Electromagnetic Theory AMA3001

Electromagnetic radiation.

Homework

1. It can be shown that the following electric and magnetic fields,

$$E_r = k e^{i(\omega t - kr)} \left[-\frac{1}{(kr)^2} + \frac{i}{(kr)^3} \right] \cos \theta,$$

$$E_\theta = \frac{1}{2} k e^{i(\omega t - kr)} \left[-\frac{i}{kr} - \frac{1}{(kr)^2} + \frac{i}{(kr)^3} \right] \sin \theta,$$

$$H_\psi = \frac{1}{2} k \sqrt{\frac{\varepsilon_0}{\mu_0}} e^{i(\omega t - kr)} \left[-\frac{i}{kr} - \frac{1}{(kr)^2} \right] \sin \theta,$$

$$E_\psi = H_r = H_\theta = 0,$$

written in spherical polar coordinates (r, θ, ψ) , with $\omega/k = 1/\sqrt{\varepsilon_0 \mu_0}$, satisfy Maxwell's equations in free space in the absence of charges and currents.

(a) Consider an oscillating electric dipole of moment $\mathbf{P}e^{i\omega t}$, taking \mathbf{P} along the z-axis. Show by considering the near-field $(kr \ll 1)$ limit that the fields due to the oscillating electric dipole can be obtained by multiplying the above solution of Maxwell's equations by

$$-\frac{ik^2P}{2\pi\varepsilon_0}.$$

(b) Obtain an expression valid in the far-field $(kr \gg 1)$ limit for the time-averaged Poynting vector due to such an oscillating electric dipole at the origin and show that the total flux of radiation outward through a sphere is given by

$$\frac{\mu_0 \sqrt{\varepsilon_0 \mu_0} \omega^4 P^2}{12\pi}.$$

[Exam 2003 Question 7]

2. (a) By making a suitable expansion of the differentials $d[(\boldsymbol{b} \cdot \boldsymbol{r})\boldsymbol{r}]$ and $\boldsymbol{b} \times (\boldsymbol{r} \times d\boldsymbol{r})$, or otherwise, prove that

where

$$\oint_C (\boldsymbol{b} \cdot \boldsymbol{r}) d\boldsymbol{r} = \boldsymbol{M} imes \boldsymbol{b},$$
 $\boldsymbol{M} \equiv rac{1}{2} \oint_C \boldsymbol{r} imes d\boldsymbol{r},$

C is a closed curve, and **b** is a constant vector. If C is a plane curve, show that the magnitude of M is equal to the area enclosed by C, and that the direction of M is perpendicular to the plane of C, and related to the right-hand screw to the direction in which the curve is traversed.

(b) A circular loop of wire of radius *a* carries an alternating current $I = I_0 \cos \omega t$, where I_0 and ω are constants and $\omega a \ll c$, c being the velocity of light. The loop lies in the *x-y* plane and is centred upon the origin. Show that, correct to first-order in 1/r, where *r* is the distance from the origin, the (complex) vector potential is given by

$$\boldsymbol{A}(\boldsymbol{r},t) = \frac{i\mu_0 I_0 a^2 k}{4} \, \frac{e^{i(\omega t - kr)}}{r} \, \sin\theta \, \hat{\boldsymbol{\psi}}_1$$

where $k \equiv \omega/c$ and (r, θ, ψ) are the polar coordinates of \mathbf{r} . Hence, determine the magnetic field \mathbf{H} and the electric field \mathbf{E} , correct to first order in 1/r, and the corresponding Poynting vector \mathbf{S} .

