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Abstract. A new method of calculating atomic negative ions is developed. It is based on 
the Dyson equation, and gives the binding energy and the wavefunction of the outer 
electron in the negative ion. The calculation for He- ls2s2p 4Pis consistent with experiment. 
The photodetachment cross section for He- 4P is calculated for the first time. The phaseshift 
for p-electron quartet scattering by He ls2s ' S  is presented. Results for the first calculation 
of Pd- 4d1°5s * S  are reported. 

In this letter a new method of calculating atomic negative ions is suggested. The 
method is based on the Dyson equation within many-body theory (see e.g. Migdal 
1983). Using this method we have calculated the characteristics of the He- ls2s2p 4P 
negative ion, the photodetachment cross section for this ion and the phaseshift for 
p-electron quartet scattering by He ls2s 3S: (e-+ He ls2s 3 S )  4P. We have also carried 
out the first calculation of the Pd-4d1'5s ground state. 

If an atom forms a stable negative ion with electron affinity E A >  0, its Green 
function GE (r ,  r') has a pole, when E = = -EA: 

The quasiparticle wavefunction qo( r )  describes the motion of the outer electron in the 
negative ion. It is equal to the projection of the many-electron wavefunction 
9 r + ' ( r l , .  . . , rN,  r N + , )  of the negative-ion ground state to the atomic ground state 
wavefunction F r ( r l ,  . . . , r N ) :  

po(r )  = v r + l ( r , ,  . . . , r,, r N + l ) ~ r * ( r l , .  . . , r N )  dr,  . . . dr,. (2) 

The normalisation integral for qo( r )  

a = I Iqo(r)12 d r  < 1 
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gives the probability for the atomic core in the negative ion to be in the ground state. 
Usually a is close to unity, since the outer electron in the negative ion is localised 
mainly at large distances r - R = h(  me >> ra ( ra is the neutral atom radius), 
perturbing the motion of atomic electrons weakly. 

From this point of view the problem of the 'neutral atom+ electron' system is to a 
certain extent a single-body problem. Indeed, it follows from the Dyson equation that 
the wavefunction cpo(r) and the energy of the outer electron satisfy the equation 

socpo( r )  = f i ' " c p 0 (  r )  + X E o (  r, r')cpo( r')  dr' I (4) 

Here fi") is the electron Hamiltonian in the static atomic field, and the non-local, 
energy-dependent potential X E  (r ,  r ' )  is the self-energy of the single-particle Green 
function. The latter describes the dynamical interaction of the outer electron with 
atomic electrons. At large distances X E ( r ,  r')  in (4) turns into the well known polarisa- 
tion potential -(ude2/2r4, (ud being the dipole static polarisability of the atom. 

Formerly the equation (4) was used to calculate correlational corrections to the 
electron-atom scattering phaseshifts (Kelly 1967, Amusia et a1 1975, 1985), and to the 
wavefunction and energy of the outer electron in alkali-metal atoms (Lindgren e? a1 
1976, Dzuba e? a1 1985). The peculiarity of the negative-ion problem is that the 
correlational potential X E ( r ,  r')  plays a decisive role when binding the electron to the 
atom; hence it cannot be taken into account by perturbations. 

Let fi") be a Hartree-Fock Hamiltonian of the neutral atom. The spectrum of the 
Hartree-Fock equation 

consists of discrete states, occupied in the atomic ground state ( E ,  < 0), and excited 
states of electron in the field of the neutral atom. For most atoms the latter belong to 
the continuum ( E ,  > 0), so that negative ions do not exist within the static, Hartree-Fock 
approximation. 

