the electrostatic
energy “belongs” to the interacting charges. We will now show that Eq. (4.8)
can be cast in a completely different mathematical form, which will make it
clear that energy is actually “owned” by the field!40

From Eq. (2.9), we can replace the volume charge density in Eq. (4.8) by∇·D,

U =
1

2

∫

V

∇ ·DφdV +
1

2

∫

Sc

σφdS,

where we have also dropped the argument r for brevity. From the product
rule formula, ∇ · (φD) = ∇φ ·D + φ∇ ·D, we have

φ∇ ·D = ∇ · (φD)−∇φ ·D,

which gives

U =
1

2

∫

V

∇ · (φD)dV − 1

2

∫

V

∇φ ·DdV +
1

2

∫

Sc

σφdS.

Substituting ∇φ = −E in the middle term [see Eq. (1.17)], and using Gauss’s
theorem to transform the first term into a surface integral, we obtain

U =
1

2

∫

V

E ·DdV +
1

2

∮

S∞

φD · dS +
1

2

∮

Sc

φD · dS +
1

2

∫

Sc

σφdS. (4.9)

Here we used the fact that V is bounded by S∞ and the surfaces of the
conductors (cf. diagram in Sec. 3.2).

Since the potential φ and the field D decrease as 1/r and 1/r2 (or faster),
respectively, the integral over S∞ (whose area grows as r2) vanishes for r → ∞.

39True free surface charges can only be found on outer surfaces of conductors. Mathe-
matically, such charges are distributed in an infinitely thin layer, since the field inside the
conductor is zero. Any other distributions of “surface” charges are thin layers of volume
charges with the volume density that peaks sharply near the surface.

40In his fundamental paper, A Dynamical Theory of the Electromagnetic Field [Phil.
Trans. R. Soc. Lond. 155, 459 (1865)], James Clerk Maxwell, who performed a similar
derivation, writes about the electromagnetic energy: “Where does it reside? On the old
theories it resides in the electrified bodies, conducting circuits, and magnets, in the form of
an unknown quantity called potential energy, or the power of producing certain effects at
a distance. On our theory it resides in the electromagnetic field, in the space surrounding
the electrified and magnetic bodies, as well as in those bodies themselves, and is in two
different forms, which may be described without hypothesis as magnetic polarization and
electric polarization”. The magnetic part of the energy will be derived in Sec. 8.5.

38



In the second last term in Eq. (4.9), dS has the direction of the outward normal
for V , so that dS = −ndS, where n is the outward normal for the conductors.
Hence,

D · dS = −D · ndS = −DndS = −σdS,
where σ is the surface charge density on the conductor [see Eq. (2.18)], and
the two last terms in Eq. (4.9) cancel.

Therefore we find the electrostatic energy as

U =
1

2

∫

V

E ·DdV, (4.10)

where V can be extended to the whole space (since E = 0 inside conductors).
Equation (4.10) shows that each volume element dV contributes to the energy,
as long as the electric field is nonzero there. Hence, the energy is stored in the
field locally, rather than in the long-range interaction between the charges.
The quantity

1

2
E ·D (4.11)

is the energy density of the electrostatic field.

Example. Consider a parallel-plate capacitor whose plates carry free charges
with surface densities σ and −σ (see Sec. 2.7). Inside the capacitor D = σ
and E = σ/ε, and the energy density obtained from Eq. (4.11),

1

2

σ2

ε
,

is constant. Multiplying it by the volume of the capacitor Ad, where d is the
spacing between the plates and A is the area of each plate, we find

U =
1

2

σ2

ε
Ad =

1

2

(Q/A)2

ε
Ad =

Q2

2(εA/d)
=
Q2

2C
,

where C = εA/d is the capacitance [cf. Eq. (2.35)], the same result as (4.7).

4.3 Forces

Consider an isolated system composed of a number of parts (point charges,
conductors, dielectrics). Let one of the parts move through a small displace-
ment dr under the influence of the electric force F acting on it. The work by
F ,

dW = F · dr (4.12)

is related to the change in the electrostatic potential energy41,

dW = −dU, (4.13)

so that
− dU = Fxdx+ Fydy + Fzdz, (4.14)

41The minus sign in Eq. (4.13) is necessary, because when the field does a certain amount
of work, its own energy decreases.
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and

Fx = −
(
∂U

∂x

)

Q

, Fy = −
(
∂U

∂y

)

Q

, Fz = −
(
∂U

∂z

)

Q

, (4.15)

where the subscript Q indicates that the charges that create the field remain
constant (because the system is isolated).

In practice, electric fields are often created by conductors that are maintained
at constant potentials, as they are connected to batteries. In this case the
work done by the system on moving one of the parts through dr is

dW = dWb − dU, (4.16)

where dWb is the work done by the batteries.

For a system of charged conductors, from (4.4), and given that φj = const,

dU =
1

2

∑

j

φjdQj. (4.17)

The work supplied by the batteries is required to move each of the charges
dQj from zero potential to φj, so, by Eq. (4.2),

dWb =
∑

j

φjdQj = 2dU. (4.18)

Hence, from (4.16) and (4.18),

dW = 2dU − dU = dU,

and the forces are

Fx =

(
∂U

∂x

)

φ

, Fy =

(
∂U

∂y

)

φ

, Fz =

(
∂U

∂z

)

φ

, (4.19)

where the subscript φ indicates that the potentials are maintained constant.

Example 1. For a parallel-plate capacitor with vacuum between the plates, the
capacitance is C = ε0A/z where A is the area of each of the plates and z is
the distance between them [see Eq. (2.29)]. Using U = Q2/2C from (4.7), we
find that for Q = const, the force acting on either of the plates is

Fz = −∂U
∂z

= − Q2

2ε0A
. (4.20)

The minus sign shows that the force is attractive, which was to be expected,
given that the plates carry opposite charges.

To see clearer the meaning of (4.20), replace Q/A by the surface charge density
σ = Q/A, and recall the field of a uniformly charged plane E1 = σ/2ε0
[Eq. (1.38)]. This gives

Fz = −1

2

σ

ε0
Q = −QE1,
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i.e., the force on charge −Q in the field E1 of the positively charged plate.

Using U = CV 2/2 from (4.7), we find that for the constant potentials case
(V = const), the force is

Fz =
∂U

∂z
= −V

2

2

ε0A

z2
= − Q2

2ε0A
,

where we used CV = Q, which is the same answer as for Q = const.

Example 2. A parallel-plate capacitor with rectangular plates of sides a and b
and distance d between them, has a slab of dielectric with permittivity ε and
thickness d inserted through distance x along the side a. What is the force
acting on the dielectric?

a

E

x

d

According to Eq. (4.11), the energy density is

1

2
ED (in vacuum),

1

2
EdDd (in dielectric),

where E and D = ε0E are the electric field and displacement in the vacuum
part, and Ed and Dd = εE are those in the dielectric. The fields are uniform
and in the same direction, and the energy density is constant within each part.

The electrostatic energy is found from equation (4.10), which in our case means
multiplying the energy density by the volume of the corresponding part and
adding the two contributions:

U =
1

2
[ED(a− x)bd+ EdDdxbd],

Note that the electric field is the same in both parts, since the potential
difference between the plates, V = Ed, is constant across the plates. Hence,
the energy is

U =
1

2
[ε0E

2(a− x) + εE2x]bd =
1

2

[ε0(a− x) + εx]b

d
︸ ︷︷ ︸

C

V 2,

where the factor marked by the underbrace is the capacitance [cf. Eq. (4.7)].

Therefore, the force acting on the dielectric if the potentials are kept constant
(V = const), is

Fx =
∂U

∂x
=

(ε− ε0)b

2d
V 2,

and since ε > ε0, the dielectric is drawn inside by this force.

One can show that for Q = const the force from equation (4.15) is the same.
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5 Steady currents

5.1 Electric current

Current is the flow of electric charge.

Definition. The current I is the amount of charge transported across a given
surface in unit time,

I =
dQ

dt
. (5.1)

Units: ampere42 (A), 1 A = 1 C s−1.

5.2 Current density

q v
If there are n charge carriers per unit volume, with charge q each, moving
with velocity v, the current density is

j = nqv. (5.2)

The charge that flows through the surface element dS in time dt is

dQ = j · dSdt, (5.3)

hence, the current through dS is

dI = j · dS. (5.4)

dS v

θ

θ

vdt
v

To derive Eq. (5.3), note that for the charges to pass through dS in time dt,
they should be within the distance vdt of the surface element, as measured
along the line parallel to v. Hence, these charges must be within the oblique
cylinder, whose volume is dSvdt cos θ, where θ is the angle between dS and
v. The amount of charge within the cylinder is

dQ = qndSvdt cos θ = nqv · dSdt = j · dSdt,
where the definition of the current density (5.2) was used.

By Eq. (5.4), the current through a finite surface S is

I =

∫

S

j · dS. (5.5)

If there are several types of charge carriers with number densities ni, charges
qi and velocities vi, then

j =
∑

i

niqivi. (5.6)

42Of the two related units, coulomb and ampere (1 C = 1 A× 1 s), the ampere is among
the seven SI base units. “The ampere is that constant current which, if maintained in two
straight parallel conductors of infinite length, of negligible circular cross-section, and placed
1 metre apart in vacuum, would produce between these conductors a force equal to 2×10−7

newton per metre of length. It follows that the magnetic constant, µ0, also known as the
permeability of free space, is exactly 4π × 10−7 henries per metre, µ0 = 4π × 10−7 H/m.”
SI Brochure: The International System of Units (SI) [8th edition, 2006; updated in 2014]
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5.3 Equation of continuity

S

S

V

d

Consider a charge distribution with volume density ρ(r, t), and an arbitrary
volume V bounded by surface S. The charge inside it is given by

Q =

∫

V

ρ(r, t)dV.

Its time derivative,

dQ

dt
=

d

dt

∫

V

ρ(r, t)dV =

∫

V

∂ρ(r, t)

∂t
dV,

is equal to the current that flows into V , or the negative of the current that
flows out of V across surface S:

∫

V

∂ρ(r, t)

∂t
dV = −

∮

S

j · dS. (5.7)

(Since dS is in the direction of the outer normal, the current out of V is re-
garded as positive.) Using Gauss’s theorem on the right-hand side of Eq. (5.7),

∫

V

∂ρ(r, t)

∂t
dV = −

∫

V

∇ · jdV,

and rearranging, we have
∫

V

[
∂ρ(r, t)

∂t
+∇ · j

]

dV = 0.

Since this is true for any volume V , we obtain the equation of continuity

∂ρ

∂t
+∇ · j = 0. (5.8)

This equation is a mathematical form of charge conservation.

5.4 Ohm’s law

It is found experimentally that for many substances at a given temperature,
the current density is proportional to the electric field,

j = σE. (5.9)

This is Ohm’s Law, and σ is the conductivity. Its reciprocal,

ρ = 1/σ, (5.10)

is the resistivity, so that
E = ρj.

The units of resistivity are found from ρ = E/j as

volt (metre)−1

ampere (metre)−2 =

(
volt

ampere

)

×metre.

In SI,

1 ohm =
1 volt

1 ampere
≡ 1 Ω,

so the unit of resistivity is Ωm, and the unit is conductivity is Ω−1m−1.
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5.5 Steady currents in continuous media

Steady conditions mean that there is no variation with time. In particular,
the charge density is independent of time: ρ(r, t) → ρ(r).

I

electrodes

I

Places where current enters or leaves a medium are known as electrodes. The
current flowing from an electrode is given by

I =

∫

S

j · dS, (5.11)

where S is the surface surrounding the electrode.

The current flow satisfies the following equations:

E = −∇φ, (5.12)

Ohm’s law,
j = σE, (5.13)

and the continuity equation (5.8) with ∂ρ/∂t = 0, so that

∇ · j = 0. (5.14)

Substituting (5.12) into (5.13), and (5.13) into (5.14), we find

∇ · (σ∇φ) = 0, (5.15)

or, for a uniform medium (σ = const),

∇2φ = 0,

i.e., Laplace’s equation.

It must be solved subject to the following boundary conditions:

(i) On the electrodes,
φ = const,

which means that E and j are normal to the electrode surface. (Electric
fields are perpendicular to equipotential surfaces, see end of Sec. 1.4.)

(ii) The current leaving the electrode is given by equation (5.11).

