Electromagnetic radiation.

Homework

1. It can be shown that the following electric and magnetic fields,

$$
\begin{aligned}
E_{r} & =k e^{i(\omega t-k r)}\left[-\frac{1}{(k r)^{2}}+\frac{i}{(k r)^{3}}\right] \cos \theta, \\
E_{\theta} & =\frac{1}{2} k e^{i(\omega t-k r)}\left[-\frac{i}{k r}-\frac{1}{(k r)^{2}}+\frac{i}{(k r)^{3}}\right] \sin \theta, \\
H_{\psi} & =\frac{1}{2} k \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} e^{i(\omega t-k r)}\left[-\frac{i}{k r}-\frac{1}{(k r)^{2}}\right] \sin \theta, \\
E_{\psi} & =H_{r}=H_{\theta}=0
\end{aligned}
$$

written in spherical polar coordinates (r, θ, ψ), with $\omega / k=1 / \sqrt{\varepsilon_{0} \mu_{0}}$, satisfy Maxwell's equations in free space in the absence of charges and currents.
(a) Consider an oscillating electric dipole of moment $\boldsymbol{P} e^{i \omega t}$, taking \boldsymbol{P} along the z-axis. Show by considering the near-field $(k r \ll 1)$ limit that the fields due to the oscillating electric dipole can be obtained by multiplying the above solution of Maxwell's equations by

$$
-\frac{i k^{2} P}{2 \pi \varepsilon_{0}}
$$

(b) Obtain an expression valid in the far-field $(k r \gg 1)$ limit for the time-averaged Poynting vector due to such an oscillating electric dipole at the origin and show that the total flux of radiation outward through a sphere is given by

$$
\frac{\mu_{0} \sqrt{\varepsilon_{0} \mu_{0}} \omega^{4} P^{2}}{12 \pi}
$$

[Exam 2003 Question 7]
2. (a) By making a suitable expansion of the differentials $d[(\boldsymbol{b} \cdot \boldsymbol{r}) \boldsymbol{r}]$ and $\boldsymbol{b} \times(\boldsymbol{r} \times d \boldsymbol{r})$, or otherwise, prove that

$$
\oint_{C}(\boldsymbol{b} \cdot \boldsymbol{r}) d \boldsymbol{r}=\boldsymbol{M} \times \boldsymbol{b}
$$

where

$$
\boldsymbol{M} \equiv \frac{1}{2} \oint_{C} \boldsymbol{r} \times d \boldsymbol{r}
$$

C is a closed curve, and \boldsymbol{b} is a constant vector. If C is a plane curve, show that the magnitude of \boldsymbol{M} is equal to the area enclosed by C, and that the direction of \boldsymbol{M} is perpendicular to the plane of C, and related to the right-hand screw to the direction in which the curve is traversed.
(b) A circular loop of wire of radius a carries an alternating current $I=I_{0} \cos \omega t$, where I_{0} and ω are constants and $\omega a \ll c$, c being the velocity of light. The loop lies in the $x-y$ plane and is centred upon the origin. Show that, correct to first-order in $1 / r$, where r is the distance from the origin, the (complex) vector potential is given by

$$
\boldsymbol{A}(\boldsymbol{r}, t)=\frac{i \mu_{0} I_{0} a^{2} k}{4} \frac{e^{i(\omega t-k r)}}{r} \sin \theta \hat{\boldsymbol{\psi}}
$$

where $k \equiv \omega / c$ and (r, θ, ψ) are the polar coordinates of \boldsymbol{r}. Hence, determine the magnetic field \boldsymbol{H} and the electric field \boldsymbol{E}, correct to first order in $1 / r$, and the corresponding Poynting vector \boldsymbol{S}.
3. (a) Show, from Maxwell's equations, how the \boldsymbol{B} and \boldsymbol{E} fields may be parameterised in terms of a vector potential \boldsymbol{A} and a scalar potential ϕ.
(b) In Lorenz gauge (i.e., $\nabla \cdot \boldsymbol{A}+\varepsilon_{0} \mu_{0} \partial \phi / \partial t=0$), the vector potential \boldsymbol{A} at a large distance r from a finite system of charges is approximately

