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A model-potential approach to calculating positron-molecule binding energies and annihilation rates
is developed. Unlike existing ab initio calculations, which have mostly been applied to strongly
polar molecules, the present methodology can be applied to both strongly polar and weakly polar
or nonpolar systems. The electrostatic potential of the molecule is calculated at the Hartree-Fock
level, and a model potential that describes short-range correlations and long-range polarization of
the electron cloud by the positron is then added. The Schrédinger equation for a positron moving in
this effective potential is solved to obtain the binding energy. The model potential contains a single
adjustable parameter for each type of atom present in the molecule. The wave function of the positron
bound state may be used to compute the rate of electron-positron annihilation from the bound state.
As a first application, we investigate positron binding and annihilation for the hydrogen cyanide
molecule. Results for the binding energy are found to be in accord with existing calculations, and we
predict the rate of annihilation from the bound state to be ' = 0.1-0.2 x 10° s~!. Published by AIP
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I. INTRODUCTION

The aim of this paper is to develop an approach that
would enable reliable calculations of positron bound states
with polyatomic molecules.

Since the positron (e*) was predicted in 1931' and dis-
covered in 1933, it has proved to be a useful tool in many
areas of science, including fundamental tests of QED and the
standard model,>= astrophysics,® condensed-matter physics,’
atomic physics,® and medicine.” The physics and chemistry
of positrons and positronium (Ps, an electron-positron bound
pair) have seen much progress from the important early
advances'” to many new directions envisaged at the turn
of the century.'! Despite this, there is much about positron
interactions with ordinary matter that is still not well under-
stood. One open problem is positron binding to atoms and
molecules.

The possibility of positron binding to neutral atoms was
predicted by many-body-theory calculations in 1995.'% This
was subsequently confirmed by variational calculations of the
e*Li system,'>!* and calculations of positron binding to other
atoms soon appeared.'>~!'” However, no experimental evidence
of positron-atom bound states has yet arisen. Several methods
of producing such states have been proposed,'®?! but diffi-
culties regarding the limited availability of suitable positron
sources, the need to obtain the neutral-atom species in the
gas phase, and implementation of an unambiguous detection
scheme have so far prevented detection.

The situation for positron binding to molecules is essen-
tially the opposite. Positron-molecule binding energies can

aElectronic mail: a.swann@qub.ac.uk
bElectronic mail: g.gribakin@qub.ac.uk

0021-9606/2018/149(24)/244305/12/$30.00

149, 244305-1

be measured by virtue of the process of resonant annihila-
tion. When a positron collides with a polyatomic molecule,
two annihilation mechanisms are possible: direct, “in flight”
annihilation of the positron with one of the target electrons,
and resonant annihilation, where the positron is captured
into a quasibound state, with any excess energy being trans-
ferred into molecular vibrations, typically those of a mode
with near-resonant energy.?>~>* Resonant annihilation is oper-
ational for molecules that are capable of binding the positron. It
leads to pronounced peaks in the positron-energy dependence
of the annihilation rate.>> Observation of resonances with
energies

&y = hwy, — €p, ey

where w,, is the frequency of vibrational mode v, has enabled
measurement of the positron binding energies €, for over
70 molecules.’33 The majority of these are nonpolar or
weakly polar species, such as alkanes and related hydrocar-
bons, aromatics, partially halogenated hydrocarbons, alcohols,
formates, and acetates. Analysis of the experimental data
obtained prior to 2009 led to the following empirical formula
for the positron binding energy:

ep = 12.4(a + 1.6 - 5.6), 2)

where « is the dipole polarizability of the molecule in units
of 1072* ¢cm?®, u is the dipole moment of the molecule
in debyes (D), and &, is in units of meV.>" More recent
data have highlighted the deficiency of this fit, with Eq. (2)
underestimating the binding energies for strongly polar
molecules.*?

On the side of theory, calculations of positron-molecule
binding energies have proven to be very challenging. It is
known that a static molecule with dipole moment ¢ > 1.625 D
possesses an infinite number of positron (as well as electron)

Published by AIP Publishing.
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bound states.3*33 (For a molecule that is free to rotate, the
critical value of the dipole moment increases with the angu-
lar momentum of the molecule.’®) This means that positron
binding to strongly polar molecules is obtained even at the
lowest, static-potential level of the theory. However, prior to
the experimental observation of resonant annihilation, there
were few attempts at this problem. Predictions of binding were
made for strongly polar molecules using semiempirical®’ and
Hartree-Fock (HF)*®3° methods. The effect of correlations on
the feasibility of binding was explored using the R-matrix
method,*’ configuration interaction (CI),*! explicitly corre-
lated Gaussian (ECG) functions,** and quantum Monte Carlo
(QMC)*** (for LiH and a few other polar diatomics and
H,0).

By contrast, from 2002 onwards, many papers on
positron binding to molecules have been published by sev-
eral quantum-chemistry groups. The majority of the calcula-
tions are for simple diatomic and triatomic molecules, e.g.,
alkali hydrides,° metal oxides,*!%? hydrogen cyanide
(HCN),3”* CXY (X, Y =0, S, Se),” and formaldehyde. ®-8
However, a number of calculations also examined binding to
larger species, such as urea and acetone,’ nitriles,%" and alde-
hydes.>’ There are also exploratory studies for amino acids®!-%>
and nucleic bases and pairs,>%* some of which apply the
any-particle-molecular-orbital (APMO) framework to include
correlation effects using a many-body theory approach.>%* In
particular, these calculations showed that the binding energies
obtained at the static HF level increase considerably when
electron-positron correlations are included, e.g., for acetoni-
trile CH3CN, g, increases from 15 meV (HF) to 135 meV
(CI).%0

In spite of the large number of calculations, at present,
only six molecules, namely, carbon disulfide CS,, acetalde-
hyde C,H4O, propanal C,HsCHO, acetone (CH3),CO,
acetonitrile CH3CN, and propionitrile C;HsCN, have been
studied both experimentally®'3% and theoretically.3>-7-3%:60.65
The closest agreement between theory and experiment is for
acetonitrile, whose measured binding energy is 180 meV,?!
some 33% larger than the CI result.%” The biggest discrepancy
is for carbon disulfide, the only nonpolar molecule on this
list, where the measured binding energy is 75 meV,?' while
the calculations predict no binding.>> These discrepancies
show the great difficulty in providing an accurate description
of the electron-positron correlations, especially for nonpolar
molecules, where there is no binding at the lowest (static) level
of theory.