(iii) On the boundary between two media with different conductivities,

j1n = j2n, (5.16)

for the normal components of the current density43. Consequently,

σ1E1n = σ2E2n,

while the tangential component of the electric field is continuous
(Sec. 2.6),

E1t = E2t.

43This can be proved by considering
∮

S
j · dS for a cylindrical surface S whose flat faces

are parallel to the boundary between media 1 and 2, and much larger than the curved
surface (cf. Sec. 2.6). For steady currents this intergral must be zero, so the contributions
of the two flat faces cancel, which yileds Eq. (5.16).
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5.6 Resistance

For a conductor of any shape, with current I entering at one electrode and
leaving at another, the potential difference between the electrodes being V ,
the resistance of the conductor is

R =
V

I
. (5.17)

It is supposed to be independent of V and I. Sometimes (5.17) is referred to
as Ohm’s law.

In SI the resistance is measured in ohms (Ω) (see Sec. 5.4).

II

A
l

j

Example. Consider a straight homogeneous wire of constant cross section A
and length l, with constant j along the wire. This satisfies all the boundary
conditions, and the magnitude of the current density is (using φ = −Ez,
E = (φ1 − φ2)/l),

j = σ(φ1 − φ2)/l.

hence, the current is

I = jA = σA(φ1 − φ2)/l = σAV/l,

and the resistance of the wire is

R =
l

σA
=
ρl

A
.

5.7 Joule heating

The work done by the electric field when moving charge Q through a potential
difference V is

QV,

and the corresponding power (i.e., work per unit time) is

IV.

Using (5.17), it can be written in different forms,

IV = I2R =
V 2

R
. (5.18)

When this power is dissipated in the material, it experiences Joule heating.
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6 Magnetic field of steady currents

6.1 Magnetic field

6.1.1 The origin of magnetism.

Magnetism is an effect produced by the flow of electric charges. There are no
magnetic charges (or magnetic monopoles44).

6.1.2 Magnetic field produced by a current.

r

’rd
’r

O

C

I

r

r

’

−

Consider a circuit C carrying current I. The contribution of a small segment
dr′ of the circuit located at point r′, to the magnetic field B at point r is

dB =
µ0

4π
I
dr′ × (r − r′)

|r − r′|3 , (6.1)

where dr′ is in the direction of the current. This mathematical form was
found by generalising experimental data. It resembles Coulomb’s law in that
the magnitude of the magnetic field descreases as the inverse square of the
distance. However, the direction of the field is neither away nor towards its
source, but perpendicular to both dr′ and r − r′45.
The magnetic field of the entire circuit is obtained by adding the contributions
of all the segments,

B(r) =
µ0

4π
I

∫

C

dr′ × (r − r′)
|r − r′|3 . (6.2)

Equation (6.2) is Biot-Savart’s law, and the constant µ0 is

µ0 = 4π × 10−7 Ns2C−2. (6.3)

The unit of magnetic field in SI is tesla (T)46. The CGS unit is gauss (G),

1 T = 104 G. (6.4)

The Earth’s magnetic field near its surface is ∼1 G (0.25–0.65 G, depending
on location).

44So far, magnetic monopoles have not been discovered, and they may not exist. However,
this hypothetical particle can have important implications for particle physics. For example,
Dirac showed that the existence of a magnetic monopole would explain quantisation of
electric charge. Magnetic monopoles can also catalyse the decay of protons, as predicted by
some elementary particle theories. (Current experiments set the lower limit for the proton
lifetime at 2× 1029 years.)

45The vector product of vectors a and b is a vector c = a×b such that (i) it is perpendic-
ular to both a and b (i.e., perpendicular to the plane that contains a and b), (ii) c = ab sin θ,
where θ is the angle between a and b, and (iii) from the top of c the rotation from a to b
is in the positive direction (i.e., anticlockwise).

461 T is a strong field. Such fields are produced by neodimium magnets, the strongest
permanent magnets commercially available. Their structure is Nd2Fe14B and their strength
is due to lined-up electron spins (elementary “magnets”) in the neodimium (Nd) atoms.
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Example: magnetic field of an infinite straight wire carrying current I.

Let us assume that the wire is along the z axis. The position vector r′ = z′k
is the point on the wire with the z-coordinate z′. It takes values in the range
−∞ < z′ <∞, and dr′ = dz′k.

k

r

ρ

ρ

ψ

z

z

x

yψ

Biot-Savart’s law (6.2) gives

B(r) =
µ0

4π
I

∫ ∞

−∞

dz′k × (r − z′k)

|r − z′k|3 . (6.5)

The system has axial symmetry about the z axis, so it is convenient to use
cylindrical coordinates in which r = ρρ̂ + zk, where ρ̂ is the unit vector
associated with coordinate ρ. In this case

k × (r − z′k) = k × (ρρ̂+ zk − z′k) = ρk × ρ̂ = ρψ̂,

where ψ̂ is the unit vector associated with coordinate ψ and perpendicular to
both k and ρ̂. The distance in the denominator of (6.5) is

|r − z′k| = |ρρ̂+ zk − z′k| =
√

ρ2 + (z − z′)2,

and we obtain

B(r) =
µ0

4π
Iρψ̂

∫ ∞

−∞

dz′

[ρ2 + (z′ − z)2]3/2
.

Changing the integration variable from z′ to ξ = z′ − z, we have

B(r) =
µ0

4π
Iρψ̂

∫ ∞

−∞

dξ

(ρ2 + ξ2)3/2
.

Using the variable substitution ξ = ρ tanα,

dξ =
ρdα

cos2 α
, ρ2 + ξ2 = ρ2(1 + tan2 α) =

ρ2

cos2 α
,

with the new integration limits α = −π/2 and π/2, we have

B(r) =
µ0

4π

Iψ̂

ρ

∫ π/2

−π/2

cosαdα,

which gives

B =
µ0I

2πρ
ψ̂. (6.6)

I

B As expected from the symmetry of the system, the magnitude of the magnetic
field depends only on the distance from the wire. Vector B is tangential to
the circles centred on the wire, which represent the magnetic field lines.

6.1.3 The Lorentz force.

The force on a charge q moving with velocity v in electric field E and magnetic
field B is the Lorentz force,

F = qE + qv ×B. (6.7)

The first term in Eq. (6.7) is the familiar electric force (Sec. 1.3). The second
term is the force due to the magentic field. It acts only on moving charges,
and is perpendicular to both the particle’s velocity and the magnetic field.
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6.1.4 Force on a current.

Let us determine the force that acts on a circuit carrying current I in the
magnetic field B.

j

d

rd

I

r

S

Consider a small segment dr of the wire carrying current I. When enlarged,
this segment looks as a cylinder. By Eq. (5.4), the current I is related to the
current density j as

I = jS, (6.8)

where S is the perpendicular cross section area of the wire. Multiplying
Eq. (6.8) by dr and taking into account the fact that dr and j are in the
same direction (so that jdr = j|dr|), we have

Idr = jdV, (6.9)

where dV = |dr|S is the volume of the segment of the wire.

The segment contains ndV charge carriers, where n is their number density.
The charge carries have charge q each and move with velocity v (the current
density j = nqv, see Sec. 5.2). Hence, the magnetic force acting on the
segment is

dF = qv ×BndV = j ×BdV = Idr ×B, (6.10)

and the total force acting on the circuit C is

F =

∫

C

Idr ×B(r). (6.11)

1

1 C2

I2

r1

r2

O

I

C

Example 1. Consider two circuits, C1 and C2, carrying currents I1 and I2,
respectively. The magnetic field created by circuit C2 at point r1 is, according
to Eq. (6.2),

B(r1) =
µ0

4π
I2

∮

C2

dr2 × (r1 − r2)
|r1 − r2|3

.

Using (6.11) we find the force acting on circuit C1 as

F 1 =
µ0

4π
I1I2

∮

C1

∮

C2

dr1 × [dr2 × (r1 − r2)]
|r1 − r2|3

. (6.12)

The force F 2 acting on C2 is obtained from Eq. (6.12) by interchanging indices
1 and 2. Of course, F 2 = −F 1, in accordance with Newton’s 3rd law47.

l

Fd

1 2

B
I I

rd

Example 2. Let us find the force between two parallel currents I separared
by distance l. The magnetic field created by wire 2 at the position of wire
1 is B = µ0I/(2πl) [see Eq. (6.6)], perpendicular to the plane containing the
currents. The force acting on segment dr of wire 1 is dF = Idr×B, towards
wire 2. Hence, the two wires with parallel currents attract each other with
the force

F =
µ0I

2

2πl
per unit length of the wire. For I = 1 A and l = 1 m, F = 2× 10−7 N/m.

47To show this, apply the “bac–cab” rule to the numerator of the integrand, and use the
identity

∮

C2

dr2 ·
(r2 − r1)
|r2 − r1|3

= −
∮

C2

∇2

1

|r2 − r1|
· dr2 = 0,

which holds since
∫ B

A
∇f · dr = f(rB)− f(rA) and

∮
∇f · dr = 0 for any scalar function.
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6.2 Laws of magnetostatics

For a volume distribution of current with current density j, we use Eq. (6.9)
and replace Idr′ by j(r′)dV ′ in Biot-Savart’s law (6.2), obtaining the field as
the volume integral

B(r) =
µ0

4π

∫

V

j(r′)× (r − r′)
|r − r′|3 dV ′. (6.13)

We will now show that this leads to the following key equations:

∇ ·B = 0, (6.14)

and
∇×B = µ0j. (6.15)

Equation (6.14) means the absence of magnetic charges [cf. Eq. (1.39) for the
electric field], and it also holds in the nonstatic case.

SS

L

d

Equation (6.15) shows how the magnetic field is created by currents. It can
be cast in the integral form by considering a line integral of B over a closed
loop L and using Stokes’s theorem:

∮

L

B · dr =

∫

S

∇×B · dS,

where S is any surface bounded by L48. Substituting ∇×B from Eq. (6.15)
and using Eq. (5.5), we obtain

∮

L

B · dr = µ0I, (6.16)

where I is the total current through the closed curve L, determined using the
right-hand corkscrew sign convention. Equation (6.16) is Ampere’s law.

3I1 I2

I1 I2 I3  I = − ++

L

I

Derivation of Eqs. (6.14) and (6.15).

Applying ∇· to Eq. (6.13), we have

∇ ·B =
µ0

4π

∫

V

∇ ·
[
j(r′)× (r − r′)

|r − r′|3
]

dV ′

= −µ0

4π

∫

V

∇ ·
[

j(r′)×∇ 1

|r − r′|

]

dV ′

=
µ0

4π

∫

V

j(r′) ·
[

∇×∇
︸ ︷︷ ︸

= 0

1

|r − r′|

]

dV ′

= 0,

where we used Eq. (1.16) to obtain the 2nd line, and a · (b× c) = −b · (a× c)
in line three [∇ acts on functions of r, so j(r′) can be treated as a constant].

48The direction of dS is related to the direction in which L is traversed by the right-hand
corkscrew rule, i.e., if the corkscrew is rotated in the direction in which L is traversed, it
will move in the direction of dS. Alternatively, one can say that when viewed from the tip
of dS, the loop is traversed in the positive (anticlockwise) direction.
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Applying ∇× to Eq. (6.13), we have

∇×B = −µ0

4π

∫

V

∇×
[

j(r′)×∇ 1

|r − r′|

]

dV ′

= −µ0

4π

∫

V

[

j(r′) (∇ · ∇)
︸ ︷︷ ︸

= ∇2

1

|r − r′| − (j(r′) · ∇)∇ 1

|r − r′|

]

dV ′, (6.17)

where we used a×(b×c) = b(a ·c)−c(a ·b) = b(a ·c)−(a ·b)c, treating j(r′)
as a constant and keeping the function of r on the right of the ∇ operators.

Recalling that the potential of a point charge q at r′

φ =
q

4πε0

1

|r − r′|

satisfies Poisson’s equation ∇2φ = −ρ/ε0 with ρ = qδ(r − r′) [see Eqs. (1.40)
and (1.24)], we have

∇2 1

|r − r′| = −4πδ(r − r′). (6.18)

Hence, the first term in square brackets in Eq. (6.17) gives,

µ0

∫

V

j(r′)δ(r − r′)dV ′ = µ0j(r),

[using Eq. (1.27)], which is the right-hand side of Eq. (6.15).