The ratio r a / R  is small. Thus, in the range of typical outer electron distances 
r, r ' -  R X E (  r, r') can be calculated as a series in orders of the interaction of the outer 
electron with atomic electrons. Using the notation of standard atomic diagrams (see 
e.g. Amusia and Cherepkov 1975), we obtain in the lowest second order: 

( b l  

At large distances r, r ' -  R the diagrams (6c, d )  are exponentially small, since the 
vertices r, r' contain occupied state (hole) wavefunctions. The main contribution to 
X E ( r ,  r ')  arises from diagram (6a) with the dipole vj+  vz excitation, its magnitude 
being proportional to R - 4 .  The exchange diagram ( 6 b )  should be included for Pauli's 
principle to be valid. 
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The essential part of intra-atomic correlations can be taken into account by calculat- 
ing the wavefunction of the v 2  excited state in the field of the atomic core with a hole 
v3 (Amusia et a1 1975). Denoting this wavefunction with a double line, we obtain for 
( 6 a ) :  

@ = + ~ + @+.;.; 
v3 v3 v3 v3 v3 

v3 

Equation (4) has the most simple form in the matrix representation in terms of the 
complete orthonormalised set of Hartree-Fock wavefunctions cpv’( r ) :  

E O C v  = GG+Z ( v l C E O ) v ’ ) C y ’  (8) 
Y ’  

where 

C, = cpo‘,o’*( r)cpo( r )  d r  I 
and correspondingly 

cpo(r) = c GcpPYr). (9) 
Y 

The summation in (8) and (9) takes into account both discrete and continuous spectra. 
To find and C, it is necessary to solve the eigenstate problem for the matrix (integral 
operator) : 

& U 6  ”d + ( V I Z €  I4 ( E  = E O ) .  (10) 

The self-energy Z E  (r, r’) varies slowly with E, when I E I << Z, I being the atomic ionisation 
potential. Since ~ E ~ I < <  I, one can ignore the dependence of matrix (10) on energy, and 
compute it with E = 0. Accordingly, the normalisation integral (Migdal 1983) 

is close to unity, due to ld~~(E) /dEl - l&, l /Z<< 1. 
The above theory can be readily applied to atoms with non-degenerate ground 

state, binding an extra electron into the unoccupied subshell. In order to test the 
method we have calculated the simple negative ion of He- ls2s2p 4P. This long-lived 
(T- s) ion is formed by the binding of a p electron to the excited metastable 
atomic state He ls2s 3S. Formerly the binding energy was calculated using the configur- 
ation interaction method (Bunge and Bunge 1984) that yields EA( He 3S) = 77.5 1 meV = 
0.0057 Ryd. This value is in good agreement with the experimental one (Peterson er 
a1 1985): 77.5 * 0.8 meV. 

The Hartree-Fock spectrum of the p electron for He ls2s 3S does not contain 
discrete states. When the electron momentum k vanishes, the p phaseshift tends to 
zero (see figure 1). In our calculations the continuous energy spectrum was approxi- 
mated by the appropriate finite set of states, equidistant in momentum with A k  step 
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Figure 1. The p phaseshift for electron quartet scattering by He ls2s 3S: curve 1, Hartree- 
Fock approximation; 2, with main self-energy diagram (12a) taken into account; 3, with 
three diagrams (12a-c) taken into account. 

- - 
size. The conditions kmin<< J/q, << k,,,, Ak<< JIq,/ were observed to make the decompo- 
sition (9) correct. The computer code of Chernysheva et al(1980) was used to calculate 
the self-energy matrix, and to obtain phaseshifts with correlations taken into account. 
The self-energy matrix included the following second-order diagrams with dipole, 
monopole and quadrupole excitations of He ls2s 3S: 

nP.=P GT 2s 

Gf- 2s 

Ef- 2s 

+ET 2s 

nP.cP 

n s , u  

nd,cd 

-0.813 
+ 

nP.=P 

D S 

-0.182 

+ m; 
D D 

ns,Es 

D D 

nd,cd  

0.220 
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-@- + mE 
-0.062. 

n d . c d  
2 5  

To compare the relative importance of various self-energy diagrams, the maximal in 
modulus values of the amplitudes are presented. The sum of dipole diagrams (124 b) 
indeed gives the leading contribution to the correlational potential. In (12a, b) 2s + 2p 
atomic excitation dominates over the others, and the rate of exchange diagrams is 
roughly 30% of the direct ones. 