As far as we are aware, there are no successful ab initio cal-
culations of positron binding to weakly polar (¢ < 1.625 D) or
nonpolar molecules, where binding has been seen in the exper-
iment, and where it is enabled exclusively by electron-positron
correlation effects. Gribakin and Lee modeled positron bind-
ing to the n-alkanes (C,Hj,+2) using a zero-range-potential
(ZRP) approach.®® By fitting the ZRP parameter to reproduce
the measured binding energy for dodecane (n = 12),%7 they
obtained a good overall description of the problem. However,
some quantitative details were not captured correctly: binding
was predicted for n > 4, with a second bound state emerg-
ing for n > 13, while experimentally, binding is measured for
n = 3 already, with a second bound state for n = 12.27-2
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In this work, a model-potential method is developed to
calculate positron-molecule binding energies. First, the elec-
trostatic potential of the molecule is calculated at the HF level.
The Schrodinger equation is then solved for a positron mov-
ing in this potential, with the addition of a model potential
that accounts for the long-range polarization of the molecule
and short-range correlations. The method can be applied to
both strongly polar molecules and weakly polar or nonpolar
molecules. While this is not an ab initio technique, it broadly
captures the essential physics of the positron-molecule inter-
action and enables calculations to be carried out with much
less computational expense than ab initio methods. A similar
approach has previously been shown to accurately describe
positron scattering, annihilation, and (when it exists) binding
in noble-gas and other closed-shell atoms.®® As a first applica-
tion, we consider positron binding to hydrogen cyanide HCN
and make comparisons with existing calculations. We also use
the positron wave function to calculate the rate of annihilation
from the bound state.

Except where otherwise stated, atomic units (a.u.) are
used throughout; the atomic unit of length (the Bohr radius) is
denoted by ay.

Il. THEORY
A. Hartree-Fock methods

The nonrelativistic Hamiltonian for a positron interact-
ing with a molecule consisting of N, electrons and N, nuclei
(treated in the Born-Oppenheimer approximation) is

H= Zhe(r”h”(r)*zz Ir i Z |r—r,

i=1 j<i
where
N,
1 z Za
he(r;)) = —=V? — _ 4
()= =3V = D 4)
A=1
1
I ———V2 5
() § |r_rA| 5)

r; is the position of electron i, r4 is the position of nucleus A
(with charge Z4), and r is the position of the positron, all rela-
tive to an arbitrary origin. A direct solution of the Schrodinger
equation

H“P(I‘],I‘Q,... E‘P(I‘],l‘z,...,l‘/\/@,l‘) (6)

for the system energy E and wave function ¥ is prevented by
the electron-electron and electron-positron Coulomb interac-
tions [the final two terms in Eq. (3)] that make this numerically
intractable for systems with more than a few electrons.

The starting point for our calculations of positron-
molecule binding is the HF method. We assume that the
molecule is closed-shell; thence there are N,./2 doubly occu-
pied molecular orbitals ¢;(r;). We consider two distinct ways
in which the HF method can be applied.

7rNe7r) =

1. Frozen-target method

In this case, the energy and wave function of the bare
molecule (i.e., without the positron) in the ground state are
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computed in the conventional HF approximation. This wave
function ®@(ry,rs,...,ry,) is a Slater determinant of the N,
spin orbitals. The Schrodinger equation for a positron mov-
ing in the resulting electrostatic potential of the molecule is
then

N./2
[h” (ry-2 Z J{ (l‘)]t//(l') = gpi(r), @)
i=1
where
N2
o )_/Isol(l' )I ®)

This is solved to find the positron energy &, and wave function
¥ (r). The total wave function of the system is given by

SN (). (9)

The key feature of this approach is that the electrons are
“unaware” of the presence of the positron. That is, the elec-
tronic molecular orbitals are calculated in the static mean-
field approximation, and distortion of the electronic molecular
orbitals by the positron is not accounted for at all. We refer to
this as the frozen-target (FT) method.

Y(ri,ro,...,ry,, 1) = O, 12, ..

2. Relaxed-target method

Here the wave function of the system is again assumed to
take the form of Eq. (9). A modified version of the HF method
that accounts for the presence of the positron is used to compute
the electron wave functions. The modified HF equations for
the electrons are

N,/2
R+ Y [275(r) = KE@)] = J(v) i) = 8ipi(xy),
i
(10)
wherei=1,2,...,N,./2,
¢ e
K (r)gi(ri) = %(rz)/fr'd r, (1)
N2
JP(r;) = WOE 5y (12)
Ir; — 1’|

The corresponding equation for the positron is identical to
Eq. (7). It is clear from Egs. (10) and (7) that the motions
of the electrons and the positron are coupled: the positron
density appears in the modified HF equations for the elec-
trons, and vice versa. Equations (10) and (7) are solved
self-consistently and simultaneously to obtain the ¢;(r;) and
¥(r). This approach is the foundation of CI calculations of
positron-molecule binding. It has also been used in explic-
itly correlated HF studies of the PsH,69’70 LiPs,’%7! and
e*LiH’%"! systems. To contrast with the FT method, the elec-
tronic molecular orbitals are now “aware” of the presence of
the positron, but the electron-positron interaction is still only
treated at the static, mean-field level: the dynamical electron-
positron correlations (which are responsible for long-range
polarization of the molecule by the positron) are still not
accounted for. We refer to this as the relaxed-target (RT)
method.