It remains to show that the 2nd term in Eq. (6.17) is zero. Using the identity

j(r′)×
(

∇×∇
︸ ︷︷ ︸

= 0

1

|r − r′|

)

= ∇
(

j(r′) · ∇ 1

|r − r′|

)

− (j(r′) · ∇)∇ 1

|r − r′| ,

in which left-hand side is zero, we re-write the 2nd term in Eq. (6.17) as

µ0

4π
∇
∫

V

j(r′) · ∇ 1

|r − r′| dV
′ = −µ0

4π
∇
∫

V

j(r′) · ∇′ 1

|r − r′| dV
′, (6.19)

where ∇′ acts on r′. Making use of the product rule

∇′ ·
(

j(r′)
1

|r − r′|

)

= ∇′ · j(r′) 1

|r − r′| + j(r
′) · ∇′ 1

|r − r′| ,

we transform the integral on the right-hand-side (6.19) into

∫

V

∇′ ·
(

j(r′)
1

|r − r′|

)

dV ′ −
∫

V

∇′ · j(r′) 1

|r − r′| dV
′.

The second term above vanishes, since ∇ · j = 0 for steady currents [see
Eq. (5.14)]. By Gauss’s theorem, the first term transforms into the integral

∮

S

j(r′)

|r − r′| · dS
′
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over the surface bounding V . Assuming that the currents exist only in a finite
range of space completely enclosed by S, this integral also vanishes.

Example. Similar to Gauss’s law in electrostatics (Sec. 1.7), Ampere’s law
(6.16) allows one to determine the magnetic field in cases where the system
possesses some symmetry.

B
ρ

I For a straight wire carrying current I, the magnetic field is tangential to the
circles centred on the wire (since the B-field lines must be closed), and its
magnitude depends only on the distance ρ from the wire. Choosing the loop
L in Eq. (6.16) as a circle of radius ρ centred on the wire, we obtain

∮

L

B · dr = B(ρ)

∮

L

|dr| = B(ρ)2πρ = µ0I,

which gives

B(ρ) =
µ0I

2πρ
,

in agreement with Eq. (6.6).

6.3 Magnetic flux

Definition: the magnetic flux Φ through a surface S is

Φ =

∫

S

B · dS. (6.20)

For a closed surface, using Gauss’s theorem and equation (6.14), we have

∮

S

B · dS = 0. (6.21)

The unit of magnetic flux is the weber (Wb): 1 Wb = 1 Tm2.

6.4 Magnetic scalar potential

In the region of space with no currents, j = 0, equation (6.15) gives

∇×B = 0.

Hence, the magnetic field can be represented by the gradient of a scalar field49.
The magnetic scalar potential φm is defined by

B = −µ0∇φm. (6.22)

Using (6.14), we see that φm satisfies Laplace’s equation,

∇2φm = 0.

Thus, we can use the methods for solving Laplace’s equation developed in
Secs. 3.4 and 3.5 (with suitable boundary conditions) to find magnetic fields.

49Compare this with the condition that the electrostatic field is conservative, Eq. (1.20),
which is related to the possibility to represent it as E = −∇φ.
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6.5 Magnetic vector potential

The field B that satisfies equation (6.14) can be represented by

B = ∇×A, (6.23)

since ∇ ·B = ∇ · (∇×A) = (∇×∇)A = 0 for any A.

The vector function A is the magnetic vector potential.

The vector potential A is not unique. Adding the gradient of any scalar field
χ to A leaves B unchanged. Indeed, replacing A→ A+∇χ in (6.23) gives

B = ∇× (A+∇χ) = ∇×A,

since ∇×∇χ = 0.

This allows one to impose extra conditions on A, e.g.,

∇ ·A = 0, (6.24)

which is a convenient choice in magnetostatics.

Proof. Let A′ be a vector potential such that ∇ ·A′ = f 6= 0. We construct a
new vector potential as

A = A′ +∇χ,
and impose (6.24),

∇ ·A = ∇ ·A′ +∇ · ∇χ = f +∇2χ = 0,

which gives
∇2χ = −f. (6.25)

This equation is similar to Poisson’s equation (1.40) in electrostatics,

∇2φ = −ρ/ε0, (6.26)

whose solution is given by Eq. (1.23) (in the absence of surface charges),

φ(r) =
1

4πε0

∫

V

ρ(r′)

|r − r′|dV
′. (6.27)

Hence, Eq. (6.25) has a solution

χ(r) =
1

4π

∫

V

f(r′)

|r − r′|dV
′,

and the condition (6.24) can always be satisfied.

Let us now find the equation that relates A to the current density. Substitut-
ing (6.23) into (6.15), we have

∇× (∇×A) = µ0j,

or
∇(∇ ·A)−∇2A = µ0j.

52



If A is chosen so that (6.24) holds, this gives

∇2A = −µ0j. (6.28)

Comparing Eq. (6.28) with Possion’s equation (6.26), we notice that it repre-
sentes “three copies” of the latter, one for each of the components x, y and z.
Hence, its solution can be constructed in the same way as Eq. (6.27),

A(r) =
µ0

4π

∫

V

j(r′)

|r − r′|dV
′. (6.29)

It is easy to show that the vector potential from Eq. (6.29) satisfies (6.24), and
that substitution of (6.29) into Eq. (6.23) leads to Biot-Savart’s law (6.13).

For a circuit C carrying current I, the vector potential is given by

A(r) =
µ0

4π
I

∫

C

dr′

|r − r′| , (6.30)

which is obtained from Eq. (6.29) using (6.9). Substitution of (6.30) into
(6.23) gives Biot-Savart’s law in the form of Eq. (6.2).

The formulae for the vector potenial (6.29) and (6.30) are simpler than the
corresponding expressions for the magnetic field, Eqs. (6.13) and (6.2). This
is why it is often easier to find A first and then determine B from Eq. (6.23).

6.6 Field at a large distance from a current loop – magnetic dipole

Let us use equation (6.30) to find the magnetic field of a current loop C at
distances r much greater than the size of the loop.

’

r

I

C

rO

Expanding to first order in r′ for r′ ≪ r (cf. Sec. 1.8),

1

|r − r′| ≃
1

r
−∇1

r
· r′ = 1

r
+
r · r′
r3

,

and substituting into (6.30), we find

A(r) =
µ0I

4π

1

r

∫

C

dr′ +
µ0I

4π

1

r3

∫

C

(r · r′)dr′. (6.31)

The first term above vanishes for the closed loop C. To transform the second
term, we use two identities,

r × (r′ × dr′) = r′(r · dr′)− dr′(r · r′) (6.32)

and
d[(r · r′)r′] = (r · dr′)r′ + (r · r′)dr′, (6.33)

where r is regarded as a constant vector. Subtracting (6.32) from (6.33), we
find

(r · r′)dr′ = 1

2
d[(r · r′)r′] + 1

2
(r′ × dr′)× r.
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Substituting into (6.31), we obtain

A(r) =
µ0I

4π

1

r3

{
1

2

∫

C

d[(r · r′)r′] + 1

2

∫

C

(r′ × dr′)× r
}

.

The first term on the right-hand side gives zero50, while the second yields

A(r) =
µ0

4π

m× r
r3

, (6.34)

where

m =
I

2

∫

C

r′ × dr′ (6.35)

is the magnetic dipole moment of the circuit C.

Substituting (6.34) into (6.23), we find the magnetic field,

B(r) =
µ0

4π
∇×m× r

r3
= −µ0

4π
∇
(m · r

r3

)

=
µ0

4πr3

[
3(m · r)r

r2
−m

]

, (6.36)

where the last step is identical to the derivation of Eq. (1.45), and the magnetic
field of the dipole is similar to the electric field of the point dipole (1.45).

To prove the first step in Eq. (6.36), transform the double vector product
using the “bac–cab” rule, keeping in mind that m is a constant vector,

∇× m× r
r3

= −∇×
(

m×∇1

r

)

= −m
(

∇ · ∇1

r

)

+ (m · ∇)∇1

r
.

The first term on the right-hand side vanishes since∇2(1/r) = 0 for r 6= 0. The
second term can be transformed with the help of another “bac–cab” identity

m×
(

∇×∇
︸ ︷︷ ︸

= 0

1

r

)

= ∇
(

m · ∇1

r

)

− (m · ∇)∇1

r
,

which shows that

∇× m× r
r3

= ∇
(

m · ∇1

r

)

= −∇
(m · r

r3

)

.

r’

dA

C

I

O

r d’

Geometrically,
1

2

∫

C

r′ × dr′

is the “vector area” of the current loop. If the loop is planar, the magnitude of
this integral is equal to the area of the loop A, and its direction is perpendicular
to plane of the loop, given by the right-hand corkscrew rule relative to the
current. (As seen from the diagram, 1

2
r′ × dr′ = dAn.) In this case

m = IAn,

where n is the unit vector perpendicular to the loop.

Comparison of the second last expression in (6.36) with (6.22) shows the field
of the magnetic dipole corresponds to the magnetic scalar potential

φm =
m · r
4πr3

.

50For a linear integral of a complete differential, we have
∫ B

A
d[a(r)] = a(rB) − a(rA).

When such an integral is taken over a closed loop, the initial and final points coincide and
the integral vanishes.
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7 Magnetic properties of matter

7.1 Magnetisation

The moving electrical charges in atoms and molecules behave as little current
loops, characterised by their magnetic dipole momentsm. The magnetisation
M of a material is the magnetic moment per unit volume. The magnetic
moment of volume dV is then

MdV.

From equation (6.34), the vector potential produced by a volume V of mag-
netic material is

A(r) =
µ0

4π

∫

V

M(r′)× (r − r′)
|r − r′|3 dV ′ (7.1)

=
µ0

4π

∫

V

M(r′)×∇′ 1

|r − r′| dV
′

=
µ0

4π

[∫

V

∇′ ×M(r′)

|r − r′| dV ′ −
∫

V

∇′ ×
(
M (r′)

|r − r′|

)

dV ′

]

, (7.2)

where we used Eq. (2.4) and a rearrangement of the product rule ∇× (af) =
∇× af − a×∇f , to obtain the last line.

Transforming the second term in (7.2) with the help of the identity51
∫

V

∇× a dV = −
∮

S

a× dS, (7.3)

we find

A(r) =
µ0

4π

∫

V

∇′ ×M (r′)

|r − r′| dV ′ +
µ0

4π

∮

S

M (r′)× dS′

|r − r′| . (7.4)

Comparing the first term with equation (6.29), we see that magnetisation M
results in the volume current density

jm = ∇×M , (7.5)

known as the magnetisation current density. It is similar to the polarisation
charge density in the case of dielectrics, Sec. 2.2.

The second term in (7.4) is due to the magnetisation surface current density

Jm =M × n, (7.6)

where n is the outward unit normal (M ×dS =M ×ndS). The surface cur-
rent density is the current per unit length perpendicular to it. Its contribution
can be absorbed into jm if we smear the surface to a finite thickness.

51Proof. Considering the dot product of a constant vector t with the left-hand side of
(7.3), and using properties of the triple scalar product and Gauss’s theorem, we have

t ·
∫

V

∇× a dV =

∫

V

∇ · (t× a) dV =

∮

S

(a× t) · dS = −t ·
∮

S

a× dS,

where S is the surface that bounds V , which proves (7.3), since t is arbitrary.
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7.2 Equations of the magnetic field

In the presence of magnetic materials the total current density is

j + jm,

where j is the free current density. In this case Eq. (6.15) takes the form

∇×B = µ0(j + jm). (7.7)

Note that Eq. (6.15) was derived on the assumption of steady currents, i.e.,
∇ · j = 0, which is also satisfied by jm, since

∇ · jm = ∇ · (∇×M ) = 0.

Using (7.5) in Eq. (7.7), we obtain

∇×B = µ0j + µ0∇×M .

After rearrangement, this gives

∇×H = j, (7.8)

where

H =
B

µ0

−M , (7.9)

is the magnetic field intensity52, and

B = µ0(H +M). (7.10)

Equations (7.8) and (7.10) replace (6.15) when magnetic materials are present.

Using Stokes’s theorem, we obtain the integral form of (7.8) as
∮

L

H · dr = I, (7.11)

where I is the free current through loop L, which replaces Ampere’s law (6.16).

7.3 Magnetic susceptibility and permeability

For a large class of materials (isotropic and linear),

M = χmH , (7.12)

where χm is the magnetic susceptibility.

