
Computer Physics Communications 250 (2020) 107112

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

CPC 50th anniversary article

BSHF: A program to solve the Hartree–Fock equations for arbitrary
central potentials using a B-spline basis
D.T. Waide, D.G. Green ∗, G.F. Gribakin
Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University Belfast,
Belfast, BT7 1NN, Northern Ireland, United Kingdom

a r t i c l e i n f o

Article history:
Received 12 August 2019
Received in revised form 29November 2019
Accepted 2 December 2019
Available online 18 December 2019

Keywords:
Hartree–Fock
B-spline basis
Atomic structure
Arbitrary central potentials

a b s t r a c t

BSHF solves the Hartree–Fock equations in a B-spline basis for atoms, negatively charged ions, and
systems of N electrons in arbitrary central potentials. In the B-spline basis the Hartree–Fock integro-
differential equations are reduced to a computationally simpler eigenvalue problem. As well as solving
this for the ground-state electronic structure self-consistently, the program can calculate discrete
and/or continuum excited states of an additional electron or positron in the field of the frozen-target
N-electron ground state. It thus provides an effectively complete orthonormal basis that can be used
for higher-order many-body theory calculations. Robust and efficient convergence in the self-consistent
iterations is achieved by a number of strategies, including by gradually increasing the strength of the
electron–electron interaction by scaling the electron charge from a reduced value to its true value. The
functionality and operation of the program is described in a tutorial style example.
Program summary
Program Title: BSHF
Program Files doi: http://dx.doi.org/10.17632/fj3y6c58dy.1
Code Ocean Capsule: https://doi.org/10.24433/CO.1226817.v2
Licensing provisions: GPLv3
Programming language: Fortran 90.
External routines/libraries: LAPACK.
Nature of problem: Self-consistent solution of electronic structure for atoms and electrons in arbitrary
central potentials in the Hartree–Fock approximation.
Solution method: A B-spline basis is employed that transforms the Hartree–Fock integro-differential
equations to a computationally simpler eigenvalue problem. The eigenvalue problem is solved itera-
tively until self-consistency is achieved.
Unusual or notable features:
1. Robust and efficient convergence in the self-consistent iterations is achieved by gradually increasing
the value of the electron charge from a reduced value to its true value, i.e., increasing the strength
of the electron–electron interaction. In this way all orbitals are calculated simultaneously at every
iteration of the self-consistency loop, i.e., without the need to successively fill the occupied shells
from the core to valence (as most other Hartree–Fock codes require for convergence).
2. In addition to atoms and negative ions, the program solves the Hartree–Fock equations for systems
of N electrons confined in an arbitrary central potential specified by the user: thus the program can
be used to e.g., calculate the structure of electrons confined in harmonic potentials, which are known
to approximate the electron gas.
3. In addition to calculating the ground state of the N-electron system, the program calculates
the discrete and/or continuum excited states for an additional electron or positron in the field of
the ‘frozen’ N-electron target. It thus provides an orthonormal basis that can be used as input for
many-body theory calculations.
Restrictions: The program solves non-relativistic Hartree–Fock equations for spherically symmetric
systems only (in modelling systems other than atoms, e.g., harmonically confined electron gas or
jellium-type models of clusters, relativistic effects can often be negligible and a non-relativistic
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treatment is perfectly suitable). For open-shell atoms the central-field approximation is used, i.e., the
potential is angularly averaged.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The ability to calculate accurate electronic structure of many-
electron systems is essential to much of theoretical atomic,
molecular and optical physics and related fields. A multitude of
properties and processes involving many-electron atoms rely on
the knowledge of the atomic structure, at least as a starting point.
Examples include, but are not limited to, calculations of polaris-
abilities and dispersion coefficients for atoms and molecules [1],
leptonic interactions with atoms [2–5], generating atomic data
for astrophysics (see e.g., [6]), and atomic physics tests of funda-
mental symmetries, e.g., parity violating studies, searches of the
variation of fundamental constants, and atomic interactions with
cosmic fields [7]. The general N-electron problem is, however,
intractable. A favoured starting point for approximations is the
independent-particle approximation, and more specifically the
Hartree–Fock (HF) approximation (described in detail below). The
HF equations can be sufficient for simple problems, but they also
provide an efficient basis from which higher-order calculations
can be performed, e.g., many-body theory calculations.