J. Chem. Phys. 149, 244305 (2018)

The positron binding energy g, in either the FT or RT
method is given by the difference between the energy of
the bare molecule M and the energy of the bound positron-
molecule system e*M, viz.,

ep = E(M) — E(e*M). (13)

In the FT method, this is equal to the negative of the energy of
the positron orbital, i.e.,

&p = —&p. (14)

Note that both methods are approximations: dynamical
electron-electron and electron-positron correlations have been
neglected. Consequently, only molecules with dipole moments
greater than 1.625 D can bind a positron at this level of approx-
imation. The RT approximation will always give a slightly
larger value of ¢, than the FT approximation, since the molec-
ular electron cloud has the freedom to distort such that the total
energy of the system is minimized.

B. Model correlation potential

As stated in Sec. I, failure to account for the dynami-
cal electron-electron and electron-positron correlations leads
to a lack of binding for weakly polar molecules and seri-
ously underestimated values of &, even for strongly polar
molecules. Physically, the interaction between the positron and
the molecule can be cast as the sum of two terms, viz.,

V(l‘) = Vg(r) + Vcor(r)a (15)
where [see Egs. (5) and (7)]

V() = Z =

is the static potential of the molecule, and V.o (r) accounts
for the residual interactions absent in the HF methods. The
exact form of V. (r) (which can be derived using many-body
theory!>7>-74) is very difficult to compute exactly. (The true
correlation potential is a nonlocal and energy-dependent oper-
ator, see, e.g., Figs. 2 and 3 in Ref. 91.) However, at distances
far from the molecule, it takes the simple asymptotic form

N./2

) Z J(r) (16)

1
Vool ®) = =2 > i, (17)
if

where the x; (i = 1, 2, 3) are the Cartesian coordinates x, y, and
z of the positron as measured from the molecule, the a;; are the
Cartesian components of the molecule’s dipole polarizability
tensor, and r = (x2 + y2 + z%)Y/2. This describes polarization
of the molecule by the positron. For spherically symmetric
targets (e.g., closed-shell atoms) and spherical-top molecules,
the polarizability tensor is isotropic, and
a
2r4’ (18)
where « is the scalar dipole polarizability.

Calculations for noble-gas and other closed-shell atoms
show that positron scattering, annihilation, and binding can be
successfully described by using a model correlation potential
of the form®®

Veor(r) = —

Veor(r) = =5 [1 = exp(=r®/p) . (19)
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The function in brackets moderates the unphysical growth of
the potential at small r, with p being a cutoff parameter whose
values are fitted to reproduce the results of more sophisticated
scattering or bound-state calculations. The short-range part of
V .or(r) allows one to account for other correlation effects, such
as virtual positronium formation. Values of p correlate with the
radius of the atom, e.g., p = 1.50aq for He, 2.05a¢ for H, and
3.03aq for Mg.%®

In this work, we construct a model positron-molecule
correlation potential as a sum of potentials of the form of
Eq. (19), centered on each of the molecule’s constituent atoms,
viz.,

N 6
a [r —ry4l
taity =~ S -enf o

A=1 A

where a, is the hybrid polarizability’> of atom A within the
molecule, and p, is a cutoff radius specific to atom A. The
atomic hybrid polarizabilities @4 take into account the chem-
ical environment of the atom in a molecule, and their sum
a = ) a4 yields the total polarizability of the molecule.

A natural and important question in this approach to the
positron-molecule binding problem is whether V«(r), which
appears in Eq. (15), should be computed using the FT approxi-
mation or the RT approximation. The model correlation poten-
tial (20) is designed to account for the dynamical distortion of
the electron cloud by the positron. Therefore, if V(r) is cal-
culated using the RT method (where limited distortion of the
electron cloud by the positron is already included at the HF
level), there will be an effective overestimation of the corre-
lation effects. Thus we use the model correlation potential in
conjunction with V(r) as found using the FT method.

In practice, this is a two-step process. First, the elec-
tronic orbitals of the bare molecule (i.e., without the positron)
are computed using the conventional HF method. Then, the
Schrodinger equation for the positron,

Ne/2

W) =2 Y JEE) + Ve |W(1) = gpp0(0), 1)
i=1

is solved to obtain the energy and wave function of the positron
bound state. We hereafter refer to this as the frozen-target-plus-
polarization (FT+P) approximation. Note that this is consistent
with the many-body theory approach, which starts with the HF
calculation of the target in the ground state. Its potential is then
used to generate sets of excited electron and positron states
for the subsequent calculation of the correlation potential and
positron (Dyson) wave function.’*

C. Annihilation rate

The 27y annihilation rate for a positron bound to a molecule
(or atom) with the zero electron spin is given by*

T = nrgcdep, (22)

where r is the classical electron radius, c is the speed of light,
and 6, is the average electron density at the position of the
positron,

J. Chem. Phys. 149, 244305 (2018)

N, Ne
Sep = /Z S — )y, ... ry,. D) dr l_[ drj. (23)
i=1 j=1
Here, ¥(ry,...,ry,, 1) is the total wave function for the N,
electrons and the positron, normalized as

Ne
/|‘P(r1, oo dr | [diry =1 (24)
j=1

The contact density has units of inverse volume, so it is
expressed in terms of a; 3 when atomic units are in use.

