Electrostatics in vacuum.

Homework

1. Sketch the diagram of the field lines for:
(a) two equal positive charges q at some distance from each other;
(b) charges $2 q$ and $-q$, some distance away from each other.
[Hint: start by thinking about sketching the field lines near each of the charges and far away from them; then connect these systems of lines in a meaningful way.]
2. Electric charge is distributed with constant density σ on the surface of a disc of radius a. Show that the potential at distance z away from the disc along the axis of symmetry is

$$
\phi(z)=\frac{\sigma}{2 \varepsilon_{0}}\left(\sqrt{a^{2}+z^{2}}-z\right)
$$

Hence, calculate the electric field on the axis, and verify that

$$
E=\frac{\sigma}{2 \varepsilon_{0}} \quad(\text { for } z \ll a), \quad E=\frac{1}{4 \pi \varepsilon_{0}} \frac{\pi a^{2} \sigma}{z^{2}} \quad(\text { for } z \gg a),
$$

i.e., the field of an infinite charged plane and the field of point charge $q=\pi a^{2} \sigma$, respectively.
[Hint: Use the general formula

$$
\phi(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{S} \frac{\sigma\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d S^{\prime}
$$

Choose the origin O at the centre of the disc. The z-axis is normal to the disc, and the disc is in the $x-y$ plane, so that $\boldsymbol{r}^{\prime}=\left(x^{\prime}, y^{\prime}, 0\right)$ for a point on the disc, and $\boldsymbol{r}=(0,0, z)$, since we evaluate the potential on the x-axis. Using

$$
\left|\boldsymbol{r}^{\prime}-\boldsymbol{r}\right|=\sqrt{x^{\prime 2}+y^{\prime 2}+z^{2}}
$$

with z held fixed, do the integral over the disc by changing to polar coordinates $\left(x^{\prime}, y^{\prime}\right) \rightarrow$ (ρ, ψ), for which $d S^{\prime}=d x^{\prime} d y^{\prime} \rightarrow \rho d \rho d \psi$. Use $\boldsymbol{E}=E_{z} \boldsymbol{k}=-\partial \phi / \partial z \boldsymbol{k}$ to evaluate the electric field along the z-axis.]
3. (a) Starting from Coulomb's law, obtain an expression for the electric field \boldsymbol{E} at the position \boldsymbol{r} due to a set of charges $q_{i}(i=1, \ldots, n)$ at positions \boldsymbol{r}_{i}.
(b) State and prove Gauss's law for this set of charges. You may assume the result for the solid angle subtended by a closed surface.
(c) Show that the solid angle subtended by a circular disc at a point on its axis is

$$
\Omega=2 \pi\left(1-\cos \theta_{0}\right)
$$

where θ_{0} is the angle between the axis and a line joining the edge of the disc to the point.
(d) Two charges q and q^{\prime} are placed on the axis of a circular disc of radius a and to the same side of the disc. If q and q^{\prime} are respectively $2 a$ and $3 a$ from the centre of the disc, then find q^{\prime} in terms of q if the total flux of the electric field through the disc is zero.
[Exam 2004 Question 1]
4. (a) Show that the spherically symmetric charge distribution

$$
\begin{equation*}
\rho(r)=\frac{q}{4 \pi a^{2}} \frac{e^{-r / a}}{r}, \tag{1}
\end{equation*}
$$

where q and a are constants, gives the electrostatic potential

$$
\begin{equation*}
\phi(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}\left(1-e^{-r / a}\right) . \tag{2}
\end{equation*}
$$

[Hint : Assume that $\boldsymbol{E}=E(r) \hat{\boldsymbol{r}}$ and apply Gauss's law to a sphere of radius r. Find the electric field and integrate it to get the potential.]
(b) By integrating $\rho(r)$ over the whole space show that q is the total charge. Hence, show that $\phi(r)$ from equation (2) has the correct behavious at $r \gg a$.
[Hint: use spherical shells with the volume element $d V=4 \pi r^{2} d r$ for integration.]
5. Electric charge is distributed on an infinite straight line at constant linear density λ (charge per unit length of the line). Apply Gauss's law to a cylinder of length l and radius ρ, coaxial with the line, and deduce that the the electric field at distance ρ from the line is

$$
E(\rho)=\frac{\lambda}{2 \pi \varepsilon_{0} \rho} .
$$

Hence, show that the potential is

$$
\phi(\rho)=-\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \rho+\text { const. }
$$