Programs for solution of the HF equations have been in devel-
opment since this problem became computationally feasible in
the 1960s, driven by pioneering efforts by Frose–Fischer, Brage,
Johnsson, Hibbert and others in HF and post-HF methods such
as Multi-Configuration Hartree–Fock and Configuration Inter-
action [8–11]. Notable codes specifically designed for atomic
structure HF include the radial-grid based solver of [12], but to
our knowledge there is only one generally available code that
solves the HF equations in a B-spline basis [13] (we note that
programs that solve the Dirac–Fock equations have also been
published [14]). Solution of the problem in a B-spline basis in
particular is desired as the resulting states efficiently span the
energy continuum and provide rapid convergence in sums over
intermediate states involving energy denominators in many-body
calculations.

This Computer Programs in Physics paper presents the pro-
gram ‘BSHF: a program to solve the Hartree–Fock equations for
arbitrary central potentials using a B-spline basis’. It solves the
non-relativistic Hartree–Fock equations for arbitrary central po-
tentials in a B-spline basis, not just Coulomb potentials. The
additional ability to solve the HF equations for arbitrary poten-
tials is useful e.g., as recent studies have shown that a finite
number of electrons and positrons confined in harmonic poten-
tials can approximate the electron gas [15], opening the way
for finite-system many-body calculations. Moreover, our BSHF
program employs a convergence strategy that relies on gradu-
ally increasing the strength of the electron–electron interaction
from a weakened value to is true value, doing so by gradually
scaling the value of elementary charge from below unity to unity
(we work in atomic units throughout). For atoms, this approach
enables all orbitals to be calculated at every iteration of the self-
consistent procedure (rather than having to build up the orbitals),
and in all cases results in robust and efficient even convergence,
even for negative ions that otherwise struggle to converge. For
electrons confined in harmonic potentials, we found that tradi-
tional convergence methods failed, and convergence could only
be achieved through this scaling of the charge. Comparison of
the results for neutral atoms using typical spline parameters we
have found that BSHF gives ground-state energies with a relative

accuracy of ∼ 10−8 with respect to tabulated HF benchmark
values [16]. This paper presents the source code, focusing on a
presentation of its functionality and operation via a tutorial-style
example.

1.1. The radial Hartree–Fock equations

In the Hartree–Fock approximation [17,18], the total wave-
function of an N-electron system of energy E is approximated
as a Slater determinant (sum of Slater determinants in gen-
eral) that is an antisymmetrised product of N single-electron
spin orbitals φαj (xj), viz. ΨE(x1, . . . , xN ) =

√
N! Â

∏N
j φαj (xj),

where Â is the antisymmetrisation operator, αj represents a com-
plete set of quantum numbers describing the jth orbital, and
xj = (r, σ ) represents coordinates of position and spin. Min-
imising the expectation value of the Hamiltonian through the
variation of the φα [17,18], or in the diagrammatic approach
summing a certain class of diagrams [19,20], yields the system
of N integro-differential equations, the Hartree–Fock equations(

−
1
2
∇

2
+ V (r) + V̂HF

)
φj(xj) = εjφj(xj). (1)

Here the first term in the bracket is the kinetic energy op-
erator. The second term is a local central potential V (r), which
for an atom with atomic number Z is V (r) = −Z/ri, but in
the BSHF program can also be chosen alternatively to be an
arbitrary central potential (e.g., a harmonic confining poten-
tial, a system of electrons in which has been shown to ap-
proximate the electron gas [15]). The Hartree–Fock potential
V̂HF

=
∑N

i=1

(
Ĵi − K̂i

)
is a sum of the direct and (non-local) ex-

change terms Ĵiφj(xj) =
∫
dxi φ∗

i (xi)rij
−1φi(xi)φj(xj) and K̂iφj(xj) =∫

dxi φ∗

i (xi)rij
−1φj(xi)φi(xj), where rij = |ri − rj|. Eq. (1) demands

a self-consistent solution due to the interdependency of the
Coulomb mean field potential VHF and the electron orbitals φ.

For closed-shell central-field problems φnlmσ = r−1Pnl(r)
Ylm(θ, φ)χσ , where Pnl is the radial wavefunction and Ylm is a
spherical harmonic with principal quantum number n and or-
bital angular momentum l and its projection m, and χσ is the
(two-component) spinor, Eq. (1) leads to the radial Hartree–Fock
equations,1(

−
1
2

d2

dr2
+ Vi(r) + Ûi

)
Pi(r) = EiPi(r), (2)

where i now enumerates the orbitals nl. Here Vi(r) is the local,
direct (‘Hartree’) potential, representing the interaction between
a single particle and the average field of the other particles

Vi(r) = V (r) +
Yi(r)
r

+
li(li + 1)