If χm < 0 the material is called diamagnetic, and if χm > 0 – paramagnetic53.

52This vector is analogous to the displacement D of the electric field. Note, however,
how a minus sign in Eq. (2.7) led to the plus sign in the definition of D (2.10), while (7.5)
leads to the minus sign in the definition of H (7.9).

53A material is diamagnetic if it has no “elementary current loops” (i.e., atomic or
molecular magnetic moments) in the absence of the external magnetic field. Application
of such field gives rise to magnetisation which opposes the field, which is a consequence of
Lenz’s rule [see Sec. 8.2]. In paramagnetic materials the magnetic dipole moments exist
even in the absence of the field, but they are randomly oriented (i.e., no net magnetisation).
When the field is switched on, they orient preferentially along the field, so that M and H
are in the same direction. In both cases typical values are χm ∼ 10−5.
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From Eqs. (7.10) and (7.12) we have

B = µH , (7.13)

where
µ = µ0(1 + χm) (7.14)

is the permeability. In vacuum χm = 0, which is why µ0 [see Eq. (6.3)] is
known as the vacuum permeability, or permeability of free space.

Similar to Eq. (2.12), the ratio

κm ≡ µ

µ0

= 1 + χm, (7.15)

is the relative permeability.

Another class of materials (ferromagnetics) is characterised by much larger
values of magnetisation which can be nonzero in the absence of external mag-
netic fields. Relations (7.12) and (7.13) do not hold for them, and the mag-
netisation depends not only on H , but also on the “history” of the sample.

7.4 Boundary conditions

The boundary conditions for the magnetic field are derived in a way similar
to the boundary conditions at the interface of two dielectrics (Sec. 2.6).

Consider the boundary between two magnetic materials 1 and 2, with unit
normal vector n (from 2 into 1) and unit tangential vector t. The boundary
condition for the B field is

B1n = B2n. (7.16)

It is obtained from ∇·B = 0 in the integral form (6.21), applied to a cylinder
with flat faces parallel to the boundary and negligibly small curved surface
[cf. derivation of Eq. (2.23)].

n

dS

dS
2

1
A

t

Using Eq. (7.10), the boundary condition (7.16) can be written as

H1n +M1n = H2n +M2n, (7.17)

or, for two linear, isotropic magnetics which satisfy (7.13),

µ1H1n = µ2H2n, (7.18)

where µ1 and µ2 are the permeabilities of the two materials.

n

B

2

D C

A

1

l

t
The boundary condition for H is derived by applying Eq. (7.11) to a rect-
angular loop with long sides parallel to the interface. If surface currents are
present, the current through the loop is

I = J · (n× t)l,

where J is the surface current density, l is the length of AB and n× t is the
unit normal to the loop, linked by the right-hand corkcscrew rule with the
direction in which ABCD is traversed. Equation (7.11) then yields

(H1 −H2) · t = (J × n) · t, (7.19)
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which can also be written in alternative forms54 [cf. derivation of Eq. (2.22)].

In the absence of surface currents (J = 0), we have

H1t = H2t. (7.20)

7.5 Permanent magnets

A permanent magnet is a piece of material that retains magnetisation in the
absence of free currents, i.e., for j = 0. Equation (7.8) then gives

∇×H = 0,

which implies that H can be described through a scalar potential φm,

H = −∇φm, (7.21)

[cf. Eqs. (1.17) and (1.20) for the electric field and electrostatic potential].

From Eqs. (7.9) and (6.14), we have

∇ ·H = −∇ ·M . (7.22)

Equations (7.21) and (7.22) are similar to Eqs. (1.17) and (1.39), which means
that

ρm = −∇ ·M (7.23)

can be considered as the source “magnetic charge” density for the field H .

Then, by analogy with equations (1.23) and (2.6), we can write

φm(r) = − 1

4π

∫

V

∇′ ·M (r′)

|r − r′| dV ′ +
1

4π

∮

S

M (r′) · dS′

|r − r′| , (7.24)

where V is the volume of the magnet, and S is its surface. The second term
in (7.24) is due to the surface density

σm =M · n (7.25)

of “magnetic charges”, where n is the unit vector out of S.

Note that if the magnet is uniformly magnetised (M = const), then only the
second term in Eq. (7.24) contributes to the magnetic scalar potential.

7.6 Potential problems

We consider problems involving magnetic materials in which there are no free
currents, i.e., j = 0. In this case,

∇×H = 0 (7.26)

and
H = −∇φm. (7.27)

54Equation (7.19) can be written as (H1 −H2) · t = J · (n× t) or n× (H1 −H2) = J .
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In addition, if the material is linear and homogeneous, ∇ ·B = 0 gives

∇ ·H = 0. (7.28)

This equation also holds if the magnetisation is uniform, i.e., M = const
[which is obtained by applying ∇· to Eq. (7.10) and using ∇ ·M = 0].

By equation (7.28), the magnetic potential satisfies Laplace’s equation,

∇2φm = 0. (7.29)

This equation must be solved with boundary conditions (7.16) and (7.20),
which can be done using methods from Ch. 3.

In terms of φm, the normal component ofH (7.27) is−∂φm/∂n. The boundary
condition (7.16) can then be written for linear, isotropic materials, as

µ1
∂φ1

∂n
= µ2

∂φ2

∂n
, (7.30)

or, more generally, as

− ∂φ1

∂n
+M1n = −∂φ2

∂n
+M2n, (7.31)

where φ1 and φ2 are the magnetic scalar potentials in materials 1 and 2, M 1

and M 2 being the corresponding magnetisations.

The second boundary condition (7.20) is for the tangential derivatives,

∂φ1

∂t
=
∂φ2

∂t
. (7.32)

It can be integrated along the boundary (i.e., in the t direction) and replaced
by the requirement that the magnetic scalar potential is continuous across the
boundary,

φ1 = φ2. (7.33)
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8 Electromagnetic induction

8.1 Electromotive force

The electromotive force (emf) in a circuit C is defined as the work by the
“motive” force F to move a unit positive charge around the circuit:

E =

∮

C

F · dr. (8.1)

This force can be due to an electric field, or chemical forces in a battery,
or other forces. The concept of emf may be generalised by considering the
integral in equation (8.1) along any closed curve in space.

Ohm’s law (5.9) can be generalised to forces other than the electric field, to
read

j = σF . (8.2)

8.2 The law of induction

Sd
S

B

C

According to Faraday, when the magnetic flux (Sec. 6.3)

Φ =

∫

S

B · dS (8.3)

through a circuit changes, there is an associated induced emf E in the circuit,

E = −dΦ
dt
. (8.4)

This emf is due to an electric field E produced by the changing magnetic
field,

E =

∮

C

E · dr. (8.5)

The direction of dS (normal to the surface S bounded by the circuit C) in
(8.3) and the direction of dr, in which the circuit is traversed in (8.5), are
related by the right-hand corkscrew rule.

If C is a conducting circuit, then the emf (8.5) produces a current, which
causes a magnetic field that opposes the change in the magnetic flux that
caused it. This is Lenz’s law, manifested by the minus sign in equation (8.4).

From equations (8.3), (8.4) and (8.5), we find

∮

C

E · dr = − d

dt

∫

S

B · dS

= −
∫

S

∂B

∂t
· dS.
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Using Stokes’s theorem on the left-hand side, we have
∫

S

∇×E · dS = −
∫

S

∂B

∂t
· dS.

Since this is true for any surface S, we conclude that

∇×E = −∂B
∂t

, (8.6)

which is the differential form of Faraday’s law.

Comparing equation (8.6) with (1.20), we see that the electric field produced
by the time-dependent magnetic field is no longer conservative.

8.3 Mutual inductance and self-inductance

Consider two circuits, C1 and C2, carrying currents I1 and I2. The magnetic
field B1 produced by C1 is proportional to I1, and the flux of this magnetic
field through C2 is also proportional to I1. Denoting this flux by Φ2, we can
write

Φ2 = L21I1 (8.7)

where L21 is the mutual inductance between circuits 1 and 2. This means that
if current I1 changes in time, this will cause an emf in circuit 2, given by

E2 = −L21
dI1
dt
. (8.8)

Similarly, the flux of the magnetic field B2 created by the current I2 through
the circuit C1 is

Φ1 = L12I2, (8.9)

and the corresponding emf in circuit 1 is

E1 = −L12
dI2
dt
. (8.10)

Let us show that
L12 = L21. (8.11)

Using the definition of the vector potential (6.23) and Stokes’s theorem, we
can write the flux in C2 due to the current in circuit I1 as

Φ2 =

∫

S2

B1 · dS2 =

∫

S2

∇×A1 · dS2 =

∮

C2

A1(r2) · dr2, (8.12)

where A1 is the vector potential created by current I1. Using equation (6.30)
for the vector potential of a current, we have

Φ2 =

∮

C2

µ0

4π
I1

∮

C1

dr1
|r2 − r1|

· dr2.

Comparing with (8.7), we obtain the formula for the mutual inductance,

L21 =
µ0

4π

∮

C2

∮

C1

dr1 · dr2
|r2 − r1|

, (8.13)
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which is symmetric with respect to interchanging indices 1 and 2, hence (8.11).

Similar to equations (8.8) and (8.10), one can also consider the emf in a circuit
caused by the change in its own current I,

E = −LdI
dt
, (8.14)

with the corresponding expression for the magnetic flux

Φ = LI. (8.15)

The coefficient L here is the self-inductance of the circuit.

Note that the self-inductance cannot be found from equation (8.13) by making
the contours C1 and C2 identical, since the integrand would then contain a
singularity for |r2 − r1| → 0, and the integral would diverge logarithmically.
A correct calculation must take into account the finite thickness of the wire
that makes up the circuit.

The SI unit of inductance is the henry (H), 1 H = 1 WbA−1.

8.4 Magnetic energy

Consider a set of N current carrying circuits in the presence of magnetic
media. Let Ik be the current in kth circuit and Φk the magnetic flux through
it. Let the currents be changed to Ik + dIk over a small time interval dt, with
resulting change dΦk in the fluxes.

The change of flux through kth circuit causes an induced emf Ek [see (8.4)].
The work done against it (to sustain the current) is

dWk = −EkdQk =
dΦk

dt
dQk,

where dQk = Ikdt is the charge transported through the circuit. Hence,

dWk = IkdΦk.

The total work done for all the circuits is

dW =
N∑

k=1

IkdΦk. (8.16)

This is the work done in changing the magnetic field produced by the currents.

Let the currents be raised from zero to their final values Ik by changing a
parameter α from zero to unity, so that the currents are αIk. Assuming that
the magnetic materials are linear, the magnetic field will also increase linearly
with α. In this case the fluxes will be αΦk, with Φk being their final values.
The work done in changing from α to α + dα is

dW =
N∑

k=1

(αIk)d(αΦk) =
N∑

k=1

IkΦkαdα.
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The total work is therefore

W =

∫ 1

0

(
N∑

k=1

IkΦk

)

αdα,

which gives

W =
1

2

N∑

k=1

IkΦk. (8.17)

This is the work done in establishing the magnetic field produced by the
currents, i.e., the magnetic energy [cf. Sec. 4.1 and equations (4.1) and (4.4)].

Using the inductances, the total flux through kth circuit may be written as

Φk =
N∑

l=1

LklIl, (8.18)

where Lkk ≡ Lk is the self-inductance of circuit k. The magnetic energy (8.17)
then takes the form

W =
1

2

N∑

k=1

N∑

l=1

LklIkIl. (8.19)

8.5 Energy density of the magnetic field

Similarly to equation (8.12), the total flux through circuit k can be written as

Φk =

∫

Sk

B · dS =

∫

Sk

∇×A · dS =

∮

Ck

A · dr.

Hence, equation (8.17) becomes

W =
1

2

N∑

k=1

Ik

∮

Ck

A · dr.

For a volume distribution of currents, we replace Ikdr by jdV and integrate
over the volume V containing the currents, instead of summing over k and
integrating over Ck. This gives

W =
1

2

∫

V

A · j dV. (8.20)

Using Ampere’s law (7.8), we can write this as

W =
1

2

∫

V

A · (∇×H)dV,

and using the identity ∇ · (A×H) =H · (∇×A)−A · (∇×H), we obtain

W =
1

2

∫

V

H · (∇×A) dV − 1

2

∫

V

∇ · (A×H) dV

=
1

2

∫

V

H ·B dV − 1

2

∮

S

(A×H) · dS, (8.21)
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where in the last step we used Gauss’s theorem to transform the second term,
and S is the surface that bounds V .

