
Partial Differential Equations AMA3006 Problem sheet 5

Fourier transforms and their application to PDE.

For a piecewise smooth function f(x) defined on −∞ < x < ∞, the (exponential) Fourier
transform is

F (p) ≡ F [f ] =
1√
2π

∫ ∞

−∞

f(x)eipxdx. (1)

Its inverse allows one to find f(x) if F (p) is known:

f(x) = F−1[F ] =
1√
2π

∫ ∞

−∞

F (p)e−ipxdp. (2)

If f(x) has a jump discontinuity at x = ξ then F−1[F ] = 1
2
[f(ξ − 0) + f(ξ + 0)].

For a function defined on 0 ≤ x <∞ one can use the cosine or sine Fourier transforms:

Fc(p) ≡ Fc[f ] =

√

2

π

∫ ∞

0

f(x) cos px dx, f(x) = F−1
c [Fc] =

√

2

π

∫ ∞

0

Fc(p) cos px dp, (3)

Fs(p) ≡ Fs[f ] =

√

2

π

∫ ∞

0

f(x) sin px dx, f(x) = F−1
s [Fs] =

√

2

π

∫ ∞

0

Fs(p) sin px dp. (4)

Examples

1. Consider Laplace’s equation uxx + uyy = 0 in the half-plane, −∞ < x < ∞, 0 ≤ y < ∞,
for u(x, y) with the boundary condition u(x, 0) = f(x).

[This problem describes the steady-state temperature distribution in a large (semi-infinite!)
room heated by a wall whose temperature is fixed in time but may change along the wall.]

(a) Consider the Fourier transform U(p, y) = F [u] with respect to x, and express F [uyy]
and F [uxx] in terms of U(p, y). Assume that u(x, y), ux(x, y)→ 0 for x→ ±∞.

(b) Fourier-transform Laplace’s equation with respect to x, and determine U(p, y) using
the boundary condition. By performing the inverse Fourier transform, show that

u(x, y) =
y

π

∫ ∞

−∞

f(ξ)dξ

y2 + (ξ − x)2
. (5)

(c) Using (5), find u(x, y) if f(x) = T for −a ≤ x ≤ a, and 0 outside this segment.

Give this result a geometric interpretation.

2. Consider the heat equation ut−uxx = 0 (where K = 1) for a semi-infinite rod, 0 ≤ x <∞,
with the initial condition u(x, 0) = 0 and boundary condition ux(0, t) = −σ (steady heat
flux into the rod). Using the cosine Fourier transform with respect to x, Uc(p, t) = Fc[u],
show that

u(x, t) =
2σ

π

∫ ∞

0

1− e−p2t

p2
cos px dp.

Homework problems

1. For u(x, y) defined on 0 ≤ x <∞, with the cosine Fourier transform Uc(p, y) with respect
to x, prove that

Fc[uyy] =
∂2Uc(p, y)

∂y2
, and Fc[uxx] = −

√

2

π
ux(0, y)− p2Uc(p, y).

[Hint: in the latter, use integration by parts twice.]
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2. Consider Laplace’s equation uxx + uyy = 0 in the quadrant, 0 ≤ x < ∞, 0 ≤ y < ∞, with
the boundary conditions ux(0, y) = 0 and

u(x, 0) =

{

T, 0 ≤ x ≤ a,

0, a < x <∞.

(a) Using the results of Q. 1, perform the cosine Fourier transform of Laplace’s equation
with respect to x, and take into account the boundary conditions to show that

Uc(p, y) = T

√

2

π

sin pa

p
e−py. (6)

(b) Use the inverse cosine Fourier transform [second equation in (3)], and integrate over
p to show that

u(x, y) =
T

π

[

arctan
a + x

y
+ arctan

a− x

y

]

.

Hints: sin pa cos px = 1
2
[sin(a + x)p + sin(a− x)p],

∞
∫

0

sin αp

p
e−βpdp = arctan

α

β
.

3. Consider the heat equation ut − uxx = 0 for a semi-infinite rod, 0 ≤ x < ∞, with the
initial condition u(x, 0) = 0 and boundary condition u(0, t) = T (end of the rod has a fixed
temperature).

(a) Using the sine Fourier transform with respect to x, Us(p, t) = Fs[u], prove that

Fs[ut] =
∂Us(p, t)

∂t
, and Fs[uxx] =

√

2

π
u(0, t)p− p2Us(p, t).

(b) By applying the sine Fourier transform to the heat equation, show that

∂Us(p, t)

∂t
+ p2Us(p, t)−

√

2

π
Tp = 0. (7)

(c) Solve the differential equation for Us(p, t) with the appropriate initial condition, and
use the inverse sine Fourier transform, second equation in (4), to show that

u(x, t) =
2T

π

∫ ∞

0

1− e−p2t

p
sin px dp. (8)

4. Solve problem 3 for an arbitrary time-dependent boundary condition, u(0, t) = f(t).

Hints: instead of equation (7), you should obtain

∂Us(p, t)

∂t
+ p2Us(p, t)−

√

2

π
f(t)p = 0.

Solve this first-order linear inhomogeneous differential equation by standard methods, to
show that

Us(p, t) =

√

2

π
pe−p2t

∫ t

0

ep2τf(τ)dτ.

Substitute Us(p, t) into the inverse sine Fourier transform equation, and integrate over p
with the help of

∫∞

0
e−αp2

p sin βp dp =
√

πe−β2/4α β
4α3/2

. In the remaining integral over τ ,

introduce new variable s = x/(2
√

t− τ ), and replace the integration limits accordingly, to
obtain

u(x, t) =
2√
π

∫ ∞

x/(2
√

t)

f

(

t− x2

4s2

)

e−s2

ds. (9)

Show that for f(t) = T , Eq. (9) gives u(x, t) = T
[

1−erf
(

x
2
√

t

)]

, where erf(z) = 2√
π

∫ z

0
e−s2

ds

is the error function, for which limz→∞ erf(z) = 1. This provides the answer to integral (8).
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