2r2
, (3)

where

Yi(r) =

s∑
j=1

(
Ni − δij

)
Y 0
jj (r) −

2
Ni

s∑
j=1

∑
λ>0

γ ′

λ(j)Y
λ
jj (r), (4)

1 Eq. (2) may also be used for open-shell electronic configurations. In this
case the solution is a further approximation where the wavefunctions have been
spherically averaged. In the case of the ground state for open-shell neutral atoms
this difference is relatively small since the variation from the ideal case arises
due to only one incomplete subshell. BSHF handles open-shell atoms under this
approximation.
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Y λ
ij (r) = r

∫
∞

0

rλ
<

rλ+1
>

Pi(r ′)Pj(r ′)dr ′. (5)

Here r< (r>) is the lesser (greater) of the radial variables r , r ′,
and λ is the angular momentum transferred by the Coulomb
interaction, in accordance with the triangle rule, |li − lj| ≤ λ ≤

li + lj, where li is the orbital angular momentum of the ith orbital,
and γ ′

λ(j) are angular momentum coupling coefficients [21]. The
potential

ÛiPi(r) ≡

∫
∞

0
Ui(r, r ′)Pi(r ′)dr ′, (6)

where Ui(r, r ′) is the non-local exchange kernel (Fock term),
which is the interaction between two particles from the exchange
of their coordinates:

Ui(r, r ′) =
1
Ni

s∑
j=1,j̸=i

∑
λ

γλ(i, j)
rλ
<

rλ+1
>

Pj(r)Pj(r ′) . (7)

Here, Ni is the number of electrons in the ith orbital and j
sums over all pairs of distinct electron orbitals, where there are
s ground-state orbitals in the system, and γλ(i, j) are angular
momentum coupling coefficients [21].

In the case of an additional electron or positron in the frozen-
core of an s orbital system the wavefunction of the additional
particle, labelled s + 1, is(

−
1
2

d2

dr2
+ Vs+1(r) + Ûs+1

)
Ps+1(r) = Es+1Ps+1(r). (8)

1.2. Radial Hartree–Fock equation in a B-spline basis

BSHF solves the Hartree–Fock equations in a B-spline basis
[22]. The broad utility of B-splines in atomic physics has been re-
viewed in [23,24]. B-splines of order ks are piecewise polynomials
of degree ks − 1 defined over a restricted domain (‘box’) that is
divided into ns −ks +1 segments by a knot sequence of ns points:
ri ∈ [0, R], where ns is the number of non-zero splines in the
basis [22]. (See Fig. 1 panel (a) for an example set of splines.) In
BSHF two choices for the knot sequence are coded. The first is the
exponential knot sequence

rj =

⎧⎪⎨⎪⎩
0, for 1 ≤ j ≤ ks,

ρ0(eσj − 1), for ks ≤ j ≤ ns + 1,

R, for ≤ ns + 1j ≤ ns + ks,
(9)

where typically ρ0 = 10−3 and σ is determined by the condition
that rns−ks+1 = R (see [3] for more details). The second is the
quadratic-linear knot sequence

rj =

⎧⎪⎨⎪⎩
0, for 1 ≤ j ≤ ks,

A(j − ks)m+1R/(Bm
+ (j − ks)m), for ks ≤ j ≤ ns + 1,

R, for ≤ ns + 1j ≤ ns + ks,

(10)

where A = [Bm
+ (ns + 1 − ks)m]/(ns + 1 − ks)m+1 and B is a

parameter (typically B = 100) (see [25] for more details). Both
simultaneously provide an accurate representation of the atomic
ground-state orbitals and provide positive-energy electron and
positron states that efficiently span the energy continuum (see
[3,25] for details of their relative merits and for the circumstances
under which one knot sequence may be preferred).

Expanding the single-particle HF orbital of angular momentum
l in the B-spline basis as

Pnl(r) =

∑
i

c(nl)i Bi,ks (r), (11)

Fig. 1. (a) the set of 40 B-splines of order 6 defined on an exponential knot
sequence with box radius 30 a.u. (b) An example: the calculated Ne 2s radial
wavefunction (thick black line) and its decomposition in the spline basis (thin
lines) as in Eq. (11). (c) Eigenvalues ε(l) of the HF equation in the B-spline basis
Eq. (12) for angular momenta l = 0 (lowest energies) to 15 (highest energies)
for Ne. The energies efficiently span the positive-energy continuum.