For currents contained in a finite volume, the potential and magnetic field
decrease as

A ∼ 1

r
and H ∼ 1

r2
,

or faster at large distances r. This means that if we extend the integration
volume to the whole space (r → ∞), the surface integral in (8.21) vanishes
(since the area of S is proportional to r2). The magnetic energy is then given
by

W =
1

2

∫

all space

H ·B dV. (8.22)

This shows that the quantity
1

2
H ·B (8.23)

is the energy density of the magnetic field.

8.6 Forces

Consider an isolated system which consists of N circuits in which currents
Ik are maintained (k = 1, . . . , N), in the presence of linear magnetic media.
Suppose one of the components of the system is displaced by dr. The work
by the force F acting on this component, is

F · dr = −dW + dWb, (8.24)

where dW is the change in the magnetic energy and dWb is the work by the
batteries on maintaining the currents. From equation (8.17),

dW =
1

2

∑

k

IkdΦk.

The change in the flux in circuit k causes the emf Ek = −dΦk/dt, and the
work by batteries on moving charges against these emf is

dWb =
∑

k

(−Ek)dQk =
∑

k

dΦk

dt
dQk =

∑

k

dΦkIk = 2dW.

Hence, the work (8.24) is
F · dr = dW,

and the force is

Fx =

(
∂W

∂x

)

I

, Fy =

(
∂W

∂y

)

I

, Fz =

(
∂W

∂z

)

I

, (8.25)

where the subscript I indicates that the currents are maintained constant.
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9 Maxwell’s equations

9.1 Summary of field equations to date

From Sec. 2.3,
∇ ·D = ρ, (9.1)

is an expression of Coulomb’s law in electrostatics (charges at rest).

From Sec. 6.2,
∇ ·B = 0, (9.2)

means there are no magnetic charges; magnetic fields are produced by currents.

From Sec. 8.2, we have the law of induction,

∇×E = −∂B
∂t

. (9.3)

From Sec. 7.2,
∇×H = j, (9.4)

follows from Biot-Savart’s law for steady currents (∇ · j = 0).

What happens in a general situation when the charges are free to move and
fields vary in time? Do equations (9.1)–(9.4) still apply?

9.2 Displacement current

One of the fundamental laws in nature is conservation of charge. This is
expressed by the continuity equation (5.8),

∇ · j + ∂ρ

∂t
= 0. (9.5)

However, from Eq. (9.4) we have

∇ · j = ∇ · (∇×H) = 0,

which is only true for steady currents. In general ∂ρ/∂t 6= 0 in Eq. (9.5),
which means that Eq. (9.4) must be modified.

Maxwell realised that the correct form of Eq. (9.4) is obtained by adding the
derivative ∂D/∂t to the right-hand side55, giving

∇×H = j +
∂D

∂t
. (9.6)

He called this term the displacement current. Taking ∇· of Eq. (9.6) we obtain

0 = ∇ · j +∇ · ∂D
∂t

.

55In his own words, “The variations of the electrical displacement must be added to the
currents to get the total motion of electricity” [Phil. Trans. R. Soc. Lond. 155, 459 (1865)].
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Changing the order of differentiation with respect to time and coordinates
gives

0 = ∇ · j + ∂

∂t
∇ ·D,

and substituting ∇ ·D from Eq. (9.1) gives the continuity equation (9.5).

9.3 Maxwell’s equations

Following Maxwell’s work, it has been established that the dynamics of the
electric and magnetic fields in the general case is governed by the four Maxwell
equations,

∇ ·D = ρ, (9.7a)

∇ ·B = 0, (9.7b)

∇×E = −∂B
∂t

, (9.7c)

∇×H = j +
∂D

∂t
. (9.7d)

The electric fields D and E and magnetic fields H and B related by

D = ε0E + P , (9.8a)

B = µ0(H +M ), (9.8b)

and it is assumed that the media providing the polarisation P and magneti-
sation M are at rest.

For the system of equations (9.7a)–(9.7d), (9.8a) and (9.8b) to be complete, we
need to add relations betweenE and P , and betweenH andM . For example,
if the media are linear and isotropic, we have P = ε0χE and M = χmH , or
equivalently, D = εE and B = µH (see Secs. 2.3 and 7.3).

The electric and magnetic fields determine the force experienced by a charge
q, which is given by Lorentz’s formula (Sec. 6.1.3),

F = qE + qv ×B. (9.9)

9.4 Electromagnetic energy and Poynting vector

It is natural to assume that the total energy density of the electromagnetic
field is the sum of the electric and magnetic contributions (4.11) and (8.23),

w =
1

2
(E ·D +H ·B). (9.10)

To verify that this definition gives meaningful results, let us consider the total
electromagnetic energy within a given volume V

∫

V

wdV =
1

2

∫

V

(E ·D +H ·B)dV,
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and determine its rate of change. Assuming linear and isotropic media, we
have

∂

∂t

∫

V

wdV =
1

2

∂

∂t

∫

V

(
1

ε
D ·D +

1

µ
B ·B

)

dV

=

∫

V

(
1

ε
D · ∂D

∂t
+

1

µ
B · ∂B

∂t

)

dV

=

∫

V

[E · (∇×H − j)−H · (∇×E)]dV, (9.11)

where we used Maxwell’s equations (9.7c) and (9.7d). Using the identity

∇ · (E ×H) =H · (∇×E)−E · (∇×H),

we transform (9.11) into

∂

∂t

∫

V

wdV = −
∫

V

∇ · (E ×H)dV −
∫

V

j ·EdV.

Using Gauss’s theorem we change the first term on the right-hand side into
the surface integral, and obtain

∂

∂t

∫

V

wdV = −
∮

S

(E ×H) · dS −
∫

V

j ·E dV, (9.12)

where S is the surface that bounds volume V .

The first term on the right-hand side of equation (9.12) describes the loss
of energy in volume V due to the flow of electromagnetic energy across the
surface S. The corresponding energy flux density

S = E ×H (9.13)

is known as the Poynting vector 56.

The second term in (9.12) describes Joule heating, i.e., the loss of energy due
to dissipation into heat. Indeed, recall that the current density can be written
as j = qnv, where q and n are the charge and number density of current
carriers, and v is their velocity (see Sec. 5.2). Lorentz’s force acting on each
charge carrier is given by equation (9.9). The work by this force is

F · dr = (qE + qv ×B) · vdt = qE · vdt,

and the work per unit volume per unit time (i.e., power density) is given by

qnv ·E = j ·E.

This can be compared with the Joule heating in conductors (Sec. 5.7).

Thus we see that equation (9.12) describes energy conservation for the elec-
tromagnetic field.

56Note that the first term on the right-hand side of Eq. (9.12) can now be written as
∮
S ·dS, where S stands for the Poynting vector while dS is the usual surface element. The

two S should not be confused!
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9.5 Boundary conditions

Consider the boundary between two materials, 1 and 2, with the normal vector
n from 2 into 1 and tangential vector t. The boundary conditions for the
electric and magnetic fields are the same as obtained in Secs. 2.6 and 7.4:

E1t − E2t = 0, (9.14a)

D1n −D2n = σ, (9.14b)

B1n −B2n = 0, (9.14c)

H1t −H2t = J · (n× t), (9.14d)

where subscripts 1 and 2 label quantities in materials 1 and 2, σ is the surface
charge density on the boundary, and J is the surface current density.

n

dS

dS
2

1
A

t

The boundary conditions (9.14b) and (9.14c) are derived from Maxwell’s equa-
tions (9.7a) and (9.7b), respectively. In integral form, these equations read

∮

S

D · dS = Q,

∮

S

B = 0,

where Q is the free charge enclosed by S. We choose S as a small cylinder
with bases parallel to the surface and of infinitesimal height, so that the flux
across the curved surface can be neglected (see Sec. 2.6 and 7.4 for details).

n

B

2

D C

A

1

l

t

Boundary conditions (9.14a) and (9.14d) are derived from Maxwell’s equations
(9.7c) and (9.7d). In integral form, they read

∮

L

E · dr = − d

dt

∫

S

B · dS,
∮

L

H · dr = I +
d

dt

∫

S

D · dS,

where S is any surface bounded by the closed curve L, and I is the current
across S (or through L). We choose L as a rectangle with long sides parallel
to the surface and vanishingly small short sides. In this case the flux of B or
D across S is negligible and the static result holds (Sec. 2.6 and 7.4).

9.6 Electromagnetic potentials

The equation∇·B = 0 is satisfied by both static and time-dependent magnetic
fields. Hence, as in Sec. 6.5, the magnetic induction B can be described by
the vector potential A,

B = ∇×A. (9.15)

Using this in Maxwell’s equation (9.7c), changing the order of the spatial and
time derivatives and rearranging, we obtain

∇×
(

E +
∂A

∂t

)

= 0.

Any vector whose curl is identically zero can be written as the gradient of a
scalar function, hence,

E +
∂A

∂t
= −∇φ.
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This means that the electric field is given by

E = −∇φ− ∂A

∂t
, (9.16)

where φ is the scalar potential. For time-independent fields E = −∇φ, and φ
is the familiar electrostatic potential (Sec. 1.4).

As we saw in Sec. 6.5, the vector potential is not unique. Replacing

A→ A′ = A+∇χ, (9.17)

does not change the magnetic field:

B = ∇×A′ = ∇× (A+∇χ) = ∇×A+∇×∇
︸ ︷︷ ︸

= 0

χ = ∇×A.

On the other hand, substituting

A = A′ −∇χ

into the right-hand side of equation (9.16) gives

E = −∇φ− ∂

∂t
(A′ −∇χ)

= −∇φ+
∂∇χ
∂t

− ∂A′

∂t

= −∇
(

φ− ∂χ

∂t

)

− ∂A′

∂t
.

We see that if, simultaneously with (9.17), we change the scalar potential,

φ→ φ′ = φ− ∂χ

∂t
, (9.18)

the electric field

E = −∇φ′ − ∂A′

∂t

will be the same as (9.16).

The transformation of the vector and scalar potentials (9.17) and (9.18) is
known as a gauge transformation. The property of the electric and magnetic
fields to remain unchanged upon such transformations is called gauge invari-
ance. A particular choice of φ and A is often referred to as a gauge57.

The vector and scalar potentials are introduced in a way that Maxwell’s equa-
tions (9.7b) and (9.7c) are automatically satisfied. The equations for the
potentials are then obtained by substituting the electric and magnetic fields,
Eqs. (9.15) and (9.16), in the other two Maxwell’s equations (9.7a) and (9.7d).

57In both Classical and Quantum Electrodynamics the freedom to choose a gauge offers
mathematical convenience, by simplifying equations and helping to solve particular prob-
lems. In quantum field theories, such as those of electroweak and strong interactions, and
in the Standard Model, gauge invariance becomes the leading principle for introducing the
interaction between elementary particles in a consistent and effective way.
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Assuming linear, isotropic media (D = εE and H = B/µ), we obtain from
(9.7d):

∇× (∇×A) = µj − εµ
∂

∂t

(

∇φ+
∂A

∂t

)

. (9.19)

Using the identity

∇× (∇×A) = ∇(∇ ·A)−∇2A, (9.20)

we obtain from (9.19),

∇2A− εµ
∂2A

∂t2
−∇

(

∇ ·A+ εµ
∂φ

∂t

)

= −µj. (9.21)

From Maxwell’s equation (9.7a) we have

−ε∇ ·
(

∇φ+
∂A

∂t

)

= ρ,

which can be written as

∇2φ− εµ
∂2φ

∂t2
+
∂

∂t

(

∇ ·A+ εµ
∂φ

∂t

)

= −ρ
ε
. (9.22)

One can show (see below) that the potentials A and φ can always be chosen
in such a way that they satisfy the condition

∇ ·A+ εµ
∂φ

∂t
= 0. (9.23)

For this choice of the potentials (known as Lorenz gauge58), equations (9.21)
and (9.22) assume a particularly simple form:

∇2A− εµ
∂2A

∂t2
= −µj, (9.24a)

∇2φ− εµ
∂2φ

∂t2
= −ρ

ε
. (9.24b)

For j = 0 and ρ = 0 these are the wave equations. Their solutions describe
waves propagating with velocity v = 1/

√
εµ (see Ch. 10).