How does the potential behave as $\rho \rightarrow \infty$?
6. Two spherical conducting shells of radii a and b, where $b>a$, are arranged concentically and are charged to potenials ϕ_{a} and ϕ_{b} respectively. Show that the potential ϕ at points between the shells and at points $r>b$ is given by

$$
\begin{gathered}
\phi(r)=\frac{a b\left(\phi_{a}-\phi_{b}\right)}{b-a} \frac{1}{r}+\frac{b \phi_{b}-a \phi_{a}}{b-a} \quad(a<r<b), \\
\phi(r)=\frac{b \phi_{b}}{r} \quad(r>b)
\end{gathered}
$$

[Hint : Use spherical polar coordinates, assume $\phi=\phi(r)$ and solve Laplace's equation in the two regions. Identify the constants of integration from the boundary conditions. The Laplacian in spherical polar coordinates (r, θ, ψ) is

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)++\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \psi^{2}}
$$

where we use ψ for the azimuthal angle, instead of the usual ϕ, to avoid confusion with the potential.]
7. The potential ϕ due to a distribution of charge $\rho(\boldsymbol{r})$ confined to a finite volume V surrounding the origin is

$$
\phi(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \frac{\rho\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d V^{\prime} .
$$

(a) We are interested in how $\phi(\boldsymbol{r})$ behaves for $r \gg r^{\prime}$. Using the binomial expansion of $\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{-1}$ show that the terms up to $1 / r^{3}$ can be written as

$$
\phi(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q}{r}+\frac{\boldsymbol{r} \cdot \boldsymbol{p}}{r^{3}}+\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{1}{2} \frac{x_{i} x_{j}}{r^{5}} Q_{i j}+\ldots\right)
$$

where

$$
Q=\int_{V} \rho(\boldsymbol{r}) d V
$$

is the total charge of the distribution,

$$
\boldsymbol{p}=\int_{V} \boldsymbol{r} \rho(\boldsymbol{r}) d V
$$

is the dipole moment of the distribution,

$$
Q_{i j}=\int_{V}\left(3 x_{i} x_{j}-\delta_{i j} r^{2}\right) \rho(\boldsymbol{r}) d V
$$

is the quadrupole moment tensor, and $\left(x_{1}, x_{2}, x_{3}\right)$ are the Cartesian components of \boldsymbol{r}.
(b) If the total charge Q is zero, show that the dipole moment \boldsymbol{p} is independent of the choice origin of coordinates. [Hint: find \boldsymbol{p} with respect to a new origin at \boldsymbol{a}.]
(c) If the distribution ρ consists only of two equal and opposite point charges, $q>0$ and $-q$, separated by the vector \boldsymbol{l} (directed from $-q$ to q), show that the dipole moment \boldsymbol{p} defined above reproduces the usual result $\boldsymbol{p}=q \boldsymbol{l}$. [Hint: write $\rho(\boldsymbol{r})$ for the two charges using the Dirac δ-function.]
(d) The distribution ρ consists of three point charges $-q,+2 q$ and $-q$, which lie on the z axis at points $(0,0,-a),(0,0,0)$ and $(0,0, a)$, respectively. Show that $Q=0$ and $\boldsymbol{p}=0$ and find the components of $Q_{i k}$.

Hint for part (a): use the binomial expansion to second order,

$$
\begin{aligned}
\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{-1} & =\left(r^{2}-2 \boldsymbol{r} \cdot \boldsymbol{r}^{\prime}+{r^{\prime 2}}^{\prime}\right)^{-1 / 2} \\
& =r^{-1}(1+\alpha)^{-1 / 2} \\
& =r^{-1}\left(1-\frac{1}{2} \alpha+\frac{3}{8} \alpha^{2}+\ldots\right)
\end{aligned}
$$

where $\alpha=r^{-2}\left(-2 \boldsymbol{r} \cdot \boldsymbol{r}^{\prime}+{r^{\prime}}^{2}\right)$, keeping terms up to $\sim\left(r^{\prime} / r\right)^{2}$.
Also, in order to separate the components of \boldsymbol{r} and \boldsymbol{r}^{\prime} in the integral, taking those of \boldsymbol{r} outside, use

$$
\boldsymbol{r} \cdot \boldsymbol{r}^{\prime}=\sum_{i=1}^{3} x_{i} x_{i}^{\prime} \quad \text { and } \quad r^{2}=\sum_{i=1}^{3} x_{i} x_{i}=\sum_{i=1}^{3} \sum_{j=1}^{3} x_{i} x_{j} \delta_{i j} .
$$

Further Examples

1. Electric charge is distributed with variable density σ on an infinite plane. P is a point distance a from the plane, and $d S$ is a surface element whose distance from P is R.
(a) Prove that the electric field at P has a component normal to the plane, equal to

$$
\frac{a}{4 \pi \varepsilon_{0}} \int \frac{\sigma}{R^{3}} d S
$$

wher the integral is over the whole plane.
(b) For constant σ show that this gives a value $\sigma / 2 \varepsilon_{0}$ and deduce that in such a case one half of the field arises from those points of the plane that are less than $2 a$ from P.
[Hint: The general formula is

$$
\boldsymbol{E}(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{S} \frac{\sigma\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) d S^{\prime}
$$