where c(nl)i are the expansion coefficients and Bi is the ith spline
of the basis, the set of s integrodifferential Hartree–Fock
equations is reduced to a computationally simpler symmetric
generalised eigenvalue equation for a specific angular momen-
tum l,

H (l)c(l) = ε(l)Bc(l), (12)
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Fig. 2. Schematic of the BSHF algorithm. The hydrogenic case is used as an ansatz and the solution is iteratively refined until the error in the energies and
wavefunctions is sufficiently small.

where

H (l)
ij =

∫ R

0
dr

{
1
2
dBi

dr
dBj

dr

+ Bi(r)
(
V (r) +

l(l + 1)
2r2

+ VHF(r)
)
Bj(r)

}
, (13)

H (l)
ij ≡ ⟨Bi|H

(l)
0 |Bj⟩ is the matrix element of the radial part of the HF

Hamiltonian for each angular momentum l [23], and Bij ≡ ⟨Bi|Bj⟩.
Note that to implement the boundary conditions P(0) = P(R) = 0
the first and last splines are discarded in the expansions. Thus, the
solutions of the equation (e.g. see Fig. 1(b)) for a given angular
momentum are a set of ns − 2 orthogonal eigenfunctions and
the matrices H (l) and B consist of (ns − 2)(ns − 2) elements. For
the electron, the lowest energy states from this set correspond
directly to the ground-state wave functions, and the remaining
(ns − 2) − s states of the set describe an additional electron
propagating in the HF field of the ‘frozen’ ground-state N-electron
target system (consider solution of Eq. (8), where the N-electron
target is frozen). For an additional positron all states are positive-
energy continuum states that describe the positron propagating
in the HF field of the ground-state N-electron target system.
Thus BSHF has the capability to provide an orthonormal2 basis
for higher-order calculations that include electron and positron
correlations, e.g., through many-body theory, where the fact that
B-splines efficiently span the positive energy continuum (see
Fig. 1(c)) makes them particularly useful due to the rapid con-
vergence of sums over intermediate states that contain energy
denominators [2–5,20,26].

2. BSHF algorithm

2.1. Overview of the BSHF algorithm

Fig. 2 shows a schematic of the BSHF algorithm. The program
initiates the self-consistent solution of Eq. (12) by first solving

2 The diagonalisation routine called in the program returns orthogonal states
for a given l. The ground state wavefunctions are normalised as

∫
∞

0 |Pi(r)|2 dr =

1, whereas the excited state wavefunctions are not normalised.

for the non-interacting electron case, i.e., VHF = 0 in Eq. (13). The
resultant orbitals are used to build the Hartree–Fock Hamiltonian
matrix Eq. (13), and Eq. (12) is solved repeatedly, initially only for
values of orbital angular momentum represented by the occupied
orbitals, until the difference in successive approximations of the
wavefunction and energy for all orbitals ηi < ε, where ε is a
user-specified threshold (typically 10−6 ), and

ηi = max
(⏐⏐⏐P (m)

i (r) − P (m+1)
i (r)

⏐⏐⏐ , ⏐⏐⏐E(m)
i − E(m+1)

i

⏐⏐⏐) . (14)

Typically, in the atomic case the orbital energies will converge
much faster than the wavefunction. However, for an arbitrary
central potential, which BSHF includes the capability of consider-
ing, the scales of the energies and wavefunctions may be differ-
ent. This criterion ensures that both have converged, regardless
of the nature of their interdependence.

Robust and efficient convergence in the self-consistent itera-
tions is achieved by two main strategies. First, gradually increas-
ing the value of the electron charge from a reduced value to its
true value. The value of elementary charge is initially chosen to
be smaller than unity so that the effect of the electron–electron
interaction on the solution to the HF equations is weakened.
Once the solutions are self-consistent, then the strength of the
elementary charge is increased towards unity according to

em = 1 −
1
2
ems , m = 1, . . . ,mmax (15)

where mmax then is the number of increments to take before
setting the charge to unity (typically mmax = 10), and iterating
further until self-consistency is reached. In this way all the oc-
cupied orbitals are calculated simultaneously at every iteration
of the self-consistency loop, i.e., without the need to successively
fill the occupied shells from the core to valence as most other
Hartree–Fock codes do. We found that for calculations of elec-
trons in harmonic potentials (and in some cases negative ions)
‘traditional’ convergence approaches failed, and this procedure
was essential. Secondly, convergence can be accelerated by de-
termining the new estimates of the wavefunctions and energies



D.T. Waide, D.G. Green and G.F. Gribakin / Computer Physics Communications 250 (2020) 107112 5

at step m as a linear combination of their values at the current
iteration and the previous one, viz.

