Many-body calculation of negative ions using the Dyson equation

To cite this article: L V Chernysheva et al 1988 J. Phys. B: At. Mol. Opt. Phys. $\mathbf{2 1}$ L419

View the article online for updates and enhancements.

Related content
Interaction of an alkaline-earth atom with an electron: scattering, negative ion and photodetachment
G F Gribakin, B V Gul'tsev, V K Ivanov et al.

within the Dyson equation method V K Ivanov, G Yu Kashenock, G F Gribakin et al.

- Many-electron correlations in negative-ion photodetachment
M Y Amusia, G F Gribakin, V K Ivanov et al.

Recent citations

- Alexey Verkhovtsev et al
- Autoionization resonances in the photoabsorption spectra of $\mathrm{Fe} \mathrm{n}+$ iron ions A. V. Konovalov and A. N. Ipatov

Inner-shell photodetachment from a Si negative ion: strong effect of manyelectron correlations
G Schrange-Kashenock

IOP ebooks"

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

LETTER TO THE EDITOR

Many-body calculation of negative ions using the Dyson equation

L V Chernysheva†, G F Gribakin \ddagger, V K Ivanov \ddagger and M Yu Kuchiev§
\dagger Leningrad Institute of Informatics and Automatization of the Academy of Sciences of the USSR, Leningrad, USSR
\ddagger M I Kalinin Politechnical Institute, Leningrad, USSR
§ A F Ioffe Physical Technical Institute of the Academy of Sciences of the USSR, Leningrad, USSR

Received 5 February 1988, in final form 26 April 1988

Abstract

A new method of calculating atomic negative ions is developed. It is based on the Dyson equation, and gives the binding energy and the wavefunction of the outer electron in the negative ion. The calculation for He^{-}1s $2 \mathrm{~s} 2 \mathrm{p}{ }^{4} \mathrm{P}$ is consistent with experiment. The photodetachment cross section for $\mathrm{He}^{-4} \mathrm{P}$ is calculated for the first time. The phaseshift for p-electron quartet scattering by $\mathrm{He} 1 \mathrm{~s} 2 \mathrm{~s}^{3} \mathrm{~S}$ is presented. Results for the first calculation of $\mathrm{Pd}^{-} 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{2} \mathrm{~S}$ are reported.

In this letter a new method of calculating atomic negative ions is suggested. The method is based on the Dyson equation within many-body theory (see e.g. Migdal 1983). Using this method we have calculated the characteristics of the $\mathrm{He}^{-} 1 \mathrm{~s} 2 \mathrm{~s} 2 \mathrm{p}{ }^{4} \mathrm{P}$ negative ion, the photodetachment cross section for this ion and the phaseshift for p-electron quartet scattering by $\mathrm{He} 1 \mathrm{~s} 2 \mathrm{~s}^{3} \mathrm{~S}$: $\left(\mathrm{e}^{-}+\mathrm{He} 1 \mathrm{~s} 2 \mathrm{~s}{ }^{3} \mathrm{~S}\right)^{4} \mathrm{P}$. We have also carried out the first calculation of the $\operatorname{Pd}^{-} 4 \mathrm{~d}^{10} 5$ s ground state.

If an atom forms a stable negative ion with electron affinity $E A>0$, its Green function $G_{E}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$ has a pole, when $E=\varepsilon_{0}=-E A$:

$$
\begin{equation*}
G_{E}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \underset{E \rightarrow \varepsilon_{0}}{\approx} \frac{\varphi_{0}(\boldsymbol{r}) \varphi_{0}^{*}\left(\boldsymbol{r}^{\prime}\right)}{E-\varepsilon_{0}} . \tag{1}
\end{equation*}
$$

The quasiparticle wavefunction $\varphi_{0}(\boldsymbol{r})$ describes the motion of the outer electron in the negative ion. It is equal to the projection of the many-electron wavefunction $\Psi_{0}^{N+1}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}, \boldsymbol{r}_{N+1}\right)$ of the negative-ion ground state to the atomic ground state wavefunction $\Psi_{0}^{N}\left(\boldsymbol{r}_{1}, \ldots, r_{N}\right)$:

$$
\begin{equation*}
\varphi_{0}(\boldsymbol{r})=\int \Psi_{0}^{N+1}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}, \boldsymbol{r}_{N+1}\right) \Psi_{0}^{N^{*}}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right) \mathrm{d} r_{1} \ldots \mathrm{~d} \boldsymbol{r}_{N} \tag{2}
\end{equation*}
$$