In our case \boldsymbol{r} is the position vector $P, \boldsymbol{r}^{\prime}$ is the position vector of the element $d S$ in the plane, and $R=\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|$. Choose the origin O by dropping a perpendicular from the point P on to the plane. The z-axis is from O through P. Then $\boldsymbol{r}^{\prime}=\left(x^{\prime}, y^{\prime}, 0\right)$, since it points to the charge on the plane, $\boldsymbol{r}=(0,0, a)$ since we evaluate the field at P. Consider E_{z}.

The surface integral, when converted to polar coordinates $\left(r^{\prime}, \psi^{\prime}\right)$, can, by a change of variable, be written in terms of R where $R^{2}={r^{\prime}}^{2}+a^{2}$.]
2. A fixed circle of radius a has a charge q placed at a distance $3 a / 4$ from its centre, on a line through the centre perpendicular to the plane of the circle. Show that the flux of \boldsymbol{E} through the circle is $q / 5 \varepsilon_{0}$. If a second charge q^{\prime}, similarly placed at a distance $5 a / 12$ on the opposite side of the circle, results in no net flux through the circle, show that $q^{\prime}=13 q / 20$.
[Hint: Determine the solid angle subtended by the circle at the charges.]
3. An infinite plane slab of thickness d is filled with charge of uniform density ρ (i.e., $\rho=$ const), with no charge elsewhere. Find the electric field \boldsymbol{E} and show that the corresponding potential is

$$
\phi(x)=\left\{\begin{array}{lll}
-\frac{\rho x^{2}}{2 \varepsilon_{0}} & \text { for } & -\frac{d}{2} \leq x \leq \frac{d}{2} \\
-\frac{\rho d|x|}{2 \varepsilon_{0}}+\frac{\rho_{0} d^{2}}{8 \varepsilon_{0}} & \text { for } & |x| \geq \frac{d}{2}
\end{array}\right.
$$

where x is measured from the mid-plane of the slab along the normal.
[Hint: By symmetry, the electric field will be normal to the slab, $E=E(x)$, and at the middle of the slab $E=0$. Apply Gauss's law to a cylinder placed symmetrically with respect to the mid-plane, with bases parallel to it. There are two cases: the bases are either within the slab, or outside. Find the electric field and integrate to obtain the potential.]
4. Two infinitely long cylindrical conducting shells of radii a and b, where $a<b$, are arranged coaxially and are charged to potentials ϕ_{a} and ϕ_{b} respectively. Show that the potential between the cylinders is given by

$$
\phi(\rho)=\frac{\phi_{b}-\phi_{a}}{\ln b-\ln a} \ln \rho+\frac{\phi_{a} \ln b-\phi_{b} \ln a}{\ln b-\ln a} \quad(a<\rho<b)
$$

where ρ is the perpendicular distance from the axis of the cylinders.
[Hint: Use cylindrical polar coordinates (ρ, ψ, z) in which the Laplacian given by

$$
\nabla^{2}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \psi^{2}}+\frac{\partial^{2}}{\partial z^{2}} .
$$

Assume $\phi=\phi(\rho)$ and solve Laplace's equation. Identify the constants of integration from the boundary conditions.]
5. By considering the electric charge on the surface of a conductor to lie within a very thin layer of thickness d, show that there is an outward force on the surface of magnitude

$$
\frac{\sigma^{2}}{2 \varepsilon_{0}}
$$

per unit area, where σ is the surface density of charge.
6. A system of charges generates the spherically symmetric electrostatic potential

$$
\phi=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{r}(1+b r) \exp (-2 b r)
$$

where q and b are constants. Show that the sources of the potential are a point charge q located at $r=0$, and a volume distribution of density

$$
\rho(r)=-\frac{q b^{3}}{\pi} \exp (-2 b) .
$$

[Hint: Use Poisson's equation to calculate $\rho(r)$.]
7. A system of charges consists of $+2 q$ at the origin and $-q$ at the two points $(0,0, \pm a)$, i.e., on the z-axis. Show that at distances $r \gg a$ the potential may be written in the approximate form

$$
\phi=\frac{q a^{2}}{4 \pi \varepsilon_{0} r^{3}}\left(1-3 \cos ^{2} \theta\right),
$$

where θ is the polar angle of the field point.
Explain in a simple way why $\phi>0$ in the direction perpendicular to the z axis $(\theta=\pi / 2)$.