P ′(m)
i (r) = (1 − α)P (m)

i (r) + αP (m−1)
i (r), (16)

where, following [21],

α =
E(m)
i − E(m−1)

i

E(m)
i − 2E(m−1)

i + E(m−2)
i

. (17)

Finally, once the solutions of the occupied orbitals are self-
consistent to tolerance ε then one further iteration is performed,
finding the states of the additional electron or positron in the field
of the frozen-core (i.e., ground state orbitals are invariant) for all
angular momenta required as specified by the user.

To demonstrate, Fig. 3(a) shows the convergence of the energy
levels of both Ne and the negatively charged ion F− using ns = 40,
ks = 6, and R = 40 a.u., (b) for a system of N-electrons in a
harmonic potential V (r) = ωr2/2 with ω = 1.0, and (c) the
number of iterations required to obtain converged calculations
for the noble gas atoms at a tolerance value of ε = 10−6 and
10−12 [see Eq. (14)]. As the aim of this paper is to introduce and
explain the operation of the code, the reader is referred to [27]
for comprehensive benchmarks for both the noble-gas atoms for
which comparisons with experiment are made, and for systems
of N-electrons (N ranging from 2 to 106) in harmonically con-
fined potentials (of interest as an approximation to the electron
gas [15]) for which comparisons with the Thomas–Fermi method
are made. Briefly, comparison of the results for neutral atoms
using 40 non-zero splines of order 6 shows that the ground-
state energies have a relative accuracy of ∼ 10−8 with respect
to tabulated HF benchmark values [16].

2.2. Calculation of integrals

The wavefunctions are principally stored as an array of the ns
B-spline coefficients c(l)i for each distinct orbital angular momen-
tum l Eq. (11). This is sufficient for solving the exchange integrals,
whose calculation is described in Section 2.2.2. For the calculation
of the direct potential and also for post-processing purposes, it is
instructive to also determine the wavefunctions on radial grids as
discussed below.

2.2.1. Direct potential integrals
The contribution of the direct part of the two-body potential is

calculated by recasting it as a system of two ordinary differential
equations that divide the domain of the potential into two regions
separated by a cusp at r = r ′. These are solved via the three-point
Adams–Moulton method, following [12,21] (where full details of
the method are given). This requires an equally spaced grid but
due to a singularity in the potential at r = 0 we introduce
a coordinate grid ρ = αr + β ln r , to allow for more points
close to the singularity (where α and β are constants evaluated
by the program). The resulting solution is then quadratically
interpolated onto the exponential grid on which the B-splines are
defined, before being projected onto the spline basis to create the
elements of the direct potential matrix.

The main advantage of this technique is that the computa-
tional resources required scale linearly in the total number of
radial points, rather than quadratically as would be the case for
a direct calculation of the two-body Coulomb integral. Moreover,
this procedure accurately handles the cusp at r = r ′ which is
especially prominent when the angular momenta transferred is
large.

Fig. 3. (a) Energy levels of Ne (grey) and F− (coloured) at each iteration of
the self-consistent procedure. Note the sharp drop in the energy when the
elementary charge is increased. Between these drops the charge is constant and
the energy reaches a self consistency specified by the parameter step_eps.
The parameters used were ns = 40, ks = 6, r0 = 0.001, and R = 30. (b) Energy
levels for a system of N-electrons in a harmonic potential ω = 1.0 at each
iteration of the self-consistent procedure. (c) Number of iterations required to
obtain converged energies for all orbitals for the noble gases He to Rn to the
user specified thresholds ε = 10−6 and 10−12 [see Eq. (14)] with mmax = 10.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

2.2.2. Exchange potential integrals
The majority of the computational time is taken by the cal-

culation of the non-local potential Eq. (7). In the B-spline basis
its calculation can be divided into a sum of basis coefficients
and an integral over groups of B-splines. Given a polynomial of
order 2ks − 1 then a grid of ks Gauss–Legendre points over the
domain of the function allows exact integration [28]. Thus the
integral over products of B-splines (each a polynomial of order
ks) is independent of any particular wavefunction and may be
pre-calculated exactly and stored in a file for reuse.
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Inserting Eqs. (7) and (11) into Eq. (6), projecting onto the
B-spline basis and using Gauss–Legendre quadrature with
weights w(·) where · is an index into an array of radial abscissae,
we find the exchange part of H (l)

ij [Eq. (13)] as

U (l)
ij =

1
2

s∑
b=1

∑
λ

Nb

(
l λ lb
0 0 0

)2 ∑
i′j′

c(b)i′ c(b)j′ B(λ)
iji′j′ , (18)

where b denotes the set of quantum numbers of an orbital and
B are the precalculated terms in the exchange integrals, defined
by