The normalisation integral for $\varphi_{0}(\boldsymbol{r})$

$$
\begin{equation*}
a=\int\left|\varphi_{0}(\boldsymbol{r})\right|^{2} \mathrm{~d} \boldsymbol{r}<1 \tag{3}
\end{equation*}
$$

gives the probability for the atomic core in the negative ion to be in the ground state. Usually a is close to unity, since the outer electron in the negative ion is localised mainly at large distances $r \sim R=\hbar\left(m_{\mathrm{e}} \mathrm{EA}\right)^{-1 / 2} \gg r_{\mathrm{a}}$ (r_{a} is the neutral atom radius), perturbing the motion of atomic electrons weakly.

From this point of view the problem of the 'neutral atom+electron' system is to a certain extent a single-body problem. Indeed, it follows from the Dyson equation that the wavefunction $\varphi_{0}(\boldsymbol{r})$ and the energy ε_{0} of the outer electron satisfy the equation

$$
\begin{equation*}
\varepsilon_{0} \varphi_{0}(\boldsymbol{r})=\hat{H}^{(0)} \varphi_{0}(\boldsymbol{r})+\int \boldsymbol{\Sigma}_{\varepsilon_{0}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \varphi_{0}\left(\boldsymbol{r}^{\prime}\right) \mathrm{d} \boldsymbol{r}^{\prime} \tag{4}
\end{equation*}
$$

Here $\hat{H}^{(0)}$ is the electron Hamiltonian in the static atomic field, and the non-local, energy-dependent potential $\Sigma_{E}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$ is the self-energy of the single-particle Green function. The latter describes the dynamical interaction of the outer electron with atomic electrons. At large distances $\Sigma_{E}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$ in (4) turns into the well known polarisation potential $-\alpha_{\mathrm{d}} e^{2} / 2 r^{4}, \alpha_{\mathrm{d}}$ being the dipole static polarisability of the atom.

Formerly the equation (4) was used to calculate correlational corrections to the electron-atom scattering phaseshifts (Kelly 1967, Amusia et al 1975, 1985), and to the wavefunction and energy of the outer electron in alkali-metal atoms (Lindgren et al 1976, Dzuba et al 1985). The peculiarity of the negative-ion problem is that the correlational potential $\Sigma_{E}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$ plays a decisive role when binding the electron to the atom; hence it cannot be taken into account by perturbations.

Let $\hat{H}^{(0)}$ be a Hartree-Fock Hamiltonian of the neutral atom. The spectrum of the Hartree-Fock equation

$$
\begin{equation*}
\hat{H}^{(0)} \varphi_{\nu}^{(0)}(\boldsymbol{r})=\varepsilon_{\nu} \varphi_{\nu}^{(0)}(\boldsymbol{r}) \tag{5}
\end{equation*}
$$

consists of discrete states, occupied in the atomic ground state ($\varepsilon_{\nu}<0$), and excited states of electron in the field of the neutral atom. For most atoms the latter belong to the continuum ($\varepsilon_{\nu}>0$), so that negative ions do not exist within the static, Hartree-Fock approximation.

The ratio r_{a} / R is small. Thus, in the range of typical outer electron distances $r, r^{\prime} \sim R \Sigma_{E}\left(r, r^{\prime}\right)$ can be calculated as a series in orders of the interaction of the outer electron with atomic electrons. Using the notation of standard atomic diagrams (see e.g. Amusia and Cherepkov 1975), we obtain in the lowest second order:

At large distances $r, r^{\prime} \sim R$ the diagrams ($6 c, d$) are exponentially small, since the vertices r, r^{\prime} contain occupied state (hole) wavefunctions. The main contribution to $\Sigma_{E}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$ arises from diagram ($6 a$) with the dipole $\nu_{3} \rightarrow \nu_{2}$ excitation, its magnitude being proportional to R^{-4}. The exchange diagram ($6 b$) should be included for Pauli's principle to be valid.