For the wave function in the form of Eq. (9) (some-
times referred to as the independent-particle approximation),
Eq. (23) becomes

N./2

b0 =2, [la@PU@Pdr. 5)
i=1

The annihilation rate can thus be straightforwardly calcu-
lated from the wave functions of the molecular orbitals and
the bound positron state. However, the independent-particle
approximation does not account for short-range correlations
that increase the density of the electrons at the positron,
and consequently, Eq. (25) underestimates the true value of
O¢p- In the many-body-theory approach, such correlations are
represented by the annihilation-vertex corrections.’?7+78.92
A simpler way to account for these corrections is by intro-
ducing molecular-orbital-specific enhancement factors y; into
Eq. (25), viz.,

N,./2

b =2 7 [le@PUEP @6
=1

where y; > 1. Similar enhancement factors are used in
calculations of positron annihilation in solids.”®"’

Green and Gribakin’®" used many-body perturbation
theory to calculate enhancement factors for positron annihi-
lation in noble-gas atoms. These enhancement factors were
computed for positive-energy positrons and were found to
be approximately constant for energies <1 eV.”® Their val-
ues were specific to the electron orbital and positron partial
wave. In particular, it was found that the s-wave enhancement
factors scale with the electron-orbital energy &; according to
the empirical formula

/1.31 0.834\*1
’}/i=1+ —_g-+(—8<) . 27

The positron bound to a polyatomic molecule does not have
a well-defined orbital angular momentum. However, its wave
function has a dominant s-wave character at small positron-
atom separations, which provide the main contribution to the
overlap integrals in Eq. (26). Hence, we shall use Eq. (27)
to calculate the enhancement factors for annihilation in the
positron-molecule bound state.

lll. NUMERICAL IMPLEMENTATION

The electron and positron wave functions are expanded
in Gaussian basis sets centered on each of the atomic nuclei,
viz.,
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No Nio
pilr) = D0 Chgar(ry), (28)
=1 k=
No N
pr) =32 Chepr), (29)
A=1 k=1
where

8ak(T) = Far(x — xa) (y — ya) k(2 — 24 ) ke~ 4 rmal” - (30)

is a Cartesian Gaussian basis function with angular momentum
nz et nf‘ et nf‘ k and normalization coefficient F4;, and there
are N§ (Nf; ) basis functions centered on each nucleus for the
electron (positron).

For the electrons, we have used the standard 6-311++G(d,
p) basis set throughout. The equilibrium bond lengths are
1.059 A for H-C and 1.127 A for C=N. For the positron,

an even-tempered basis set is used

L =inmB" (k=1,...,ND), 31)

where {41 > 0 and B > 1 are parameters (see Sec. [V A
for the values used). The choice of the smallest exponent
{41 for weakly bound positron states is very important. At
large distances, the positron wave function behaves as y(r)
o« e ", where k = V2g;,. To ensure that expansion (29)
describes the wave function well at r ~ 1/«, one must have
la1 S K2 =2ep.

The solution of the (modified) Roothaan equations for
the electrons and positron is carried out using Gamess®"8!
with the NEo package.?”3 Modifications have been made to
enable frozen-target calculations and to include the model
correlation potential V.o (r) in the Roothaan equation for
the positron. To facilitate the computation of the matrix ele-
ments of the correlation potential, it is expressed as a sum
of its constituent spherically symmetric atomic potentials,
viz.,

Nu
Veor(r) = D Véal(Ir = 4], (32)
A=1
where o
Vér) = =5 [ = exp(=r*/p)]. (33)

Each Vc(ér) (r) is expanded in a set of s-type Gaussian functions,
viz.,

Vi = T De (34)
k

with the coefficients DI({A) determined by a least-squares fit. For
this, a set of 25 Gaussians has been used throughout, with expo-
nents k4 = 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064,
0.128, 0.256, 0.512, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,
10.0, 20.0, 30.0, 40.0, 50.0, and 100.0.

Figure 1 shows the analytical form (33) of Vég‘r) (r) along
with the Gaussian-expanded form (34), for a polarizabil-
ity of @y = 1.0 a.u. and a (fairly typical) cutoff radius of
pa = 2.0 a.u. The two curves are indistinguishable on the
scale of the graph, except at very small values of r, where
the expansion (34) exhibits some oscillations. These oscilla-
tions arise because the true form of vc(g? (r) goes to zero as
r — 0, while the s-type Gaussians in the expansion remain

J. Chem. Phys. 149, 244305 (2018)
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FIG. 1. Comparison of the Gaussian-expanded form of Vc(ﬁr) (r)foras =1.0
a.u. and p4 = 2.0 a.u. [Eq. (34), solid purple curve] with its exact analytical
form [Eq. (33), dashed green curve].

nonzero at r = 0. The inclusion of Gaussians with large expo-
nents (e.g., 50.0 and 100.0) is intended to give the expansion
sufficient flexibility to approach zero as r — 0, but the oscilla-
tions cannot be completely eradicated using a finite expansion.
Note, however, that the positron wave function is strongly sup-
pressed at small Ir — ryl, so that a small inaccuracy in the
representation of v§§2 (r) near the origin has a negligible effect
on the calculation of positron-molecule bound states.

Similarly, the expansion of V§§2 (r) in Gaussians can-
not reproduce exactly the long-range asymptotic form of
Vé’gr) (r) = —as/2r*. However, the inclusion of Gaussians with
small exponents k4 in the expansion provides an accurate
description of the long-range part. Indeed, a comparison of
the value of f;° Vég‘ﬁ (r)dr for pg = 2.0 a.u., calculated using
the analytical and Gaussian-expanded forms of Véér) (r), reveals
a difference of just 0.2%.

Details of how matrix elements of V., between positron
basis functions, and the electron-positron contact density, are
calculated are given in Appendix A.