B(λ)
iji′j′ =

∑
x,y

rλ
<

rλ+1
>

w(x)w(y)Bi(x)Bj(x)Bi′ (y)Bj′ (y), (19)

where x and y enumerate the quadrature points, r< = min{r(x),
r(y)}, r> = max{r(x), r(y)}, and r(x) and r(y) are the corre-
sponding values of the radius. Naively it would take λmax · ns

4

matrix elements, where λmax is the greatest value of coupled
angular momentum necessary, memory entries but by exploiting
symmetry and properties of the splines only λmax · ns

2(2ks − 1)2
are required in practice.

3. BSHF compilation, code structure, input, execution and out-
put

3.1. Compilation

BSHF is written in the programming language Fortran 90. It
was developed and tested on an x86_64 Linux Beowulf cluster
using the Intel compiler ifort c⃝v19. The matrix diagonalisation
routines require compiler linkage to the Intel MKL library, or
alternatively LAPACK if using gfortran. Compilation of the code is
facilitated via a Makefile located in directory ‘BSHF/’. The Make-
file assumes either an Intel Fortran compiler or the gfortran com-
piler on a computer with either x86_64 or i386 architecture:
the user should modify the specified architecture or compiler
Makefile variables if alternatives are to be used. To compile the
program, simply navigate to the ‘BSHF/’ directory and type ‘make
clean; make BSHF’. A directory will be created named according
to the machine architecture, e.g. ‘BSHF/x86_64/’, in which all
the object files and the compiled binary ‘BSHF’ are generated.

3.2. Code structure

The program is driven by the main routine ./src/schf.f90
which reads in the input, generates the splines and radial grid,
and manages the self-consistency loop via calls to subroutines.
Whilst the user is free to modify and subroutine, three sections
of the code are designed specifically to be easily modified by
the user. The first is the ability to specify a customised central
potential. The code provides a function custom_potential() in
the file ./src/mod_potential which may be straightforwardly
modified to include any user defined background potential, other
than the Coulomb potential provided. The namelist definition
in this file also allows easy specification of related input pa-
rameters from the main configuration file. These new entries
should then be listed in the main configuration file under the
potential_parameters heading. The second is the ability to
define a customised B-spline knot sequence, as the user may wish
to explore problems for which tailored knot sequences may be
more suited than either of the exponential and quadratic knot
sequences that the code provides (these knot sequences have
been described above). The knot sequence used is defined by
the getknots subroutine in the file ./src/mod_splines.f90.
This subroutine returns a real-valued ordered list of the knot

points and can be replaced by any sequence desired by the user.
Thirdly, all the data output to file is specified in subroutines
in ./src/mod_bshf_output.f90. These files are described in
detail below and further in the README file supplied with the
code. All the files are formatted, human-readable output defined
in a separate subroutine for each file.

3.3. Input configuration

The BSHF program reads a single input file ‘bsplinefin.ini’
by default, which contains the input data values as a Fortran
namelist. Example input files have been provided in the
‘BSHF/ini’ directory, including for atoms and for electrons in a
harmonic potential. Here we consider the example of Ne, using
a basis of 40 splines of order 6 defined on an exponential knot
sequence with box radius 30 a.u. The various namelist variables
(grouped by which properties they control) are thus set as follows
(note that the initial numbers are for reference in this text only,
and the order of the parameters in the namelist file is irrelevant):

A. parameters that specify the B-spline basis (see Section 1.2)

1. n_s = 40
2. k_s = 6
3. r = 30.d0
4. knotseq = 0
5. ro = 0.001
6. mpowr = 1
7. bcons = 100.d0

which specify respectively: 1. the number of splines ns in the
basis; 2. the order of splines ks, 3. the radius (in a.u.) of the
bounding ‘box’ in which the atom is placed at the centre; 4. the
choice of knot sequence (set knotseq = 0 for exponential knot
sequence or knotseq = 1 for quadratic-linear); 5. the value
of the constant used for the exponential knot sequence ρ [see
Eq. (9)] (used only if knotseq = 0); 6. the value of the power m
for the quadratic linear knot sequence [see Eq. (10)] (used only
if knotseq=0); 7. the value of B for the quadratic-linear knot
sequence [see Eq. (10)] (used only if knotseq = 0).