$$
\boldsymbol{A}=\frac{\mu_{0}}{4 \pi r} \dot{\boldsymbol{P}}(t-r / c)
$$

where $\boldsymbol{P}(t)$ is the dipole moment of the system, $c=1 / \sqrt{\varepsilon_{0} \mu_{0}}$ and $\dot{\boldsymbol{P}}(t) \equiv d \boldsymbol{P} / d t$. For

$$
\boldsymbol{P}(t)=\boldsymbol{P}_{0} e^{i \omega t}
$$

where \boldsymbol{P}_{0} and ω are constants, show that, correct to first order in $1 / r$, the corresponding magnetic and electric fields are

$$
\begin{aligned}
& \boldsymbol{B}=\frac{\omega \mu_{0} k}{4 \pi} \frac{e^{i(\omega t-k r)}}{r} \hat{\boldsymbol{r}} \times \boldsymbol{P}_{0} \\
& \mathbf{E}=\frac{\omega^{2} \mu_{0}}{4 \pi} \frac{e^{i(\omega t-k r)}}{r} \hat{\boldsymbol{r}} \times\left(\boldsymbol{P}_{0} \times \hat{\boldsymbol{r}}\right)
\end{aligned}
$$

where $k=\omega / c$ and $\hat{\boldsymbol{r}}$ is a unit vector in the direction of \boldsymbol{r}.
Hint: in deriving the result, the following vector idenities may be of use:

$$
\begin{aligned}
\nabla \times(f \boldsymbol{a}) & =f(\nabla \times \boldsymbol{a})+\nabla f \times \boldsymbol{a} \\
\nabla \cdot(f \boldsymbol{a}) & =f(\nabla \cdot \boldsymbol{a})+\nabla f \cdot \boldsymbol{a} \\
\nabla(f g) & =f \nabla g+g \nabla f
\end{aligned}
$$

(c) A rigid electric dipole p is centred on the origin and lies in the $x-y$ plane. The dipole rotates anticlockwise with constant angular velocity ω, and is along the x axis at $t=0$. Show that, correct to first order in $1 / r$, the \boldsymbol{B} and \boldsymbol{E} fields created by the dipole are:

$$
\begin{aligned}
\boldsymbol{B} & =\frac{p \omega \mu_{0} k}{4 \pi r}[\cos (\omega t-k r-\psi) \cos \theta \hat{\boldsymbol{\psi}}-\sin (\omega t-k r-\psi) \hat{\boldsymbol{\theta}}] \\
\boldsymbol{E} & =\frac{p k^{2}}{4 \pi \varepsilon_{0} r}[\sin (\omega t-k r-\psi) \hat{\boldsymbol{\psi}}+\cos (\omega t-k r-\psi) \cos \theta \hat{\boldsymbol{\theta}}]
\end{aligned}
$$

where (r, θ, ψ) are spherical polar coordinates.
Find the corresponding Poynting vector.

Further Examples

1. (a) A set of point charges is in motion in a finite region surrounding the origin. If the speeds of the charges are much smaller than the velocity of light c, show that at large distance r from the origin the vector potential \boldsymbol{A} is given by

$$
\boldsymbol{A} \simeq \frac{\mu_{0}}{4 \pi r} \dot{\boldsymbol{P}}(t-r / c)
$$

where $\boldsymbol{P}(t)$ is the dipole moment of the system at time t.
(b) For $\boldsymbol{P}(t)=\boldsymbol{P}_{0} e^{i \omega t}$, where \boldsymbol{P}_{0} and ω are constants, find, correct to first order in $1 / r$, the corresponding electric and magnetic fields at large r.