IV. RESULTS
A. FT and RT approximations

As a test of this method, we investigate positron bind-
ing to hydrogen cyanide HCN. This molecule has a dipole
moment of 2.98 D3 and consequently can bind a positron even
at the static level. Previous calculations of the e*tHCN bind-
ing energy have been carried out using the HF, CI, and QMC
methods.>*3

Table I shows values of the positron binding energy & in
the FT and RT approximations. The positron basis set param-
eters used are {4 = 0.00016162 and S = 3.0, and we use up to
ten Gaussians of each angular-momentum type. To investigate
the dependence of g, on the size of the positron basis set, we
started with just a single s function on each of the H, C, and N
atoms and then added further s functions, one at a time, until
the change in g, fell below 1% (which required ten functions).
A set of p functions with identical values of £ 45 was then added
incrementally. Finally, a set of d functions with identical val-
ues of {4 was added incrementally; only seven such functions
were required to achieve convergence.

As expected, the RT value of g, is always greater than
the FT value. However, the difference between them is very
small, only 5%, which shows that the weakly bound positron
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TABLE I. Positron binding energy &;, (a.u.) for HCN, in terms of the size
of the positron basis set ({41 = 0.0001&62 and B = 3.0), in the FT and RT
approximations. Negative values of &, indicate that the positron is not bound.
Numbers in brackets indicate powers of 10.

e basis size FT RT

1s —7.3104[-5] —7.2991[-5]
2s —5.0557[-5] —5.0399[-5]
3s -2.4132[-5] —2.3740[-5]
4s —7.2094[-6] -6.5130[-6]
5s 1.3555[-5] 1.4842[-5]
6s 3.2674[-5] 3.4758[-5]
Ts 5.2321[-5] 5.5598[-5]
8s 6.2984[-5] 6.7133[-5]
9s 6.4272[-5] 6.8536[-5]
10s 6.4342[-5] 6.8612[-5]
10s 1p 6.7013[-5] 7.1105[-5]
10s 2p 6.7224[-5] 7.1367[-5]
10s 3p 6.7518[-5] 7.1676[-5]
10s 4p 6.7741[-5] 7.1931[-5]
10s 5p 6.8100[-5] 7.2332[-5]
10s 6p 6.8393[-5] 7.2666[-5]
10s 7p 6.8516[-5] 7.2806[-5]
10s 8p 6.8822[-5] 7.3141[-5]
10s 9p 6.9130[-5] 7.3479[-5]
10s 10p 6.9134[-5] 7.3484[-5]
10s 10p 1d 7.0910[-5] 7.4968[-5]
10s 10p 2d 7.1296[-5] 7.5293[-5]
10s 10p 3d 7.1382[-5] 7.5363[-5]
10s 10p 4d 7.1395[-5] 7.5372[-5]
10s 10p 5d 7.1401[-5] 7.5378[-5]
10s 10p 6d 7.1409[-5] 7.5386[-5]
10s 10p 7d 7.1411[-5] 7.5388[-5]

almost does not perturb the electron cloud. Our final RT value
of &, = 7.5388 x 107> a.u. is in good agreement with the
previous RT calculations of Chojnacki and Strasburger> and
Kita er al.,’* which gave values of 6.0 X 1075 a.u. and 7.3
x 1073 a.u., respectively. The differences are due to using
different values of the H-C and C=N bond lengths (1.066 and
1.167 A, respectively) and different electron and positron basis
sets.

Comparing the final 10s 10p 7d binding energy of 7.1411
x 1077 a.u. (FT) or 7.5388 x 1073 a.u. (RT) with the 10s
binding energy of 6.4342 x 107> a.u. (FT) or 6.8612 x 107>
a.u. (RT), we observe that in spite of the large asymmetry
of the dipole-bound state, the s functions alone account for
90% of the total binding energy. The p functions provide
about 7% of gp, while the d functions add 3%. This is a
result of placing positron basis functions on more than one
center: linear combinations of s-type functions on multiple
centers effectively generate higher-angular-momentum-type
functions (see Appendix B).%> Thus, the basis set is already
relatively complete before the true p- and d-type functions are
added.

The HCN molecule has Cs, symmetry, so the positron
wave function is symmetric with respect to rotation about the
molecular axis z. Figure 2 shows the 10s 10p 7d positron
wave function ¥ (r) as a function of x and z, with y = 0, as
calculated in the FT and RT approximations. The H, C, and
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FIG. 2. Positron wave function ¢(r) for y = 0 in the FT and RT approxima-
tions and dipole model. The H, C, and N atoms are placed along the z axis with
coordinates —2.921, —0.920, and 1.209 a.u., respectively. Solid contours, FT
approximation; long-dashed contours, RT approximation; short-dashed con-
tours, dipole model with ¢z =3.27 D and £, = 7.1411 x 1075 a.u.3¢ The value
of ¥(r) on each contour is as follows (in a.u.): black, 0.0002; red, 0.0003;
dark blue, 0.0004; yellow, 0.0006; orange, 0.0008; light blue, 0.0012; green,
0.0016.

N atoms are on the z axis with coordinates —2.921, —0.920,
and 1.209 a.u., respectively. The FT and RT wave functions
are barely distinguishable on the scale of the graph. We see
that the positron is strongly localized at the nitrogen end of
the molecule, since this is the negatively charged end of the
molecular dipole.

Figure 2 also shows the positron wave function from the
semianalytical “dipole model” developed to analyze positron
binding to strongly polar molecules.®® This model treats a polar
molecule as a point dipole with dipole moment u, surrounded
by an impenetrable sphere of radius r(. The point dipole pro-
vides the long-range u - r/r> potential for the positron, while
the hard sphere mimics short-range repulsion by the atomic
nuclei. The positron binding energy & is in one-to-one cor-
respondence with the sphere radius ry, i.e., knowledge of the
value of &, can be used to obtain the value of r(, or vice versa.
Note that this model does not use any information about the
true geometry of the molecule. Using ¢ = 3.27 D (the dipole
moment of HCN at the HF level®”)and g, =7.1411 x 1072 a.u.
(the FT value), we find ro = 1.98 a.u. The resulting wave func-
tion, shown by a short-dashed curve in Fig. 2, is very close
to the FT and RT wave functions. This indicates that positron
binding to a polar molecule at the static level is described
well by a simple model of a point dipole enclosed by a hard
sphere.

