For a piecewise smooth function $f(x)$ defined on $-\infty<x<\infty$, the (exponential) Fourier transform is

$$
\begin{equation*}
F(p) \equiv \mathcal{F}[f]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i p x} d x \tag{1}
\end{equation*}
$$

Its inverse allows one to find $f(x)$ if $F(p)$ is known:

$$
\begin{equation*}
f(x)=\mathcal{F}^{-1}[F]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(p) e^{-i p x} d p \tag{2}
\end{equation*}
$$

If $f(x)$ has a jump discontinuity at $x=\xi$ then $\mathcal{F}^{-1}[F]=\frac{1}{2}[f(\xi-0)+f(\xi+0)]$.
For a function defined on $0 \leq x<\infty$ one can use the cosine or sine Fourier transforms:

$$
\begin{array}{ll}
F_{c}(p) \equiv \mathcal{F}_{c}[f]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos p x d x, & f(x)=\mathcal{F}_{c}^{-1}\left[F_{c}\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{c}(p) \cos p x d p \\
F_{s}(p) \equiv \mathcal{F}_{s}[f]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin p x d x, & f(x)=\mathcal{F}_{s}^{-1}\left[F_{s}\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{s}(p) \sin p x d p \tag{4}
\end{array}
$$

Examples

1. Consider Laplace's equation $u_{x x}+u_{y y}=0$ in the half-plane, $-\infty<x<\infty, 0 \leq y<\infty$, for $u(x, y)$ with the boundary condition $u(x, 0)=f(x)$.
[This problem describes the steady-state temperature distribution in a large (semi-infinite!) room heated by a wall whose temperature is fixed in time but may change along the wall.]
(a) Consider the Fourier transform $U(p, y)=\mathcal{F}[u]$ with respect to x, and express $\mathcal{F}\left[u_{y y}\right]$ and $\mathcal{F}\left[u_{x x}\right]$ in terms of $U(p, y)$. Assume that $u(x, y), u_{x}(x, y) \rightarrow 0$ for $x \rightarrow \pm \infty$.
(b) Fourier-transform Laplace's equation with respect to x, and determine $U(p, y)$ using the boundary condition. By performing the inverse Fourier transform, show that

$$
\begin{equation*}
u(x, y)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi) d \xi}{y^{2}+(\xi-x)^{2}} \tag{5}
\end{equation*}
$$

(c) Using (5), find $u(x, y)$ if $f(x)=T$ for $-a \leq x \leq a$, and 0 outside this segment. Give this result a geometric interpretation.
2. Consider the heat equation $u_{t}-u_{x x}=0$ (where $K=1$) for a semi-infinite rod, $0 \leq x<\infty$, with the initial condition $u(x, 0)=0$ and boundary condition $u_{x}(0, t)=-\sigma$ (steady heat flux into the rod). Using the cosine Fourier transform with respect to $x, U_{c}(p, t)=\mathcal{F}_{c}[u]$, show that

$$
u(x, t)=\frac{2 \sigma}{\pi} \int_{0}^{\infty} \frac{1-e^{-p^{2} t}}{p^{2}} \cos p x d p
$$

Homework problems

1. For $u(x, y)$ defined on $0 \leq x<\infty$, with the cosine Fourier $\operatorname{transform} U_{c}(p, y)$ with respect to x, prove that

$$
\mathcal{F}_{c}\left[u_{y y}\right]=\frac{\partial^{2} U_{c}(p, y)}{\partial y^{2}}, \quad \text { and } \quad \mathcal{F}_{c}\left[u_{x x}\right]=-\sqrt{\frac{2}{\pi}} u_{x}(0, y)-p^{2} U_{c}(p, y)
$$

[Hint: in the latter, use integration by parts twice.]
2. Consider Laplace's equation $u_{x x}+u_{y y}=0$ in the quadrant, $0 \leq x<\infty, 0 \leq y<\infty$, with the boundary conditions $u_{x}(0, y)=0$ and

$$
u(x, 0)=\left\{\begin{array}{cl}
T, & 0 \leq x \leq a \\
0, & a<x<\infty
\end{array}\right.
$$

