Law of induction. Inductance. Magnetic energy.

Homework

1. A small magnet of moment \boldsymbol{m} can slide along the axis of a circular coil of wire of radius a, resistance R and negligible self-inductance. The direction of \boldsymbol{m} is along the axis.
(a) Show that when the magnet is at a distance z from the centre of the coil, the flux of \boldsymbol{B} across the coil is

$$
\Phi=\frac{\mu_{0} m a^{2}}{2\left(a^{2}+z^{2}\right)^{3 / 2}}
$$

(b) Deduce that if the magnet is moving with velocity v, the current in the coil is

$$
I=\frac{3 \mu_{0} m a^{2} z v}{2 R\left(a^{2}+z^{2}\right)^{5 / 2}}
$$

2. Calculate the emf in a circular loop of radius a induced by a spatially uniform magnetic field

$$
\boldsymbol{B}=\boldsymbol{B}_{0} \cos \omega t
$$

if \boldsymbol{B}_{0} makes an angle θ with the normal of the plane of the loop.
3. A transmission line consists of a straight cylindrical wire of radius a inside a coaxial thin conducting cylinder of radius b. The space between them is filled with a magnetic material with permeability μ. The inner wire has permeability μ_{0} and carries a uniform current I.
(a) Find the magnetic induction B inside the line, and hence determine the self-inductance L per unit length of the line.
[Hint: consider an annulus of radius r and width $d r$ of the inner wire that carries a fraction $2 \pi r d r / \pi a^{2}$ of the total current. Calculate the flux $\Phi(r)$ of the magnetic field B through a rectangle with sides unity and $b-r$, that lies in the plane through the axis, so that one of the unit sides is at a distance r from the axis and the other at b (i.e., on the outer cylinder). Then find the total flux as $\Phi=\int_{0}^{a} \Phi(r) 2 \pi r d r / \pi a^{2}$.]
(b) Calculate the magnetic energy per unit length of the line using the energy density $\frac{1}{2} \boldsymbol{H} \cdot \boldsymbol{B}$, and verify that this energy is equal to $W=\frac{1}{2} L I^{2}$. (This is in fact a more straightforward way of finding the self-inductance L.)
4. (a) Derive a formula for the magnetic energy W of N circuits carrying currents I_{k} ($k=$ $1, \ldots, N)$ in the presence of linear magnetic media, given that the magnetic flux through k th circuit is Φ_{k}.
(b) Prove that the force \boldsymbol{F} on any component P of the circuits is given by

$$
\left\{F_{x}, F_{y}, F_{z}\right\}=\left\{\left(\frac{\partial W}{\partial x}\right)_{I},\left(\frac{\partial W}{\partial y}\right)_{I},\left(\frac{\partial W}{\partial z}\right)_{I}\right\}
$$

where (x, y, z) are the Cartesian coordinates of P and the subscript I indicates that the currents I_{k} are to be kept fixed.
(c) A circular loop of radius a carrying current I, is centred on the origin in the $x-y$ plane. (I is regarded positive when the current flows anticlockwise.) A small magnet of moment $\boldsymbol{m}=\boldsymbol{m} \boldsymbol{k}$ is placed on the axis of the loop at point $(0,0, z)$. Using the results from part (b) and question $1(\mathrm{a})$, show that the force on the magnet is

$$
F_{z}=-\frac{3 \mu_{0} m a^{2} I z}{2\left(a^{2}+z^{2}\right)^{5 / 2}}
$$

5. An infinite straight wire and a circular loop of radius a lie the same plane, with the centre of the loop being at a distance $b(b>a)$ from the straight wire.
(a) Starting from the Biot-Savart law, calculate the magnetic induction \boldsymbol{B} produced by a steady current I flowing in the infinite straight wire.
(b) Using plane polar coordinates for the loop, show that the flux of \boldsymbol{B} through the loop is given by

$$
\Phi=\frac{\mu_{0} I}{2 \pi} \int_{0}^{a} d r \int_{0}^{2 \pi} \frac{r d \theta}{b+r \cos \theta},
$$

and hence, show that the mutual inductance L_{21} between the straight wire and the loop is

$$
\begin{equation*}
L_{21}=\mu_{0}\left(b-\sqrt{b^{2}-a^{2}}\right) . \tag{1}
\end{equation*}
$$