B. FT+P approximation

For the FT+P calculations, we use the atomic hybrid
polarizabilities of Miller.”” The values are ay = 0.387 10\3,
ac =1.283 A3, and ay = 0.956 A3. This gives a total molec-
ular polarizability of 2.63 A3, in near-exact agreement with
the recommended value of 2.59 A3 .84 For simplicity, we have
chosen to take equal cutoff radii p4 for the H, C, and N atoms.
The choice of ps may look arbitrary at this stage, but values
in the range 1.5-3.0 a.u. would be considered physical.'?
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TABLE II. Positron binding energy &, (a.u.) for HCN, in terms of the size
of the positron basis set ({47 = 0.0001(162 and B = 3.0), in the FT+P
approximation. Numbers in brackets indicate powers of 10.

e basis size pa=225au. pa=20au. pa=175au.
10s 1.1063[-3] 1.6708[-3] 2.9320[-3]
10s 10p 1.1426[-3] 1.7205[-3] 2.9988[-3]
10s 10p 7d 1.1438[-3] 1.7221[-3] 2.9995[-3]

Table IT shows the binding energies obtained for p4 =2.25,
2.0, and 1.75 a.u., with smaller cutoff radii meaning a stronger
correlation potential. The same parameters for the positron
basis set have been used as in the FT and RT calculations. One
can see that the final (10s 10p 7d) binding energy has increased
by a factor of 16, 24, and 42, with respect to the static-dipole
FT calculation, for p4 =2.25, 2.0, and 1.75 a.u., respectively.
One can also see that including p- and d-type Gaussians has
a smaller effect than that in the static-dipole calculation. This
is related to the fact that the wave function calculated with
Vcor becomes more spherical (see below).

The existing CI°® and diffusion Monte Carlo (DMC)>*
calculations gave ¢, = 35 and 38 meV, respectively. These are
closest to the binding energy of 1.1438 x 1073 a.u. ~ 31 meV
we obtained for p4 = 2.25 a.u. However, as CI and DMC are
variational methods, their predictions should be considered as
lower bounds on the true binding energy. Thus, we believe
that our result of &, = 47 meV obtained using p4 = 2.0 a.u.
(cf. p=2.05 a.u. for atomic hydrogen'>) may be closer to the
true value of the positron binding energy for HCN.

Figure 3 shows the 10s 10p 7d positron wave function
¥(r) as a function of x and z, with y = 0, for p4 = 1.75 and
2.25 a.u. Comparing the scales on the axes of Figs. 3 and 2, we
see that due to the effect of V., and increased binding energy,
the positron is found much closer to the molecule than in the
static dipole approximation (FT or RT). This can also be seen
from the position of the classical turning point on the positive z
axis in the dipole potential, u/r* = &5, which gives r = 134 a.u.

80
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FIG. 3. Positron wave function ¢(r) for y = 0 in the FT+P approximation.
Dashed contours, pg = 2.25 a.u.; solid contours, p4 = 1.75 a.u. The value
of ¢(r) on each contour is as follows (in a.u.): black, 0.0002; red, 0.0004;
dark blue, 0.0008; yellow, 0.0016; orange, 0.0032; light blue, 0.0064; green,
0.0128.
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for the FT calculation, versus r = 33 a.u. for the FT+P calcula-
tion with p4 =2.25 a.u. Itis also evident that the wave function
for p4 = 1.75 a.u. (&, = 82 meV) is more compact compared
with that for pg = 2.25 a.u. (g5 = 31 meV).

To understand the shape of the wave function, consider
a weakly bound state in a short-range potential, such as V
alone. The wave function away from the target would be spher-
ically symmetric, ¢(r) ~ Vk/2me ™ /r, where « = \V2ep.
In the FT approximation, the long-range dipole potential V
makes the positron wave function strongly asymmetric in the
z direction (Fig. 2). The addition of V in the FT+P approx-
imation increases the binding energy significantly, making
the long-range effect of V less pronounced. What we see
in Fig. 3 in comparison with Fig. 2 is a transition from a
strongly asymmetric (in the z direction) dipole-bound state
to a more spherically symmetric bound state that one would
have had for a nonpolar molecule. However, in both calcula-
tions, the positron is strongly localized about the negatively
charged nitrogen end of the molecule, despite the attraction
to the H and C atoms provided by the correlation potential in
FT+P.

Going back to Table II, we notice that for all three values
of pa, the s-type basis functions alone contribute 97%—-98%
of the total binding energy. The p functions contribute almost
all of the remaining 2%—-3%, with the contribution from the
d functions being essentially negligible. The inclusion of p
and d functions is thus even less important in the FT+P cal-
culation than it is in the FT or RT approximations. A possible
explanation for this observation is as follows. The positron
wave function in the FT or RT calculation is strongly local-
ized outside the nitrogen end of the molecule at both the
long and short range. This is also true for the long-range
part of the FT+P wave function. However, at short range, the
FT+P wave function is more evenly spread over the whole
molecule and “more round” near each of the atoms. This can
be seen from Fig. 4, which compares the FT wave function
with the FT+P wave function for p4 = 1.75 a.u. Consequently,
a more significant proportion of the wave function is con-
structed from tight (i.e., large-exponent) s-type Gaussians
in the FT+P approximation than those in the FT approxi-
mation, with p and d functions playing a relatively minor
role.