The essential part of intra-atomic correlations can be taken into account by calculating the wavefunction of the ν_{2} excited state in the field of the atomic core with a hole ν_{3} (Amusia et al 1975). Denoting this wavefunction with a double line, we obtain for (6a):

$=$

Equation (4) has the most simple form in the matrix representation in terms of the complete orthonormalised set of Hartree-Fock wavefunctions $\varphi_{\nu}^{(0)}(\boldsymbol{r})$:

$$
\begin{equation*}
\varepsilon_{0} C_{\nu}=\varepsilon_{\nu} C_{\nu}+\sum_{\nu^{\prime}}\langle\nu| \Sigma_{\varepsilon_{0}}\left|\nu^{\prime}\right\rangle C_{\nu^{\prime}} \tag{8}
\end{equation*}
$$

where

$$
C_{\nu}=\int \boldsymbol{\varphi}_{\nu}^{(0)^{*}}(\boldsymbol{r}) \varphi_{0}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}
$$

and correspondingly

$$
\begin{equation*}
\varphi_{0}(\boldsymbol{r})=\sum_{\nu} C_{\nu} \varphi_{\nu}^{(0)}(\boldsymbol{r}) \tag{9}
\end{equation*}
$$

The summation in (8) and (9) takes into account both discrete and continuous spectra. To find ε_{0} and C_{ν} it is necessary to solve the eigenstate problem for the matrix (integral operator):

$$
\begin{equation*}
\varepsilon_{\nu} \delta_{\nu \nu^{\prime}}+\langle\nu| \Sigma_{E}\left|\nu^{\prime}\right\rangle \quad\left(E=\varepsilon_{0}\right) \tag{10}
\end{equation*}
$$

The self-energy $\Sigma_{E}\left(r, r^{\prime}\right)$ varies slowly with E, when $|E| \ll I, I$ being the atomic ionisation potential. Since $\left|\varepsilon_{0}\right| \ll I$, one can ignore the dependence of matrix (10) on energy, and compute it with $E \approx 0$. Accordingly, the normalisation integral (Migdal 1983)

$$
\begin{equation*}
a=\left(1-\left.\frac{\partial \varepsilon_{0}(E)}{\partial E}\right|_{E=\varepsilon_{0}}\right)^{-1} \tag{11}
\end{equation*}
$$

is close to unity, due to $\left|\partial \varepsilon_{0}(E) / \partial E\right| \sim\left|\varepsilon_{0}\right| / I \ll 1$.
The above theory can be readily applied to atoms with non-degenerate ground state, binding an extra electron into the unoccupied subshell. In order to test the method we have calculated the simple negative ion of $\mathrm{He}^{-} 1 \mathrm{~s} 2 \mathrm{~s} 2 \mathrm{p}^{4} \mathrm{P}$. This long-lived ($\tau \sim 10^{-5} \mathrm{~s}$) ion is formed by the binding of a p electron to the excited metastable atomic state $\mathrm{He} 1 \mathrm{~s} 2 \mathrm{~s}{ }^{3} \mathrm{~S}$. Formerly the binding energy was calculated using the configuration interaction method (Bunge and Bunge 1984) that yields $\mathrm{EA}\left(\mathrm{He}^{3} \mathrm{~S}\right)=77.51 \mathrm{meV} \simeq$ 0.0057 Ryd. This value is in good agreement with the experimental one (Peterson et al 1985): $77.5 \pm 0.8 \mathrm{meV}$.

The Hartree-Fock spectrum of the p electron for $\mathrm{He} 1 \mathrm{~s} 2 \mathrm{~s}^{3} \mathrm{~S}$ does not contain discrete states. When the electron momentum k vanishes, the p phaseshift tends to zero (see figure 1). In our calculations the continuous energy spectrum was approximated by the appropriate finite set of states, equidistant in momentum with Δk step