Let us now show that by performing a suitable gauge transformation, the
potentials can always be made to satisfy the Lorenz condition (9.23). Suppose
the initial choice of the potentials A′ and φ′ is such that

∇ ·A′ + εµ
∂φ′

∂t
= f 6= 0. (9.25)

Using the transformations (9.17) and (9.18), we obtain

∇ ·A+ εµ
∂φ

∂t
+∇2χ− εµ

∂2χ

∂t2
= f.

By choosing the function χ that satisfies the equation

∇2χ− εµ
∂2χ

∂t2
= f, (9.26)

(which can always be done, see Ch. 11.1), we ensure that the potentials A
and φ do satisfy Lorenz’s condition (9.23).

58This is named after Ludvig Lorenz (1829–1891), a Danish physicist who proposed it,
not to be confused with Hendrik Antoon Lorentz (1953–1928), a Dutch physicist whose
name is associated with the Lorentz force and Lorentz transformations of special relativity.
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10 Electromagnetic waves

10.1 Wave equation

Taking the curl of 3rd Maxwell’s equation (9.7c), we have

∇× (∇×E) = − ∂

∂t
∇×B.

Assuming linear, isotropic and homogeneous media (B = µH and D = εE
with constant ε and µ), and using vector identity (9.20) on the left-hand side
and 4th Maxwell’s equation (9.7d) on the right-hand side, we obtain

∇(∇ ·E)−∇2E = − ∂

∂t

(

µj + µε
∂E

∂t

)

.

Finally, making use of Ohm’s law (j = σE), expressing ∇ · E from 1st
Maxwell’s equation (9.7a), and rearranging, we find the equation for the elec-
tric field,

∇2E − εµ
∂2E

∂t2
− µσ

∂E

∂t
=

1

ε
∇ρ. (10.1)

Similarly, taking curl of 4th Maxwell’s equation (9.7d),

∇× (∇×B) = µ∇× j + εµ
∂

∂t
∇×E,

then making use of Ohm’s law and equations (9.7b) and (9.7c),

−∇2B = µσ∇×E − εµ
∂2B

∂t2
,

and finally using (9.7c) again, gives the equation for the magnetic field,

∇2B − εµ
∂2B

∂t2
− µσ

∂B

∂t
= 0. (10.2)

For a charge-free (ρ = 0), nonconducting (σ = 0) medium, equations (10.1)
and (10.2) become

∇2E − εµ
∂2E

∂t2
= 0, (10.3a)

∇2B − εµ
∂2B

∂t2
= 0. (10.3b)

These equations have the form of the standard wave equation,

∇2u− 1

v2
∂2u

∂t2
= 0, (10.4)
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whose solutions describe waves propagating with speed v (see Sec. 10.2). Com-
paring (10.4) with (10.3a) and (10.3b), we see that for electromagnetic waves

v =
1√
εµ
. (10.5)

In particular, in vacuum this speed (denoted c) is given by

c =
1√
ε0µ0

=
(
8.854× 10−12 × 4π × 10−7

)−1/2
= 2.998× 108 ms−1. (10.6)

This is in fact the speed of light. When this was first noticed by Maxwell, it
immediately led him to conclude59 that light is an electromagnetic wave!

The ratio

n =
c

v
=

√
εµ

√
ε0µ0

=
√
κκm, (10.7)

where κ is the dielectric constant and κm is the relative permeability, is called
the refractive index of the medium.
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Understanding of the electromagnetic nature of light posed a serious question
that was only resolved by Einstein. In classical mechanics, if we consider an
inertial reference frame K ′ which moves with constant velocity V relative to
an inertial frame K, the position vectors of a point in the two frames are
related by60

r = r′ + V t. (10.8)

Differentiating (10.8) with respect to time gives the classical law of addition
of velocities,

v = v′ + V , (10.9)

where v and v′ are the velocities of the point in frames K and K ′, respectively.

According to (10.9), electromagnetic waves, and light in particular, will prop-
agate with different speeds in different frames of reference. Mathematically,
this also means that if we change variables in the wave equation, e.g., in one
dimension,

∂2u

∂x2
− 1

c2
∂2u

∂t2
= 0, (10.10)

using
x′ = x− V t, t′ = t, (10.11)

the form of the wave equation will change. This would also be true for
Maxwell’s equations (9.7a)–(9.7d), i.e., they would not look so nice any more.
This means that physics itself would be different in different inertial frames!

One way out of this was to pronounce that there is a substance (ether) that
mediates the propagation of electromagnetic waves, and, hence, a special frame

59“This velocity is so nearly that of light, that it seems we have strong reason to conclude
that light itself (including radiant heat, and other radiations if any) is an electromagnetic
disturbance in the form of waves propagated through the electromagnetic field according
to electromagnetic laws.” [J. Clerk Maxwell, A Dynamical Theory of the Electromagnetic
Field, Phil. Trans. R. Soc. Lond. 155, 459–512 (1865)].

60Time is measured in a way that at t = 0 the origins of the two frames coincide.
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of reference in which Maxwell’s equations hold. Another point of view, argued
by Einstein61, was that all inertial frames are equivalent, and that the wave
equation and Maxwell’s equations that lead to it, should look the same in all
of them. This, however, requires one to replace the intuitive relation (10.11)
and the notion of absolute time, by Lorentz’s transformations,

x′ =
x− V t
√

1− V 2

c2

, t′ =
t− V

c2
x

√

1− V 2

c2

. (10.12)

Exercise: Verify that the change of variables from x, t to x′, t′, described by
(10.12) leaves the wave equation (10.10) unchanged.

10.2 Plane waves

Consider a uniform, charge-free (ρ = 0) nonconducting (j = 0) medium. In
this case we can choose a gauge in which

φ = 0 and ∇ ·A = 0. (10.13)

For the scalar potential to vanish, we perform a gauge transformation (9.18)
with χ =

∫
φdt. For ∇ ·A = 0, from ∇ ·E = 0, we notice [using (9.16)] that

∂

∂t
∇ ·A = 0,

which means that ∇ · A does not depend on time. We can then perform a
second gauge transformation (9.17) with a time-independent χ, which does not
change φ and makes ∇·A′ = 0. (For this we need χ to satisfy ∇2χ = −∇·A.)

For (10.13), Lorenz’s condition (9.23) is also fulfilled. Hence, the potential
satisfies the equation

∇2A− εµ
∂2A

∂t2
= 0, (10.14)

and the fields are given by

E = −∂A
∂t

, B = ∇×A. (10.15)

Let us consider a particular type of electromagnetic waves in which the fields
depend only on one spatial coordinate, say, on x. Such waves are known as
plane waves. The field equations in this case take the form of a wave equation
in one dimension,

∂2u

∂x2
− 1

c2
∂2u

∂t2
= 0, (10.16)

where c = 1/
√
εµ here is the speed of light in the medium. To solve this

equation, we re-write it as
(
∂

∂x
− 1

c

∂

∂t

)(
∂

∂x
+

1

c

∂

∂t

)

u = 0, (10.17)

61Albert Einstein put forward his Special Theory of Relativity in 1905.
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and introduce new variables

ξ = x− ct, η = x+ ct. (10.18)

The derivatives transform as

∂u

∂x
=
∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x
=
∂u

∂ξ
+
∂u

∂η
,

and
∂u

∂t
=
∂u

∂ξ

∂ξ

∂t
+
∂u

∂η

∂η

∂t
= c

∂u

∂η
− c

∂u

∂ξ
,

so that
∂

∂x
− 1

c

∂

∂t
= 2

∂

∂ξ
,

∂

∂x
+

1

c

∂

∂t
= 2

∂

∂η
.

Equation (10.17) then becomes

∂2u

∂ξ∂η
= 0. (10.19)

Integrating it with respect to ξ and η we find the solution u = f(ξ) + g(η),
i.e.,

u = f(x− ct) + g(x+ ct), (10.20)

where f and g are arbitrary functions62.

To understand the meaning of the solution (10.20), consider the case g = 0,
so that u = f(x− ct). At t = 0 this solution has a shape given by u = f(x).
The solution for t > 0 is the same function shifted by ct along the x axis. We
see that according to this solution the values of the electromagnetic field are
propagated along the x axis with a constant velocity c. Similarly, the second
term in (10.20) represents a wave that propagates in the negative x direction.

Since the fields in a plane wave depend only on x and t, the condition∇·A = 0
gives

∂Ax

∂x
= 0.

When substituted into the wave equation, this gives

∂2Ax

∂t2
= 0 =⇒ ∂Ax

∂t
= const.

Since ∂A/∂t determines the electric field, the latter condition allows for the
presence of a constant electric field in the x direction. Such field has no relation
to the electromagnetic wave and we can set Ax = 0.

The vector potential A of the plane wave can thus be chosen perpendicular to
the x axis, i.e., the direction of propagation of the wave. Since A = A(ξ) =
A(x− ct) for the wave propagating in the positive x direction, we have

E = −∂A
∂t

= cA′, (10.21)

62This is known as d’Alembert’s solution.
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where the prime denotes differentiation with respect to ξ. The magnetic field
is

B = ∇×A =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

∂

∂x

∂

∂y

∂

∂z

0 Ay Az

∣
∣
∣
∣
∣
∣
∣
∣

= −j ∂Az

∂x
+ k

∂Ay

∂x
= i× ∂

∂x
(Ayj + Azk),

so that
B = n×A′, (10.22)

where n is the unit vector in the direction of propagation of the wave63.

n

E

B

From (10.21) and (10.22) we see that the electric and magnetic fields are
perpendicular to the direction of propagation of the wave (i.e., the wave is
transverse), and are related by

B =
1

c
n×E. (10.23)

For their magnitudes, we have

B = E/c =
√
εµE. (10.24)

The Poynting vector of the plane wave is

S = E ×H =
E ×B
µ

=
EBn

µ
=

√
ε

µ
E2n, (10.25)

and the energy density is

w =
1

2
(E ·D +B ·H) =

1

2

(

εE2 +
1

µ
B2

)

=
1

2
(εE2 + εE2) = εE2. (10.26)

These quantities are related by

S = cwn, (10.27)

as it should be for a wave travelling with velocity c.

10.3 Monochromatic plane waves

If the electromagnetic field of a wave has a simple periodic dependence on
time, the wave is called monochromatic. All quantities that describe such
wave depend on time as cosωt or sinωt, or, in general, cos(ωt + α), where ω
is the angular frequency (often simply called frequency).

63A quicker way of finding B makes use of the chain rule. Since ∇ is the vector operator
of “differentiation with respect to r”, and A depends of r through ξ, we have:

B = ∇×A = ∇(ξ)× dA/dξ = ∇(x− ct)×A′ = i×A′ = n×A′.

Note that the order of the vector (operator) ∇ and A in the cross product is preserved.
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For a plane wave in the positive x direction, the field depends on

x− ct =
c

ω

(ω

c
x− ωt

)

.

Introducing the wave number,

k ≡ ω

c
, (10.28)

we see that the fields in a monochromatic plane wave depend on kx− ωt.

In general, if the wave travels in the direction of unit vector n, we replace x
by n · r (projection of r onto the direction of n), and kx − ωt is changed to
k · r − ωt, where

k = kn (10.29)

is the wave vector.

Since Maxwell’s equations and other relations satisfied by the potentials and
fields are linear, it is convenient to use complex exponents, rather than sines or
cosines, for studying monochromatic plane waves, e.g., A = A0e

i(k·r−ωt). The
physical potentials and fields are then given by the real parts of the complex
fields,

A = Re
[
A0e

i(k·r−ωt)
]
, (10.30)

E = Re
[
E0e

i(k·r−ωt)
]
, (10.31)

B = Re
[
B0e

i(k·r−ωt)
]
. (10.32)

where A0, E0 and B0 are complex amplitudes64.

For example, the electric field of a wave satisfies the wave equation (10.3a),

∇2E − 1

c2
∂2E

∂t2
= 0, (10.33)

where c = 1/
√
εµ. Using E = E0e

i(k·r−ωt), we find

∂2E

∂t2
= (−iω)2E0e

i(k·r−ωt) = −ω2E0e
i(k·r−ωt).

To find ∇2E, note that for a constant vector E0, we have

∇2E0e
i(k·r−ωt) = E0∇2ei(k·r−ωt) = E0(∇ · ∇)ei(k·r−ωt).