Given the importance of the cutoff radius for the binding
energy, we examine the dependence of €; on p4 more closely
in Fig. 5. It shows g, for ps between 1.5 and 3.0 a.u., calcu-
lated using the 10s 10p 7d basis. Also shown is the empirical
fit

o 0229 0.0179
e =8 *—ng T Smo

A Py

(35)

where gET =7.1411x 1072 a.u. is the FT value of &;, which &},
approaches in the limit p4 — co. This fit is valid for p4 > 1.5
a.u.; applying Eq. (35) for p4 < 1 a.u. would yield unphysically
large values of gp,.

Figure 5 shows that the binding energy is sensitive to the
choice of p4. Using values in the physically plausible range
1.75 < pa £ 2.25 a.u. results in a factor of two uncertainty of
the binding energy, which seems quite acceptable for a model-
potential theory.
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Itis also useful to investigate the sensitivity of the binding
energy to the value of the molecular polarizability, for a fixed
value of the cutoff parameter. We do this by multiplying Vo,
used in the calculations by a dimensionless factor g. Figure 6
shows g, for g between 0 and 2, for a fixed value of pg =2.0
a.u. It also shows an empirical power-law fit,

ep ~ 0.001 85¢*% (36)

valid away from the origin. Equation (36) shows that a 5%
uncertainty in the value of the molecular dipole polarizability
(or the magnitude of V) would result in a 20% uncertainty
of the positron-molecule binding energy.

The above analysis quantifies the strong sensitivity of the
positron-molecule binding energies to the magnitude of the
correlation potential, i.e., to the extent that electron-positron
correlations are included in the calculation. This highlights the
difficulty faced by ab initio approaches in predicting positron-
molecule binding energies. On the other hand, we see that
our model accurately captures the essential physics of the
bound positron-molecule system. Using physically acceptable
values of the dipole polarizability and cutoff parameter, we
obtain values of g; in good agreement with existing state-of-
the-art calculations that account for dynamic electron-positron
correlations.

C. Annihilation rate

The wave functions of the positron bound state obtained
in the FT and FT+P calculations can be used to estimate
the electron-positron contact density d,, using Eq. (25). In
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FIG. 5. Positron binding energy as a function of the cutoff parameter p4.
Purple plusses, calculated values; green curve, empirical fit [Eq. (35)].
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the FT+P case, we also account for the short-range electron-
positron correlations that increase the electron density at the
positron, by using Eq. (26) together with Eq. (27) for the
enhancement factors.

Table III shows the contact densities obtained in both
the FT and FT+P approximations in terms of the size of the
positron basis set. For the FT+P calculations, values of p4
=2.25,2.0, and 1.75 a.u. were used, and both the unenhanced
and enhanced results are shown. We observe that the inclu-
sion of V.o in the FT+P calculations increases the contact
densities by two orders of magnitude, compared with static-
dipole FT values, even before the enhancement factors are
used. This is a direct result of the significantly stronger binding
in the FT+P approximation: the attractive correlation poten-
tial draws the positron wave function in (see Figs. 2 and 3),
greatly increasing the positron density near the molecule. In
turn, including the enhancement factors produces d,, values
that are about a factor of 4.5 greater than their unenhanced
counterparts.

As the size of the positron basis set increases, the FT+P
contact densities all increase. This is as expected: increasing
the completeness of the basis results in stronger binding, and
therefore, greater positron density near the molecule. The s
functions alone provide 98%—99% of the final 10s 10p 7d value
of the contact density. The p functions provide almost all of
the remaining 1%—-2%, while the d functions have a negligible
contribution.

The FT contact densities display the opposite trend: the
contact density actually decreases as the size of the positron
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FIG. 6. Positron binding energy as a function of the polarizability scaling
factor ¢, for p4 = 2.0 a.u. Purple plusses, calculated values; green curve,
empirical fit [Eq. (36)].



244305-9 A. R. Swann and G. F. Gribakin

J. Chem. Phys. 149, 244305 (2018)

TABLE III. Electron-positron contact density ¢, (a.u.) for HCN, in terms of the size of the positron basis set ({41 = 0.000Iaa 2 and B =3.0), in the FT and
FT+P approximations. For the FT+P approximation, both the unenhanced [Eq. (25)] and enhanced [Eq. (26)] values are shown. Numbers in brackets indicate

powers of 10.

FT+P (unenhanced) FT+P (enhanced)
e™ basis size FT pa=225au. pa=2.0a.u. pa=175au. pa=225au. pa=2.0au. pa=175au.
10s 1.0313[-5] 4.8902[—4] 8.7874[-4] 1.8844[-3] 2.2500[-3] 4.0216[-3] 8.5455[-3]
10s 10p 1.0172[-5] 4.9673[-4] 8.9122[-4] 1.9030[-3] 2.2820[-3] 4.0722[-3] 8.6173[-3]
10s 10p 7d 9.6738[-6] 4.9718[—4] 8.9171[-4] 1.9030[-3] 2.2846[-3] 4.0753[-3] 8.6178[-3]

basis increases. Moreover, while the contact density in the 10s
10p calculation is merely 1% smaller than the 10s value, the
10s 10p 7d value is some 6% smaller than the 10s value. To
understand this, recall that in the FT approximation, including
the p- and d-type Gaussians contributes much more signif-
icantly to the binding energy than in the FT+P calculation
(see Tables I and II). It follows that the FT wave function
has a greater contribution from p and d Gaussians, compared
with the FT+P wave function. As mentioned in Sec. IV A, the
long-range behavior of the diffuse wave function of the dipole-
bound state is described well by the s-type Gaussians placed on
the three centers. However, s-type Gaussians take finite values
at their origins, i.e., at the positions of the atoms. The role of
the p and d functions is thus to “take over” the description of
the long-range behavior from the s functions and ensure that
the wave function is described correctly at short range, where
it is strongly affected by the repulsion from the atomic nuclei.
Our best prediction of the annihilation rate (22) in the
bound state is obtained using the FT+P enhanced contact
density for pg4 = 2.25 au. (g, = 31 meV) and 2.00 a.u.
(ep = 47 meV), which gave the binding energies in closest
agreement with the existing calculations. Using the 10s 10p
7d values of 6., from Table III, we predict '=0.115 x 10? s™!
for &, =31 meV and I' = 0.206 x 10° s~! for &, = 47 meV.