- 3. (a) Show, from Maxwell's equations, how the \boldsymbol{B} and \boldsymbol{E} fields may be parameterised in terms of a vector potential \boldsymbol{A} and a scalar potential ϕ .
 - (b) In Lorenz gauge (i.e., $\nabla \cdot \mathbf{A} + \varepsilon_0 \mu_0 \partial \phi / \partial t = 0$), the vector potential \mathbf{A} at a large distance r from a finite system of charges is approximately

$$\boldsymbol{A} = \frac{\mu_0}{4\pi r} \dot{\boldsymbol{P}}(t - r/c),$$

where $\mathbf{P}(t)$ is the dipole moment of the system, $c = 1/\sqrt{\varepsilon_0 \mu_0}$ and $\dot{\mathbf{P}}(t) \equiv d\mathbf{P}/dt$. For

$$\boldsymbol{P}(t) = \boldsymbol{P}_0 e^{i\omega t},$$

where \mathbf{P}_0 and ω are constants, show that, correct to first order in 1/r, the corresponding magnetic and electric fields are

$$\begin{split} \mathbf{B} &= \frac{\omega \mu_0 k}{4\pi} \frac{e^{i(\omega t - kr)}}{r} \, \hat{\mathbf{r}} \times \mathbf{P}_0, \\ \mathbf{E} &= \frac{\omega^2 \mu_0}{4\pi} \frac{e^{i(\omega t - kr)}}{r} \, \hat{\mathbf{r}} \times (\mathbf{P}_0 \times \hat{\mathbf{r}}) \end{split}$$

where $k = \omega/c$ and $\hat{\boldsymbol{r}}$ is a unit vector in the direction of \boldsymbol{r} . <u>Hint:</u> in deriving the result, the following vector idenities may be of use:

$$\begin{aligned} \nabla \times (f \boldsymbol{a}) &= f(\nabla \times \boldsymbol{a}) + \nabla f \times \boldsymbol{a}, \\ \nabla \cdot (f \boldsymbol{a}) &= f(\nabla \cdot \boldsymbol{a}) + \nabla f \cdot \boldsymbol{a}, \\ \nabla (f g) &= f \nabla g + g \nabla f. \end{aligned}$$

(c) A rigid electric dipole p is centred on the origin and lies in the x-y plane. The dipole rotates anticlockwise with constant angular velocity ω , and is along the x axis at t = 0. Show that, correct to first order in 1/r, the **B** and **E** fields created by the dipole are:

$$\boldsymbol{B} = \frac{p\omega\mu_0 k}{4\pi r} \left[\cos(\omega t - kr - \psi)\cos\theta\,\hat{\boldsymbol{\psi}} - \sin(\omega t - kr - \psi)\,\hat{\boldsymbol{\theta}}\right],\\ \boldsymbol{E} = \frac{pk^2}{4\pi\varepsilon_0 r} \left[\sin(\omega t - kr - \psi)\,\hat{\boldsymbol{\psi}} + \cos(\omega t - kr - \psi)\cos\theta\,\hat{\boldsymbol{\theta}}\right],$$

where (r, θ, ψ) are spherical polar coordinates. Find the corresponding Poynting vector.

Further Examples

1. (a) A set of point charges is in motion in a finite region surrounding the origin. If the speeds of the charges are much smaller than the velocity of light c, show that at large distance r from the origin the vector potential \boldsymbol{A} is given by

$$\boldsymbol{A} \simeq \frac{\mu_0}{4\pi r} \dot{\boldsymbol{P}}(t - r/c),$$

where P(t) is the dipole moment of the system at time t.

(b) For $\mathbf{P}(t) = \mathbf{P}_0 e^{i\omega t}$, where \mathbf{P}_0 and ω are constants, find, correct to first order in 1/r, the corresponding electric and magnetic fields at large r.

$$\mathfrak{L}(\mathbf{b}). \ \mathbf{H} = -\frac{I_{00}^{2} k^{2}}{4r} e^{i(\omega t - \hbar r)} \sin \theta \, \hat{\mathbf{\theta}}, \ \mathbf{E} = -\frac{\mu_{0} \omega I_{00}^{2} k}{4r} e^{i(\omega t - \hbar r)} e^{\hat{\mathbf{\theta}}}.$$

<u>Answers:</u>