With only the main diagram (12a) included in ( v / E E  I v’), the p-phaseshift behaviour 
substantially changed (figure 1, curve 2). According to Levinson’s theorem, it means 
that a discrete level arose in the system. Diagonalising (IO) we obtained eo= 
-0.0004 Ryd. The corresponding radial wavefunction, obtained from (9), is shown in 
figure 2. Addition of the second dipole (12b) and monopole (12c) diagrams to the 
self-energy matrix varied the phaseshift weakly (figure l ) ,  but noticeably increased the 
binding energy: eo = -0.0095 Ryd (figure 2, curve 2). 

0 .3  

0.2 
PO 

0.1 

0 10 20 30 4 0  
r laul 

Figure 2. Radial 2p-electron wavefunction in He- ls2s2p4P: 1, with main self-energy 
diagram (12a) taken into account ( E ~  = -0.0004 Ryd); 2, with three diagrams (12a-c) taken 
into account ( E ~ =  -0.0095 Ryd); 3, with five diagrams (12a-e) taken into account (.so = 

-0.0062 Ryd). 

The magnitude of diagrams (124 e)  with quadrupole excitation of the atom is 
essentially less than that of the dipole ones. The largest among (124 e) is the exchange 
diagram in (12d), because it consists of quadrupole and dipole matrix elements, while 
the direct diagram consists of two quadrupole matrix elements. Thus, the sum of 
(124 e )  is positive. Taking into account all diagrams (12) we obtain: eo = -0.0062 Ryd. 
This result is quite close to the exact binding energy for the 2p electron in He- ls2s2p 4P. 
To obtain a more precise value one should calculate second-order diagrams with higher 
multipole atomic excitations, together with diagrams of higher orders. However, their 
total contribution to the self-energy is limited to 3-5%. 

The wavefunction for the 2p electron in He- 4P, corresponding to c0 = -0.0062 Ryd, 
is shown in figure 2 by the full curve. Using a Hartree-Fock wavefunction in the field 
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of He ls2s 3S for the photoelectron in the final state, the dipole amplitude for 2p 
photodetachment was calculated. Cross sections in 2p + Ed and 2p + E S  channels, 
obtained with r- and V-forms of the dipole operator, are presented in figure 3 as 
functions of photon energy hw. The 2p+ Ed channel dominates in the dipole sum 
rule, yielding 1.41 and 0.77 for r- and V-forms respectively. The difference between 
the two forms is due to the fact that we neglect the action of X E  ( r ,  r ' )  onto the final-state 
photoelectron, together with correlational corrections to the electron-photon vertex. 
The calculation of these corrections forms the subject of a special detailed study. 

Figure 3. Photodetachment cross sections for He- ls2s2p 4P. Calculation: 1, 2p+ s d  
channel, r-form; 2, V-form; 3 ,2p+ E S  channel, r-form; 4, V-form; 5, total Zp-photodetach- 
ment cross section, r-form. Experiment: 0, Compton et a1 (1980); *, Hodges et a1 (1981). 

Photodetachment cross sections for He- 4P, measured by Compton et a1 (1980) 
and Hodges et al (1981), are shown in figure 3. The accuracy of the experiments is 
estimated by their authors to be 20-30%. The 2s-photodetachment threshold is situated 
at hw = I E ~ ~ ~  = 0.090 Ryd. The cross section in this channel is concentrated in a very 
narrow energy range above the threshold (Peterson et a1 1985). Thus, the calculated 
2p-photodetachment cross section is consistent with the experimental total cross sec- 
tions. 

Besides the rather simple He- 4P ion we have considered the ion Pd- 4d1'5s 'S, 
formed by the binding of an s electron to a Pd4d"'S atom. Its electron affinity 
EA(Pd) = 0.557 eV = 0.041 Ryd and configuration were established in the experiment 
of Feigerle et a1 (1981). In the preliminary calculation second-order diagrams with 
monopole, dipole (these are of chief importance) and quadrupole excitations of the 
4d subshell were included in the self-energy matrix, giving E' = -0.0104 Ryd for the 
5s-electron energy. This result unambiguously confirms the existence of the Pd- ion 
with the 4dI05s configuration. To obtain a more accurate binding energy value, thorough 
investigation and estimation of various self-energy diagrams are necessary. 

The authors are grateful to Professor M Ya Amusia for numerous and helpful dis- 
cussions, and to A A Gribakina for assistance with the calculations. 
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