V. CONCLUSIONS

Calculation of positron binding to polyatomic molecules
is a difficult problem because of the extreme importance
of electron-positron correlations. Solving this problem accu-
rately ab initio appears to be beyond the capability of standard
quantum chemistry approaches. As a result, a large body of
experimental data on positron binding and annihilation in poly-
atomic molecules remains largely unexplained. In particular,
trends in positron binding energies across various molecular
families and the origin of the empirical relation between the
binding energy and molecular parameters, such as the dipole
polarizability and dipole moment, are poorly understood.

In this paper, we have developed an approach that allows
calculations of positron binding to both polar and nonpolar
molecular species. Its key element is inclusion of a physically
motivated model correlation potential that acts on the positron
and accounts for the long-range polarization and short-range
correlations. The potential contains short-range cutoff param-
eters that can be viewed as free parameters of the theory.
However, their values are strongly constrained by accurate
calculations of positron scattering and binding with atoms.

As a first application, positron binding to the HCN
molecule has been explored. Being a strongly polar molecule,
HCN binds the positron even at the level of a static-potential
approximation, with a binding energy of about 2 meV. Our
calculations showed that positron binding in the static-dipole
approximation is described very well by a simple model,%® in
which the molecule is replaced by a point dipole surrounded
by a hard sphere. Adding the correlation potential confirmed
strong enhancement of binding due to correlation effects, seen
earlier in the CI°3 and QMC>* calculations. Moreover, a phys-
ically motivated choice of the cutoff parameter yielded the
binding energy in good accord with the above calculations. We
also used the wave function of the bound state to calculate the
annihilation rate, including important short-range correlation
enhancement factors.”®”?

Although our description of the bound positron-molecule
system is not ab initio, its simplicity enables clear physical
insight into the problem. The model correlation potential con-
tains at most one free parameter for each type of atom in the
molecule: the cutoff radius (assuming that the values of the
hybrid polarizabilities of the atoms are known). The real aim
of our approach is to explore positron binding to larger poly-
atomic molecules, in particular, to nonpolar species for which
presently there are no calculations. We plan to use a small sub-
set of experimentally known binding energies to “calibrate”
our correlation potential, i.e., determine the cutoff radius for
the C and H atoms, which would enable calculations for various
alkane molecules.

Calculations can then be extended to alkane rotamers,
aromatic hydrocarbons, and other hydrocarbons that support
binding (e.g., ethylene and acetylene). Bringing into consider-
ation the cutoff radius for an O atom will enable calculations
for alcohols, aldehydes, ketones, formates, and acetates. Like-
wise, considering the N atom will enable a study of the nitriles.
Thus, it is hoped that accurate calculations of the positron
binding energy will be possible for the vast majority of the
molecules for which they have been measured. In addition
to the annihilation rates, we will also use the bound-state
positron wave functions to compute annihilation y-ray spec-
tra, where much of the experimental data®® remained unex-
plained for a long time®® and have only started to be explored
now.”
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APPENDIX A: CALCULATION OF MATRIX
ELEMENTS OF CORRELATION POTENTIAL
AND ELECTRON-POSITRON

CONTACT DENSITY

Using Egs. (30), (32), and (34), along with the Gaussian
product rule

e~ lr-r Ize—,(zll'—l"zl2 — exp(— G165 Ir; — r2|2)
O+
2
1r1 + o1
xexp|—({1 + {)fr - —————| |,
PlmlerT e O +8

(AD)

a matrix element of Vo between positron basis functions gy
and gp; is given by
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u u
(1 — pa)'s = (,U — MABC + HABC — Ha)"ak
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and using the identity

/ ge ¢ dg = —[1+( 1)"a ‘<1+">/2r(1;”), (A9)

which is valid forn =0, 1, 2, ...
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and a > 0. We obtain

(A10)

> ) (U =x,y,2).

Using Egs. (28)—(30), (A1), (A8), and (A9), the electron-
positron contact density, Eq. (26), is given by

4
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The integral H, is evaluated analytically by “translating” the Cak + Caw + Cpi+ Ly
polynomials to position papc, e.g., and
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APPENDIX B: GENERATION OF
HIGHER-ANGULAR-MOMENTUM-TYPE
GAUSSIANS FROM MULTICENTER
s-TYPE GAUSSIANS

Consider two s-type Gaussians with a common exponent
{, placed on the z axis at positions +a. One particular lin-
ear combination of these functions (ignoring normalization
constants) is
2 2
f(r,a) = e~ bIr-al® _ ~{lr+al
2 2 .
=2¢7%%¢75" sinh 2 az, (B1)

where a = ak and k is a unit vector in the positive z direction.
Expanding to first order around a = 0 gives

f(r,a) ~ 4{aze_‘rr2,

which is an effective p,-type Gaussian centered on the
origin.

Now consider the following linear combination of three
s-type Gaussians, placed at z = 0, +a:

(B2)

h(r,aq) = e $Iral _gp=da’ o=r | ~LIrsal?

= 2¢7¢4 76" (cosh 2Zaz — 1). (B3)
Expanding to second order around a = 0 gives
h(r,a) ~ 4§2a212e_§r2, (B4)

which is an effective d,,-type Gaussian centered on the origin.

Equations (B2) and (B4) are valid provided r > a. It can
similarly be shown that placing / Gaussians of s type with the
same exponent ¢ at equally spaced centers along the z axis
generates an effective z/ exp(—¢7?) Gaussian at the midpoint
of the centers. To obtain effective Gaussians with a nonzero
projection of angular momentum along the z axis would require
centers off the z axis.®
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