The last expression is found using the chain rule,

∇ei(k·r−ωt) = ei(k·r−ωt)∇[i(k · r − ωt)] = ikei(k·r−ωt),

where we used ∇(k · r) = k, followed by

∇ ·
[
ikei(k·r−ωt)

]
= ik · ∇ei(k·r−ωt) = (ik)2ei(k·r−ωt),

so that
∇2E0e

i(k·r−ωt) = −k2E0e
i(k·r−ωt).

64If the equations are satisfied by complex potentials or fields, both their real and imag-
inary parts also satisfy them.
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The wave equation (10.33) then gives

(

−k2 + ω2

c2

)

E0e
i(k·r−ωt) = 0,

which yields

k2 =
ω2

c2
or k =

ω

c
,

in agreement with (10.28).

Similarly, from Maxwell’s third equation (9.7c),

∇×E = −∂B
∂t

,

we find

∇×E0e
i(k·r−ωt) = − ∂

∂t
B0e

i(k·r−ωt),

∇
[
ei(k·r−ωt)

]
×E0 = iωB0e

i(k·r−ωt),

k ×E0e
i(k·r−ωt) = ωB0e

i(k·r−ωt). (10.34)

Hence we obtain the relation between the electric and magnetic fields in the
wave

B =
k

ω
×E =

1

c
n×E, (10.35)

seen earlier in (10.23), or, cancelling the exponents in (10.34), the relation
between their amplitudes,

B0 =
k

ω
×E0 =

1

c
n×E0 =

√
εµn×E0. (10.36)

Exercise: Using∇·E = 0 show that a monochromatic plane wave is transverse.

Note that in using complex fields, caution must be exercised when multiplying
them, e.g., when calculating the field energy density (9.10) or the Poynting
vector (9.13)

S = E ×H .

If E and H = B/µ are complex, we must use

S = ReE × ReH ,

which gives65

S =
1

2

[
E0e

i(k·r−ωt) +E∗
0e

−i(k·r−ωt)
]
× 1

2

[
H0e

i(k·r−ωt) +H∗
0e

−i(k·r−ωt)
]

=
1

4

[
E0 ×H∗

0 +E
∗
0 ×H0 +E0 ×H0e

2i(k·r−ωt) +E∗
0 ×H∗

0e
−2i(k·r−ωt)

]
.

65Recall that for a complex number z, Re z = 1

2
(z+z∗), where z∗ is its complex conjugate.
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If we average the Poynting vector over time (i.e., over one period of the field),
the terms containing e2i(k·r−ωt) and e−2i(k·r−ωt) give zero66, and we find

〈S〉 = 1

2
Re (E0 ×H∗

0) =
1

2
Re (E ×H∗). (10.37)

Similarly, the time-averaged energy density is given by 〈w〉 = 1
4
Re (E0 ·D∗

0 +
B0 ·H∗

0) =
1
4
Re (E ·D∗ +B ·H∗).

Let us now find how the direction of the electric field E in a monochromatic
plane wave depends on time. [The magnetic field B of the wave is perpendic-
ular to E at every point, see (10.35).]

For a complex amplitude E0, its square is also generally complex,

E2
0 =

∣
∣E2

0

∣
∣ e−2iα,

where we denoted the argument of this complex number by −2α. We can then
write

E0 = be
−iα,

where vector b may be complex, but b2 is real. Separating the real and
imaginary parts, we can write

b = b1 + ib2, (10.38)

where b1 and b2 are real vectors. They are also orthogonal, since

b2 = (b1 + ib2)
2 = b21 + 2i b1 · b2

︸ ︷︷ ︸

= 0

+b22

must be real. Assuming that the wave propagates in the x direction, let us
choose the y axis in the direction of b1, with vector b2 parallel to the z axis.
From

E = Re
[
E0e

i(k·r−ωt)
]
= Re

[
bei(k·r−ωt−α)

]

we then have

Ey(t) = b1 cos(ωt− k · r + α), (10.39a)

Ez(t) = ±b2 sin(ωt− k · r + α), (10.39b)

where in the last equation we use + if b2 is in the positive z direction, and −
if it is in the negative z direction.

z

b

−b

1

2

2

b−b1

E
y

From equations (10.39a) and (10.39b) we see that

E2
y

b21
+
E2

z

b22
= 1, (10.40)

which means that the electric field vector describes an ellipse67 in the y-z
plane. When viewed from the positive x direction (i.e., with the wave travelling

66The average value of a quantity over one period is given by 〈. . . 〉 = 1

T

∫ T

0

. . . dt, where

T = 2π/ω is the period.

67The equation of the ellipse in Cartesian coordinates,
x2

a2
+
y2

b2
= 1, where a and b are

its semiaxes.
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towards the observer), the electric field vector rotates anticlockwise if the sign
in (10.39b) is +, and clockwise if it is −. Such wave is called elliptically
polarised.

If b1 = b2, the ellipse (10.40) reduces to a circle. In this case the wave is
circularly polarised. The ratio of y and z components of the complex amplitude
E0 is

E0z

E0y

= ±i,

corresponding to the ± sign in (10.39b), with the top and bottom signs de-
scribing right and left circular polarisation, respectively68.

If b1 = 0 or b2 = 0, the wave is linearly polarised.

10.4 Reflection and refraction at a dielectric boundary

Consider a monochromatic plane wave with wave vector k1 and frequency ω,
incident on the interface between dielectric media 1 and 2 with permittivities
ε1 and ε2 (µ1 = µ2 = µ0). In this case the solution that satisfies all the
boundary conditions can be written as the sum of the incident and reflected
waves in medium 1, and a transmitted (refracted) wave in medium 2.

Let the wave vector of the reflected wave be k′
1 and that of the transmitted

wave k2. The corresponding wave numbers are related to that of the incident
wave by

k′1 = k1 =
ω

c
=

√
ε1µ0 ω, (10.41)

k2 =
√
ε2µ0 ω =

√
ε2
ε1
k1, (10.42)

assuming that the frequencies of the three waves are the same (see below).

At the interface, the electromagnetic fields must satisfy the boundary con-
ditions (9.14a)–(9.14d) which, in the absence of charges and currents, read

E1t = E2t, (10.43a)

D1n = D2n, (10.43b)

B1n = B2n, (10.43c)

H1t = H2t, (10.43d)

Directing the unit normal vector n from medium 2 into 1, and unit vector t
parallel to the interface, we have from (10.43a):

E0e
i(k1·r−ωt)

︸ ︷︷ ︸

incident

·t+E′
0e

i(k′

1
·r−ωt)

︸ ︷︷ ︸

reflected

·t = E′′
0e

i(k2·r−ωt)

︸ ︷︷ ︸

refracted

·t, (10.44)

68The rotation of the electric field in these two cases corresponds to that of a right-hand
or left-hand screw pointing along the x axis. This convention is adopted in theoretical
physics and electrical engineering. It corresponds to right-circularly polarised photons car-
rying angular momentum with a positive projection onto their direction of motion, and left
circularly polarised photons – negative. Note that the opposite convention is sometimes
used, especially in optics.
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where E0, E
′
0 and E′′

0 are the (complex) amplitudes of the incident, reflected
and transmitted waves.

Since the boundary condition (10.44) must hold for all points r in the interface
plane, we must have

k1 · r = k′
1 · r = k2 · r,

which means that the components of the three wave vectors parallel to the
plane are equal69. The three vectors thus lie in the same plane perpendicular
to the interface, known as the plane of incidence.

t
θ1θ1

θ2

1

2

k k

k

1 1

2

’

’n

Let the angles between k1, k
′
1 and k2 and the normal to the interface be θ1,

θ′1 and θ2, respectively (see diagram). From the condition for the parallel
components, we have

k1 sin θ1 = k′1 sin θ
′
1,

and since k1 = k′1, we have
θ1 = θ′1,

which shows that the angle of incidence equals the angle of reflection. Also,

k1 sin θ1 = k2 sin θ2,

and using (10.42), we find

sin θ1
sin θ2

=

√
ε2
ε1

=
n2

n1

, (10.45)

where n1 and n2 are the refractive indices [see (10.7)] of media 1 and 2, re-
spectively. Equation (10.45) is known as Snell’s law.

’

θ1θ1

θ2

2
1

H

H0 H0
’

0
’

Consider the incident wave linearly polarised in the direction perpendicular
to the plane of incidence. In this case the electric field amplitudes are paral-
lel to the interface (into the page, on the diagram), with the magnetic field
amplitudes H0, H

′
0 and H ′′

0 as shown. From boundary condition (10.44), we
have

E0 + E ′
0 = E ′′

0 . (10.46)

Applying the boundary condition (10.43d), we find70

H0 cos θ1 −H ′
0 cos θ1 = H ′′

0 cos θ2,

and using

H =
1

µ0

B =
1

µ0c
E =

√
ε

µ0

E,

we have √
ε1(E0 cos θ1 − E ′

0 cos θ1) =
√
ε2E

′′
0 cos θ2. (10.47)

69We set the frequencies of the incident, reflected and transmitted waves equal from the
outset. This is necessary for (10.44) to be satisfied at all times t.

70Of the other boundary conditions, (10.43b) is satisfied trivially, as Dn = 0 for this
polarisation, and (10.43c) simply reproduces Snell’s law (10.45).
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Using
√

ε2/ε1 = sin θ1/ sin θ2 and solving equations (10.46) and (10.47) simul-
taneously, we find the amplitude of the reflected wave

E ′
0 =

sin(θ2 − θ1)

sin(θ2 + θ1)
E0, (10.48)

and the amplitude of the transmitted wave

E ′′
0 =

2 sin θ2 cos θ1
sin(θ2 + θ1)

E0. (10.49)

E

θ1θ1

θ2

2
1

0

0
’’

E 0
’E Let us now consider the incident wave linearly polarised in the plane of inci-

dence. The corresponding electric field amplitudes are shown on the diagram,
with the magnetic field amplitudes perpendicular to the plane of incidence
(and to the page plane, towards us in the diagram). Boundary condition
(10.43d) gives

H0 +H ′
0 = H ′′

0 ,

or, equivalently, √
ε1(E0 + E ′

0) =
√
ε2E

′′
0 . (10.50)

From boundary condition (10.43a), we have

E0 cos θ1 − E ′
0 cos θ1 = E ′′

0 cos θ2. (10.51)

Solving (10.50) and (10.51) simultaneously, we find the amplitude of the re-
flected wave71

E ′
0 =

tan(θ1 − θ2)

tan(θ1 + θ2)
E0, (10.52)

and the amplitude of the transmitted wave

E ′′
0 =

2 sin θ2 cos θ1
sin(θ1 + θ2) cos(θ1 − θ2)

E0. (10.53)

Equations (10.48), (10.49) and (10.52), (10.53) are known as Fresnel equations.
They point to a number of important phenomena.

For polarisation parallel to the incident plane, the reflected wave amplitude
(10.52) vanishes if θ1+θ2 = π/2. (since tan(θ1+θ2) → ∞). The corresponding
angle of incidence is known as Brewster’s angle. When unpolarised light (such
as solar light, with equal amounts of parallel and perpendicular polarisation)
is incident at such angle, the reflected light becomes totally polarised in the
direction perpendicular to the plane of incidence72. Note that when a wave is
incident at Brewster’s angle, the wave vectors of the transmitted and reflected
waves are at the right angle to each other. The particles in medium 2 are driven
by the electromagnetic wave in the direction perpendicular to k2, i.e., parallel

71This is helped by the identity
sin θ1 cos θ1 − sin θ2 cos θ2
sin θ1 cos θ1 + sin θ2 cos θ2

=
tan(θ1 − θ2)

tan(θ1 + θ2)
.

72For other angles the reflected light contains both polarisations, but is still partially
polarised in the perpendicular direction. By wearing Polaroidr glasses in which the lenses
only let vertically polarised light through, reflections and glare from horizontal surfaces are
strongly reduced.
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to k′
1 (for in-plane polarisation). As shown in Sec. 11.2, electric charges that

oscillate in a line, do not radiate along this line. This provides a physical
explanation as to why for parallel polarisation the amplitude of the reflected
wave is zero at Brewster’s angle.