Figure 1. The p phaseshift for electron quartet scattering by He $1 \mathrm{~s} 2 \mathrm{~s}{ }^{3} \mathrm{~S}$: curve 1, HartreeFock approximation; 2, with main self-energy diagram (12a) taken into account; 3, with three diagrams ($12 a-c$) taken into account.
size. The conditions $k_{\min }<\sqrt{\left|\varepsilon_{0}\right|} \ll k_{\max }, \Delta k \ll \sqrt{\left|\varepsilon_{0}\right|}$ were observed to make the decomposition (9) correct. The computer code of Chernysheva et al (1980) was used to calculate the self-energy matrix, and to obtain phaseshifts with correlations taken into account. The self-energy matrix included the following second-order diagrams with dipole, monopole and quadrupole excitations of $\mathrm{He} 1 \mathrm{~s} 2 \mathrm{~s}^{3} \mathrm{~S}$:

$$
\begin{equation*}
-0.813 \tag{12a}
\end{equation*}
$$

$$
\begin{equation*}
-0.182 \tag{12b}
\end{equation*}
$$

$$
\begin{equation*}
-0.358 \tag{12c}
\end{equation*}
$$

+

To compare the relative importance of various self-energy diagrams, the maximal in modulus values of the amplitudes are presented. The sum of dipole diagrams ($12 a, b$) indeed gives the leading contribution to the correlational potential. In $(12 a, b) 2 \mathrm{~s} \rightarrow 2 \mathrm{p}$ atomic excitation dominates over the others, and the rate of exchange diagrams is roughly 30% of the direct ones.

With only the main diagram (12a) included in $\langle\nu| \Sigma_{E}\left|\nu^{\prime}\right\rangle$, the p-phaseshift behaviour substantially changed (figure 1 , curve 2). According to Levinson's theorem, it means that a discrete level arose in the system. Diagonalising (10) we obtained $\varepsilon_{0}=$ -0.0004 Ryd. The corresponding radial wavefunction, obtained from (9), is shown in figure 2. Addition of the second dipole ($12 b$) and monopole (12c) diagrams to the self-energy matrix varied the phaseshift weakly (figure 1), but noticeably increased the binding energy: $\varepsilon_{0}=-0.0095$ Ryd (figure 2 , curve 2).

Figure 2. Radial 2 p-electron wavefunction in $\mathrm{He}^{-} 1 \mathrm{~s} 2 \mathrm{~s} 2 \mathrm{p}{ }^{4} \mathrm{P}$: 1 , with main self-energy diagram ($12 a$) taken into account ($\varepsilon_{0}=-0.0004 \mathrm{Ryd}$); 2, with three diagrams ($12 a-c$) taken into account ($\varepsilon_{0}=-0.0095$ Ryd); 3, with five diagrams (12a-e) taken into account ($\varepsilon_{0}=$ -0.0062 Ryd).

The magnitude of diagrams ($12 d, e$) with quadrupole excitation of the atom is essentially less than that of the dipole ones. The largest among ($12 d, e$) is the exchange diagram in ($12 d$), because it consists of quadrupole and dipole matrix elements, while the direct diagram consists of two quadrupole matrix elements. Thus, the sum of ($12 d, e$) is positive. Taking into account all diagrams (12) we obtain: $\varepsilon_{0}=-0.0062$ Ryd. This result is quite close to the exact binding energy for the 2 p electron in $\mathrm{He}^{-} 1 \mathrm{~s} 2 \mathrm{~s} 2 \mathrm{p}{ }^{4} \mathrm{P}$. To obtain a more precise value one should calculate second-order diagrams with higher multipole atomic excitations, together with diagrams of higher orders. However, their total contribution to the self-energy is limited to $3-5 \%$.

The wavefunction for the 2 p electron in $\mathrm{He}^{-4} \mathrm{P}$, corresponding to $\varepsilon_{0}=-0.0062$ Ryd, is shown in figure 2 by the full curve. Using a Hartree-Fock wavefunction in the field
of $\mathrm{He} 1 \mathrm{~s} 2 \mathrm{~s}{ }^{3} \mathrm{~S}$ for the photoelectron in the final state, the dipole amplitude for 2 p photodetachment was calculated. Cross sections in $2 \mathrm{p} \rightarrow \varepsilon \mathrm{d}$ and $2 \mathrm{p} \rightarrow \varepsilon s$ channels, obtained with \boldsymbol{r} - and $\boldsymbol{\nabla}$-forms of the dipole operator, are presented in figure 3 as functions of photon energy $\hbar \omega$. The $2 \mathrm{p} \rightarrow \varepsilon \mathrm{d}$ channel dominates in the dipole sum rule, yielding 1.41 and 0.77 for r - and ∇-forms respectively. The difference between the two forms is due to the fact that we neglect the action of $\Sigma_{E}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$ onto the final-state photoelectron, together with correlational corrections to the electron-photon vertex. The calculation of these corrections forms the subject of a special detailed study.