[Hint: you may use the following integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{1+\alpha \cos \theta}=\frac{2 \pi}{\sqrt{1-\alpha^{2}}} \quad(|\alpha|<1)
$$

which can be derived using the substitution $t=\tan \frac{\theta}{2}$.]
(c) Verify that for $b \gg a$, the mutual inductance (1) is

$$
L_{21} \simeq \frac{\mu_{0}}{2 \pi b} \pi a^{2}
$$

and explain why this is the correct result.
(d) Find the magnitude of the force between the circular wire and the straight wire when they carry currents I_{2} and I_{1} respectively.
6. (a) By using the Biot-Savart law to calculate the flux through a circuit C_{2} due to a current I_{1} in a circuit C_{1}, show that the mutual inductance L_{21} between the circuits is

$$
L_{21}=\frac{\mu_{0}}{4 \pi} \oint_{C_{2}} \oint_{C_{1}} \frac{d \boldsymbol{r}_{1} \cdot d \boldsymbol{r}_{2}}{\left|\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right|} .
$$

This is known as Neumann's formula.
(b) If C_{1} and C_{2} have self-inductances L_{1} and L_{2} show that the magnetic energy W of the circuits is

$$
W=\frac{1}{2} L_{1} I_{1}^{2}+L_{21} I_{1} I_{2}+\frac{1}{2} L_{2} I_{2}^{2}
$$

Hence, using Neumann's formula, prove that the force exerted by C_{1} on C_{2} is

$$
\begin{equation*}
\boldsymbol{F}_{2}=-\frac{\mu_{0}}{4 \pi} I_{1} I_{2} \oint_{C_{2}} \oint_{C_{1}} \frac{\left(d \boldsymbol{r}_{1} \cdot d \boldsymbol{r}_{2}\right)\left(\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right)}{\left|\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right|^{3}} . \tag{2}
\end{equation*}
$$

(c) Verify that equation (2) is the same as the result

$$
\boldsymbol{F}_{2}=\frac{\mu_{0}}{4 \pi} I_{1} I_{2} \oint_{C_{2}} \oint_{C_{1}} \frac{d \boldsymbol{r}_{2} \times\left[d \boldsymbol{r}_{1} \times\left(\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right)\right]}{\left|\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right|^{3}}
$$

which can be obtained directly from the Biot-Savart law.

$$
\cdot \frac{p}{q} \mathrm{u} \frac{\nu Z}{\eta}+\frac{\nu 8}{0 \eta}=T \cdot(\mathrm{e}) \varepsilon \quad \cdot \text { 子muis } \theta \operatorname{soo}^{0} G_{z} p \nu m=3 \cdot \tau
$$

Further Examples

1. Two equal circular loops of radius a lie opposite each other, a distance b apart.
(a) Show that the coefficient of mutual inductance is

$$
L_{12}=\frac{\mu_{0} a^{2}}{2} \int_{0}^{2 \pi} \frac{\cos \psi d \psi}{\sqrt{b^{2}+2 a^{2}-2 a^{2} \cos \psi}} .
$$

(b) Show that for $b \gg a$ the mutual inductance is given by

$$
L_{12}=\frac{\pi \mu_{0} a^{4}}{2 b^{3}}
$$

(c) Deduce that if unit currents flow in the same direction round the loops, they attract each other with a force

$$
\frac{3 \pi \mu_{0} a^{4}}{2 b^{4}}
$$

2. (a) Obtain a formula for the magnetic energy W of N circuits carrying currents I_{k} $(k=1, \ldots, N)$ in the presence of linear magnetic media. Deduce that for a volume distribution of current \boldsymbol{j}

$$
W=\frac{1}{2} \int \boldsymbol{A} \cdot \boldsymbol{j} d V
$$

where \mathbf{A} is the magnetic vector potential.
(b) An infinitely long wire of radius a carries a uniform current I. Show that a vector potential of the form

$$
\boldsymbol{A}=A_{z}(\rho) \hat{\boldsymbol{k}}
$$

where ρ is the perpendicular distance from the centre of the wire and $\hat{\boldsymbol{k}}$ is a unit vector parallel to the wire, can be used to describe the associated magnetic field. Find $A_{z}(\rho)$ both for points inside and outside the wire.
(c) Two infinitely long wires of radii a and b carry uniform currents I and $-I$, respectively. The centres of the wires are distance h apart. Using the results from parts (a) and (b), show that for $h \gg a, b$ the magnetic energy per unit length of the system is

$$
\frac{\mu_{0} I^{2}}{8 \pi}\left(1+2 \ln \frac{h^{2}}{a b}\right)
$$