Note also that for n2 < n1, equation (10.45) gives sin θ2 > sin θ1 and θ2 > θ1.
For the angle of incidence such that

sin θ1 =
n2

n1

, (10.54)

we find θ2 = π/2. In this case the absolute values of the reflected wave
amplitudes for either polarisation, (10.48) or (10.52), become equal to the
incident wave amplitudes. This means that the energy flux in the reflected
wave is equal to that of the incident wave, and no energy is transmitted into
medium 2. The angle (10.54) is known as the angle of total internal reflection.
For this and greater angles there is no transmitted wave and the interface
between the two media acts as a perfect mirror73.

Another effect described by Fresnel equations is that for n2 > n1 (i.e., θ2 < θ1),
the reflected wave amplitude from equation (10.48) has the opposite sign to E0.
This means that the wave acquires an extra phase of π upon reflection from a
more optically dense medium. [The same is true for the parallel polarisation;
although equation (10.52) gives the same sign, the change of the phase is taken
care through the explicit choice of the directions of E0 and E′

0.] This effect
is important when studying interference in thin films. In particular, when the
thickness of a film decreases towards zero, the waves reflected off the front and
back surfaces of the film cancel out, so that an infinitely thin film does not
reflect at all.

Finally, we consider reflection at normal incidence (θ1 → 0, or θ1 ≪ 1). In
this case sin θ1 ≃ θ1 and sin θ2 ≃ θ2, and equation (10.45) gives

θ1
θ2

≃ n2

n1

.

The ratio of the energy flux in the reflected wave to that in the incident wave,
known as the reflection coefficient, is found from either (10.48) or (10.52), as

R =

∣
∣
∣
∣

E ′
0

E0

∣
∣
∣
∣

2

=

(
n1 − n2

n1 + n2

)2

. (10.55)

Taking the air-glass interface as an example, n1 = 1, n2 = 1.5, we find

R =

(
1− 1.5

1 + 1.5

)2

=
1

25
= 0.04.

This means that a double-glazed windows reflects about 16% of the incident
light, no matter how clean the glass in the window is!

73This phenomenon is behind the use of optical fibres in communications. They allow
one to transmit light through very large distances with minimal losses. Also, Porro prisms
employ total internal reflection. Using them in pairs allowed binoculars to be made more
compact, by increasing the optical path length between the objective and eyepiece lenses
without making the size of the instrument bigger.
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11 Electromagnetic radiation

11.1 Inhomogeneous wave equation

The electromagnetic potentials in Lorenz gauge satisfy equations (9.24a) and
(9.24b):

∇2A− 1

c2
∂2A

∂t2
= −µj, (11.1a)

∇2φ− 1

c2
∂2φ

∂t2
= −ρ

ε
. (11.1b)

where c = 1/
√
εµ, and we assume that the medium is homogeneous, i.e.,

ε = const and µ = const.

Mathematically, equations (11.1a) and (11.1b) are inhomogeneous wave equa-
tions. Their solutions can be written as a sum of any number of solutions of
the homogeneous wave equation (representing electromagnetic waves, Ch. 10),
and a particular solution of the inhomogeneous equation. In this section we
show that the latter can be written in the form of the retarded potentials,

A(r, t) =
µ

4π

∫

V

j(r′, t′)

|r − r′|dV
′, (11.2a)

φ(r, t) =
1

4πε

∫

V

ρ(r′, t′)

|r − r′|dV
′, (11.2b)

where

t′ = t− |r − r′|
c

. (11.3)

The retarded potentials have a clear physical meaning. They describe how
the current (or charge) density at point r′ and time t′ affects the potential at
point r and time t. The difference between t and t′ in (11.3) is the time it
takes an electromagnetic disturbance to travel from r′ to r.

For steady currents and static charge distributions the potentials are time-
independent. The solutions (11.2a) and (11.2b) are then identical to (6.29)
used in magnetostatics, and the electrostatic potential (1.23) (without the
surface charge term) that solves Poisson’s equation (1.40).

Proof. To prove (11.2b), let us consider equation (11.1b) in which the density
is due to a point charge q(t) located at r′,

∇2φ− 1

c2
∂2φ

∂t2
= −q(t)

ε
δ(r − r′). (11.4)

Introducing the relative position R = r − r′, we see that the solution for a
point charge at R = 0 is spherically symmetric, i.e., φ = φ(R, t), and only the
radial part of the Laplacian gives a nonzero contribution. Hence we have

1

R2

∂

∂R

(

R2 ∂φ

∂R

)

− 1

c2
∂2φ

∂t2
= −q(t)

ε
δ(R), (11.5)
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where the right-hand side is zero everywhere except R = 0.

The introduction of a new function χ,

φ(R, t) =
χ(R, t)

R
,

transforms equation (11.5) into the one-dimensional wave equation,

∂2χ

∂R2
− 1

c2
∂2χ

∂t2
= 0, (11.6)

for R 6= 0. From Sec. 10.2 we know that its solution can be written as a sum of
two arbitrary functions of ξ = R− ct and η = R+ ct (10.20), or equivalently,

χ(R, t) = f

(

t− R

c

)

+ g

(

t+
R

c

)

. (11.7)

Seeking a solution that describes a wave propagating away from the origin,
we set g = 0 and have

φ =

f

(

t− R

c

)

R
. (11.8)

To satisfy (11.5), this solution must behave as the potential of a point charge
q(t) for R → 0 (where retardation can be neglected),

φ ≃ q(t)

4πεR
,

which gives f(t) = q(t)/4π. The solution of equation (11.4) thus is

φ(r, t) =

q

(

t− |r − r′|
c

)

4πε|r − r′| . (11.9)

The solution for the continuous charge density distribution ρ(r, t) on the right-
hand side of (11.1b), is obtained by using the superposition principle, replacing

q(t′) −→ ρ(r′, t′)dV ′,

in (11.9), and integrating over the volume, which gives (11.2b).

The equation for the vector potential (11.1a) is equivalent to three copies of
equation (11.1b) (one for each of the x, y and z components of A and j). Its
solution (11.2a) is obtained by replacing ρ(r′, t′)/ε in (11.2b) by µj(r′, t′).

Note that mathematically one can also set f = 0 in (11.7), which would lead
to the so-called advanced potentials with t′ = t+|r−r′|/c. The choice of either
retarded or advanced potentials is determined by the boundary conditions. We
usually consider problems in which charges are driven by some external forces
(e.g., electromagnetic fields which satisfy the homogeneous wave equation).
This motion produces additional fields that propagate away from the charges,
which means that retarded potentials should be used.
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11.2 Radiation by electric dipole

Consider a system of n point charges qi with positions ri(t), confined to a
region of space near the origin. In this section we want to find the electro-
magnetic field produced by the moving charges at large distances r ≫ ri.

The electric dipole moment of this system is [cf. equation (1.44)],

p(t) =
n∑

i=1

qiri(t), (11.10)

and charge density and current density are

ρ(r, t) =
n∑

i=1

qiδ(r − ri(t)), (11.11)

and

j(r, t) =
n∑

i=1

qiṙi(t)δ(r − ri(t)), (11.12)

where ṙi ≡ dri/dt = vi is the velocity of ith charge [cf. equation (5.2)].

The vector potential produced by this charge distribution in vacuum (µ = µ0)
is obtained by substituting (11.12) into (11.2a),

A(r, t) =
µ0

4π

∫

V

∑n
i=1 qiṙi(t

′)δ(r′ − ri(t′))
|r − r′| dV ′, (11.13)

where t′ = t− |r − r′|/c. Assuming ri ≪ r, we can expand

t′ = t− r

c
+
r · r′
rc

+ . . . .

The third term on the right-hand hand side is ∆t ∼ ri/c, which is the time it
takes an electromagnetic wave to travel across the system of charges. During
this time, the positions of the charges change by

|∆ri| = vi∆t ∼
vi
c
ri.

If the charges move slowly compared to the speed of light c (i.e., vi ≪ c), we
have |∆ri| < ri. In this case the displacements of the charges over the time
∆t can be neglected, and we can use the same time

t′ = t− r

c
(11.14)

for all the charges in the system. Neglecting r′ in comparison with r in the
denominator of (11.13), we obtain

A(r, t) =
µ0

4πr

∫

V

n∑

i=1

qiṙi(t
′)δ(r′ − ri(t′))dV ′,

=
µ0

4πr

n∑

i=1

qiṙi(t
′),
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with t′ given by (11.14). Comparing with (11.10), we see that the vector
potential of the system of charges is given by

A(r, t) =
µ0

4πr
ṗ(t′). (11.15)

At large distances r, the vector potential (11.15) behaves locally as that of
a plane wave propagating in the radial direction n = r/r. We can then use
(10.22) to find the magnetic field,

B = n× dA

dξ
= n× dA

dt

dt

dξ
,

where ξ = r − ct here, so that dξ/dt = −c. This gives

B =
µ0

4πcr
p̈(t′)× n. (11.16)

According to Sec. 10.2, the electric field in the wave is perpendicular to B
and n [see equation (10.23)]. Hence we find it as

E = cB × n =
µ0

4πr
[ p̈(t′)× n]× n. (11.17)

This shows that the radiation by the electric dipole is polarised in the plane
of vectors p̈ and n, with vector B (11.16) being perpendicular to this plane.

The electromagnetic energy flux is given by the Poynting vector (9.13),

S =
1

µ0

E ×B =
µ0

16π2cr2
{[ p̈(t′)× n]× n} × [ p̈(t′)× n],

which gives

S =
1

16π2ε0c3r2
|p̈(t′)× n|2n. (11.18)

If p̈ is along the z axis, the magnitude of the Poynting vector is given by

S =
|p̈|2 sin2 θ

16π2ε0c3r2
, (11.19)

where θ is the polar angle. Equation (11.19) shows that the radiation is a
maximum in the plane perpendicular to p̈ (θ = π/2), and that there is no
radiation in the direction parallel to p̈ (θ = 0 or π).

The total energy radiated in unit time (i.e., the radiation power) is found by
integrating the Poynting vector over the surface of a sphere of radius r:

P =
|p̈|2

16π2ε0c3r2

∫ 2π

0

∫ π

0

sin2 θ r2 sin θdθdψ,

which gives74

P =
|p̈|2

6πε0c3
. (11.20)

74
∫ π

0
sin3 θ dθ =

∫ π

0
(1− cos2 θ) d(− cos θ) =

∫ 1

−1
(1− x2)dx = 4/3.
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If the dipole executes harmonic oscillations with amplitude p0 and frequency
ω, p = p0 cosωt, the radiation power (11.20) averaged over one period is75

〈P 〉 = p20ω
4

12πε0c3
. (11.21)

If we consider the motion of a single electron with charge e (Sec. 1.1), then
p = er. Hence, the power radiated by the electron (11.20) is determined by
its acceleration,76

P =
e2|r̈|2
6πε0c3

. (11.22)

The fact that the radiation is determined by the electron’s acceleration and
not velocity, could be expected. Indeed, the velocity of a particle can always
be made zero by considering it in a co-moving inertial frame of reference.

Using equation (11.22), one can estimate how long it will take a classical
electron to spiral into the nucleus, as it keeps losing energy to radiation due
to a nonzero centripetal acceleration it experiences in its orbital motion around
the nucleus.

The fourth power of the frequency in equation (11.21) explains why the sky is
blue. The electric charges in the atmosphere are driven by the electromagnetic
waves (i.e., light) emitted by the Sun. They radiate much more strongly in
the blue than in the red, because the frequency of the blue light is almost a
factor of 2 greater than that of the red.

The equations derived in this section also explain why the light that comes
from the sky is partially polarised. The light emitted by the Sun is unpo-
larised. Since the electromagnetic wave is transversal, the charges in the sky
oscillate in all directions perpendicular to the direction from the Sun. How-
ever, the emission in the direction of the observer is strongest for the charges
that oscillate perpendicular to the line of sight [see equation (11.19)]. As a
result, the light scattered by the sky is partially polarised in the direction
perpendicular to the plane through the Sun, the point in the sky and the eye
of the observer. Wearing Polaroidr sunglasses allows anyone an easy check
of this physics. Just put the glasses on and tilt your head sideways, while
looking at the blue sky, and observe the change in its brightness.

75〈cos2 ωt〉 = 〈sin2 ωt〉 = 1/2.
76This expression is sometimes called the Larmor formula, as it was first obtained by

Joseph Larmor in his paper On the theory of the magnetic influence on spectra; and on the
radiation from moving ions, Phil. Mag., Ser. 5, 44, 503 (1897).
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