Figure 3. Photodetachment cross sections for $\mathrm{He}^{-} 1 \mathrm{~s} 2 \mathrm{~s} 2 \mathrm{p}{ }^{4} \mathrm{P}$. Calculation: $1,2 \mathrm{p} \rightarrow \varepsilon \mathrm{d}$ channel, r-form; $2, \nabla$-form; $3,2 \mathrm{p} \rightarrow \varepsilon$ s channel, r-form; $4, \nabla$-form; 5 , total 2 p-photodetachment cross section, \boldsymbol{r}-form. Experiment: O, Compton et al (1980); $\boldsymbol{\phi}$, Hodges et al (1981).

Photodetachment cross sections for $\mathrm{He}^{-4} \mathrm{P}$, measured by Compton et al (1980) and Hodges et al (1981), are shown in figure 3. The accuracy of the experiments is estimated by their authors to be $20-30 \%$. The 2 s -photodetachment threshold is situated at $\hbar \omega=\left|\varepsilon_{2 s}\right|=0.090$ Ryd. The cross section in this channel is concentrated in a very narrow energy range above the threshold (Peterson et al 1985). Thus, the calculated 2 p-photodetachment cross section is consistent with the experimental total cross sections.

Besides the rather simple $\mathrm{He}^{-4} \mathrm{P}$ ion we have considered the ion $\mathrm{Pd}^{-} 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{2} \mathrm{~S}$, formed by the binding of an s electron to a $\mathrm{Pd} 4 \mathrm{~d}^{101} \mathrm{~S}$ atom. Its electron affinity $\mathrm{EA}(\mathrm{Pd})=0.557 \mathrm{eV}=0.041$ Ryd and configuration were established in the experiment of Feigerle et al (1981). In the preliminary calculation second-order diagrams with monopole, dipole (these are of chief importance) and quadrupole excitations of the 4 d subshell were included in the self-energy matrix, giving $\varepsilon_{0}=-0.0104$ Ryd for the 5 s-electron energy. This result unambiguously confirms the existence of the Pd^{-}ion with the $4 \mathrm{~d}^{10} 5 \mathrm{~s}$ configuration. To obtain a more accurate binding energy value, thorough investigation and estimation of various self-energy diagrams are necessary.

The authors are grateful to Professor M Ya Amusia for numerous and helpful discussions, and to A A Gribakina for assistance with the calculations.

References

Amusia M Ya and Cherepkov N A 1975 Case Studies in Atomic Physics vol 5 pp 47-179
Amusia M Ya, Cherepkov N A, Chernysheva L V, Shapiro S G and Janíií A 1975 Zh. Eksp. Teor. Fiz. 68 2023-8 (in Russian)
Amusia M Ya, Soshivker V A, Cherepkov N A and Chernysheva L V 1985 Zh. Tekh. Fiz. 55 2304-11 (in Russian)
Bunge A V and Bunge C F 1984 Phys. Rev. A 30 2179-82
Chernysheva L V, Amusia M Ya, Davidović D and Cherepkov N A 1980 Preprint 663 A F Ioffe Physical Technical Institute, Leningrad (in Russian)
Compton R N, Alton Y D and Pegg D J 1980 J. Phys. B: At. Mol. Phys. 13 L651-5
Dzuba V A, Flambaum V V, Silvestrov P G and Sushkov O P 1985 J. Phys. B: At. Mol. Phys. 18 597-613
Feigerle C S, Corderman R R, Bobashev S V and Lineberger W C 1981 J. Chem. Phys. 74 1580-98
Hodges R V, Coggiola M J and Peterson J R 1981 Phys. Rev. A 23 59-63
Kelly H P 1967 Phys. Rev. 160 44-55
Lindgren I, Lindgren J and Martensson A-M 1976 Z. Phys. A 279 113-25
Migdal A B 1983 Theory of Finite Fermi-Systems and Properties of Atomic Nuclei (Moscow: Nauka) (in Russian)
Peterson J R, Bae Y K and Huestis D L 1985 Phys. Rev. Lett. 55 692-5