B. parameters related to integration

8. np = 15
9. numax = 15

10. ltot_max = 25
11. intfilename = "n40k6.dat"

which specify: 8. the number of points for Gauss–Legendre in-
tegration (see Section 2.2); 9. the number of points between
knot-points on the exponential grid (see Section 2.2); 10. the
maximum combined value of angular momentum for which to
pre-calculate the integral part of each matrix element; 11. the
name of the file to which the pre-calculated integral data is stored
(see Section 2.2).

C. parameters that specify the system properties

12. z = 10
13. is = 3
14. npq = 1,2,2
15. lorb =0,0,1
16. nel = 2,2,6
17. potential = "coulomb"
18. omega = 1.0

which specify: 12. the atomic number of the atom or ion (if
the system is atomic-like); 13. the number of occupied orbitals;
14–16. the orbital principal quantum number (npq), angular mo-
mentum lorb and occupation nel of orbital Pnl; 17. nature of
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the central potential. Arbitrary functions can be used via a native
Fortran function or using values on a grid read in from a file: set to
"coulomb", "harmonic", "function" or "file"; 18. the angular
frequency of a harmonic potential U = 1/2ωr2, if selected using
"potential=harmonic".

D. parameters controlling self-consistency

19. scf_eps = 1.0d-12
20. max_iter = 1000
21. step_eps = 1.0d0
22. e_s = 0.5
23. m_max = 10
24. do_mixing = .false.

which specify, respectively: 19. the maximum discordance ε be-
low which the self-consistent procedure will be deemed to have
converged [see Eq. (14)]; 20. the maximum number of iterations
in the self-consistent loop; 21. the value of ε used while e < 1;
22. initial value of the elementary charge, calculated by em =

1 − ems /2 [see Eq. (15)]; 23. the number of values to take for e
before setting it to unity; 24. logical variable switch to turn the
orbital mixing on (.true.) or off (.false.).

E. parameters that control calculation for additional particle in field
of frozen-core N-electron ground state

25. ich = 0
26. lmax = 20

which specify respectively the charge of the excited particle (ich
= 0 if electron or ich = 1 if positron), and the maximum angular
momentum l for which to calculate the wavefunctions Pnl for the
additional particle in the field of the frozen N-electron ground
state.

F. parameters that control output

27. iprntlv= 0
28. ksave = 10
29. outfile = "Ne.wf"

which specify: 27. the verbosity level of the output, 28. the
unit number of additional scratch output for diagnostic level
information, 29. the name of the output file (described below).

3.4. Execution of the program

The program can be executed with the command ‘./x86
64/BSHF’ if using the default bsplinefin.ini input file or
‘./x86 64/BSHF -c filename.ini’ if using a user-named
input file.

As discussed in Section 2.2 integrals involving the spline pa-
rameters only are be pre-calculated before the self-consistent
solution of the HF equations for a given system. This integral
data is written to the file ‘intfilename’ named by the user
in the bsplinefin.ini input file. Computation of these inte-
grals happens automatically if ‘intfilename’ does not exist. If
it does exist, then the integrals are not re-computed, and instead
‘intfilename’ is read (the parameters used to generate it are
checked against their current values in the namelist file, and an
error is reported if these differ). One can also generate the pre-
computed integral data file only, i.e., without continuing with
the self-consistent calculation. This can be useful if one wishes
to run BSHF for many systems with the same spline parameters
without having to compute the integral data each time. To do
this, one should first ensure that the parameters ‘ro’, ‘r’, ‘n_s’,
‘k_s’, ‘lmax_tot’, and ‘intfilename’ are set correctly in the
input file (bsplinefin.ini by default). Then, assuming the
input file is in the ‘BSHF/’ directory, type ‘./x86_64/BSHF -p’

if using the default bsplinefin.ini file, or ‘./x86_64/BSHF
-p -c filename.ini’ if using a user-named input file. Once the
integrals have been computed and saved to disk, the program
can again be executed with the command ‘./x86_64/BSHF’ if
using the default bsplinefin.ini file or ‘./x86_64/BSHF -
c filename.ini’ if using a user-named input file. There are a
number of additional available execution options, e.g., specifying:
‘./BSHF -f’ will write extra files to disk containing knots, splines,
energies; and ‘./BSHF -e’ will make the code print excited state
energies to screen etc. More details are given in the README.md
file.