(a) Using the results of Q. 1, perform the cosine Fourier transform of Laplace's equation with respect to x, and take into account the boundary conditions to show that

$$
\begin{equation*}
U_{c}(p, y)=T \sqrt{\frac{2}{\pi}} \frac{\sin p a}{p} e^{-p y} \tag{6}
\end{equation*}
$$

(b) Use the inverse cosine Fourier transform [second equation in (3)], and integrate over p to show that

$$
u(x, y)=\frac{T}{\pi}\left[\arctan \frac{a+x}{y}+\arctan \frac{a-x}{y}\right] .
$$

Hints: $\quad \sin p a \cos p x=\frac{1}{2}[\sin (a+x) p+\sin (a-x) p], \quad \int_{0}^{\infty} \frac{\sin \alpha p}{p} e^{-\beta p} d p=\arctan \frac{\alpha}{\beta}$.
3. Consider the heat equation $u_{t}-u_{x x}=0$ for a semi-infinite rod, $0 \leq x<\infty$, with the initial condition $u(x, 0)=0$ and boundary condition $u(0, t)=T$ (end of the rod has a fixed temperature).
(a) Using the sine Fourier transform with respect to $x, U_{s}(p, t)=\mathcal{F}_{s}[u]$, prove that

$$
\mathcal{F}_{s}\left[u_{t}\right]=\frac{\partial U_{s}(p, t)}{\partial t}, \quad \text { and } \quad \mathcal{F}_{s}\left[u_{x x}\right]=\sqrt{\frac{2}{\pi}} u(0, t) p-p^{2} U_{s}(p, t) .
$$

(b) By applying the sine Fourier transform to the heat equation, show that

$$
\begin{equation*}
\frac{\partial U_{s}(p, t)}{\partial t}+p^{2} U_{s}(p, t)-\sqrt{\frac{2}{\pi}} T p=0 . \tag{7}
\end{equation*}
$$

(c) Solve the differential equation for $U_{s}(p, t)$ with the appropriate initial condition, and use the inverse sine Fourier transform, second equation in (4), to show that

$$
\begin{equation*}
u(x, t)=\frac{2 T}{\pi} \int_{0}^{\infty} \frac{1-e^{-p^{2} t}}{p} \sin p x d p \tag{8}
\end{equation*}
$$

4. Solve problem 3 for an arbitrary time-dependent boundary condition, $u(0, t)=f(t)$.

Hints: instead of equation (7), you should obtain

$$
\frac{\partial U_{s}(p, t)}{\partial t}+p^{2} U_{s}(p, t)-\sqrt{\frac{2}{\pi}} f(t) p=0 .
$$

Solve this first-order linear inhomogeneous differential equation by standard methods, to show that

$$
U_{s}(p, t)=\sqrt{\frac{2}{\pi}} p e^{-p^{2} t} \int_{0}^{t} e^{p^{2} \tau} f(\tau) d \tau
$$

Substitute $U_{s}(p, t)$ into the inverse sine Fourier transform equation, and integrate over p with the help of $\int_{0}^{\infty} e^{-\alpha p^{2}} p \sin \beta p d p=\sqrt{\pi} e^{-\beta^{2} / 4 \alpha} \frac{\beta}{4 \alpha^{3 / 2}}$. In the remaining integral over τ, introduce new variable $s=x /(2 \sqrt{t-\tau})$, and replace the integration limits accordingly, to obtain

$$
\begin{equation*}
u(x, t)=\frac{2}{\sqrt{\pi}} \int_{x /(2 \sqrt{t})}^{\infty} f\left(t-\frac{x^{2}}{4 s^{2}}\right) e^{-s^{2}} d s . \tag{9}
\end{equation*}
$$

Show that for $f(t)=T$, Eq. (9) gives $u(x, t)=T\left[1-\operatorname{erf}\left(\frac{x}{2 \sqrt{t}}\right)\right]$, where $\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^{2}} d s$ is the error function, for which $\lim _{z \rightarrow \infty} \operatorname{erf}(z)=1$. This provides the answer to integral (8).