3.5. BSHF output

3.5.1. Output to screen
At each step of the self-consistent cycle the program prints the

iteration number, the current value of en, the calculated value of
ηi for orbital i, and the energy for each of the occupied orbitals
i, e.g., for our example, at iteration step number 54 the following
output is given:

en = 1.0
iter η nl εnl
54 9.41E−14 1s −3.27724E+01

3.06E−13 2s −1.93039E+00
7.64E−13 2p −8.50414E−01

Once convergence has been achieved the contributions to the
total energy of the N-electron system, calculated as

Etot =

s∑
i=1

Ni

[
εi −

1
2

ns∑
a,b

c(i)a c(i)b Uab

]
, (20)

where Uab is an element of the two-body potential matrix, are
given

e_kin = 1.285470940071851942E+02
e_pot1 = −3.111331610437827635E+02
e_pot2 = 5.40389499426360089E+01
e_tot_gen = −1.285471170939615604E+02
e_tot_gen / e_kin = −1.0000001795978084E+00

where the lines are the kinetic energy, the potential energy due
to the local potential U(r), the potential energy due to, the total
energy and the ratio of the total energy to the kinetic energy.

3.5.2. Main output file
The program generates a single output file by default, whose

name is specified in the input namelist (‘Ne.wf’ in our example.
The first line of this file lists n_s (the number of splines), k_s (the
spline order), Z (atomic number, or value of omega if harmonic
potential is used), np (the number of Gauss–Legendre points
used), lmax (the maximum angular momenta for which the eigen-
value problem was solved). The second line lists the ns + ks radial
knot points, the npt = (ns + ks) ∗ np radial grid points resulting
from interlacing the spline grid with the Gauss–Legendre points,
and the corresponding npt Gauss–Legendre weights. The third
record is a list of the value of the ns B-splines (Bj(ri), j = 1, ns), i =

1, npt at the npt grid points ri. The fourth record lists the oc-
cupation numbers and angular momenta of all occupied orbitals.
The subsequent lno+1 lines, where lno is the orbital angular
momentum for which Eq. (12) is solved, list the ns−2 eigenvalues
and elements of the eigenvectors as (en(j,lno+1),j=1,n2)
,((eiv(l,j,lno+1),l=1,n2),j=1,n2).
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3.5.3. Additional output files
Using the option ‘-f’ also outputs a series of diagnostic files

with the same base name as ‘outfile’ but different extensions.
These files are all formatted, i.e. plain text records, and contain
the following:

1. ‘outfile.etot’ stores the following on separate lines:

– number of iterations before convergence
– total energy of the atom by the virial theorem, or by
statistical summation of the mean energies of individual
electrons where the virial theorem does not apply.
– ground state energies of occupied orbitals in increasing
order

2. ‘outfile.ene’ [used to produce Fig. 1(a) and (b)] stores the
following, one line per iteration:

– current iteration
– ground state energies of occupied orbitals in respective
columns

3. ‘outfile.exene’ stores the following per line:

– l, orbital angular momentum quantum number.
– n principal quantum number.
– energy of the occupied or excited state ‘(n, l)’.

4. ‘outfile.splen’ [used to produce Fig. 1(a) and (b)] stores the
following per line:

– l, orbital angular momentum quantum number.
– i, B-spline basis state index i = 1, ns − 2.
- energy of the basis state i.

5. ‘outfile.dens’ stores in columns, the radial grid and the total
density of the ground state electrons at each point on that grid.

6. Finally, ‘outfile.wfn’ stores the exponential grid with
(ns − ks + 1) ∗ numax points and the value of each occupied
and excited wavefunction at each point on the grid in separate
columns. The occupied states are prefixed by ‘gnd_wfns’ and the
excited states are prefixed by ‘lno=x’ where ‘x’ is the angular
momentum of the excited state. Full details of the files, including
the format specifiers for each record are available in the README
file supplied with the code.

4. Summary

We presented the BSHF program that solves the Hartree–
Fock equations in a B-spline basis for atoms, negatively-charged
ions and electrons in arbitrary central potentials, detailing its
operation and functionality. BSHF achieves convergence in the
self-consistent iterations by gradually increasing the value of the
electron charge from a reduced value to its true value. In this way
all orbitals can be calculated simultaneously at every iteration of
the self-consistency cycle. In addition to calculating the ground-
state of the N-electron system of interest, BSHF provides the
states that describe an additional electron or positron propagating
in the Hartree–Fock N-electron frozen target in the B-spline basis.

It thus provides orthonormal bases and can be used as a starting
program for higher-order calculations that involve electron and
positron correlations, e.g., many-body theory calculations.
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