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Chaos-induced enhancement of resonant multielectron recombination
in highly charged ions: Statistical theory
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A statistical theory of resonant multielectron recombination based on properties of chaotic eigenstates is
developed. The level density of many-body states increases exponentially with the number of excited electrons.
When the residual electron-electron interaction exceeds the interval between these levels, the eigenstates (called
compound states or compound resonances if these states are in the continuum) become “chaotic” superpositions
of large numbers of Hartree-Fock configurational basis states. This situation takes place in some rare-earth atoms
and many open-shell multiply charged ions excited in the process of electron recombination. Our theory describes
resonant multielectron recombination via dielectronic doorway states leading to such compound resonances. The
result is a radiative capture cross section averaged over a small energy interval containing several compound
resonances. In many cases individual resonances are not resolved experimentally (since the interval between
them is small, e.g., �1 meV, possibly even smaller than their radiative widths); therefore, our statistical theory
should correctly describe the experimental data. We perform numerical calculations of the recombination cross
sections for tungsten ions Wq+, q = 18–25. The recombination rate for W20+ measured recently [Schippers et al.
Phys. Rev. A 83, 012711 (2011)] is 103 greater than the direct radiative recombination rate at low energies, and
our result for W20+ agrees with the measurements.
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I. INTRODUCTION

The majority of atoms in highly excited states and many
open-shell (e.g., rare-earth) atoms, even in vicinity of the
ground state, behave as complex, chaotic many-electron sys-
tems. They are characterized by dense level spectra and strong
configuration mixing. The corresponding many-electron wave
functions are mixtures of large numbers of many-excited-
electron basis states (Slater determinants) with nearly random
mixing coefficients. Obtaining detailed information about such
systems by standard theoretical methods, such as configuration
interaction, becomes problematic because of the sheer size of
the effective Hilbert space. In fact, the experiment often does
not resolve individual energy levels, so a complete description
is to some extent pointless.

On the other hand, such complex systems can be described
using statistical approaches. Statistical methods for chaotic
compound states are widely used in nuclear physics (see,
e.g., Refs. [1–5]). Similar methods have been developed
for open-shell atomic systems [6–9]. In particular, extensive
numerical calculations were performed for the cerium atom to
test the assumptions and predictions of the statistical theory
[6]. These works examined the properties of the Hamiltonian
matrix in chaotic many-body systems, statistics of energy-level
spacings, dependence of mean orbital occupation numbers
on the excitation energy, statistics and mean-squared values
of electromagnetic amplitudes between chaotic many-body
states, enhancement of weak perturbations in such states, and
electronic and electromagnetic widths of chaotic compound
resonances. Some aspects of the statistical theory were also
tested for multicharged ions [7–9].

In the present paper we want to use the statistical theory
to describe the effect of compound resonances on electron
recombination with open-shell multicharged ions. Electron

recombination is an important process in laboratory and
cosmic plasmas, as well as in ion storage rings. Theory and
experiment agree very well for relatively simple systems with
one or two valence electrons above closed shells (see, e.g.,
Ref. [10]). For more complex systems theory and experiment
often deviate significantly. For example, strong enhancements
of the recombination rate were observed for Au25+ [11],
U28+ [12], and W20+ [13] at low electron energies. For such
ions the observed recombination rate is orders of magnitude
greater than that due to direct radiative recombination (RR).
In simpler systems the enhancement is due to resonant
dielectronic recombination, though even for ions like Fe9+ 3p5

and Fe10+ 3p4, the dielectronic recombination appears to be
deficient [14]. In complex open-shell ions such as Au25+ 4f 8

and isoelectronic W20+, the absolute majority of the reso-
nances correspond to many-excited-electron eigenstates which
have very high density (exponentially small level spacings). In
Refs. [7,8] we used a statistical approach to show that a factor
of 200 enhancement over RR observed in Au25+ [11] is due to
electron capture in these compound resonances.

In this paper we use the statistical theory to calculate the
recombination rates for tungsten ions Wq+, q = 18–25. Our
results for W20+, where the measured rate at low (∼1 eV)
energies is 103 times higher than the radiative rate [13], are in
good agreement with experiment. For other tungsten ions we
predict similarly strong enhancements of the recombination
rate.

A detailed derivation of the statistical theory for the
recombination cross section is presented in the next section.
Numerical calculations based on our statistical theory are
somewhat similar to those of standard dielectronic recombi-
nation. However, in the statistical theory one does not need
to diagonalize potentially very large Hamiltonian matrices for
the excited states of the compound ion. Instead, the statistical
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FIG. 1. Schematic diagram of electron capture into a strongly
mixed multiconfigurational eigenstate (shaded block) through a
dielectronic doorway configuration h−1ab. Wavy lines show the
Coulomb interactions.

formalism contains new parameters, namely, the spreading
width �spr and average electron orbital occupation numbers in
the initial (ground) state of the ion. The total cross section of
electron capture into compound resonances is given by

σ̄c = π2

2k2

∑
abh,lj

�spr
|〈a,b|v̂|h,εlj 〉 − 〈b,a|v̂|h,εlj 〉|2

(ε − εa − εb + εh)2 + �2
spr/4

×〈n̂hn̂c(1 − n̂a)(1 − n̂b)〉i , (1)

where ε and k are the energy and wave number of the incident
electron; 〈a,b|v̂|h,εlj 〉 and 〈b,a|v̂|h,εlj 〉 are the direct and
exchange Coulomb matrix elements, respectively; the sum is
over the single-particle states (orbitals) of the hole (h) and
excited electrons (a and b), and the partial waves lj of the
incident, continuous spectrum electron (c); and n̂a , n̂b, etc.,
are the corresponding occupation numbers. The expectation
value 〈n̂hn̂c(1 − n̂a)(1 − n̂b)〉i over the initial target state tells
one that to transfer electrons from orbitals h and c into a and
b, the former must be at least partially occupied and the latter
at least partially empty. The continuum electron wave function
c is normalized to the δ function of energy and n̂c = 1.

The presence of the spreading width in Eq. (1) is due to the
fact that the two-electron–one-hole excitation h−1ab is not an
eigenstate of the highly excited ion. This state is embedded
in the dense spectrum of other, multiply excited states and is
strongly mixed with them. This dielectronic state plays the role
of a doorway state which “decays” to more complicated states,
and the width of this “internal” decay is denoted by �spr. This
process is faster than either autoionization or radiative decay
(“external” decays), and �spr is greater than the autoionization
or radiative widths (see below).

Figure 1 presents a perturbative, diagrammatic picture of
electron capture through the doorway h−1ab. In this temporal
picture the process looks as a series of electron collisions.
The initial electron c collides with an atomic electron in
state h and excites it into state b. Then one of the excited
electrons interacts with another atomic electron to produce
more excitations, etc. As a result, the initial electron energy is
shared between many electrons, and none of them has enough
energy to escape. In this way a long-lived compound resonance
is formed. A similar picture of neutron capture by nuclei dates
back to Niels Bohr [15] and is very well known to nuclear
physicists. This temporal picture assumes that individual time
steps δt can be resolved. However, the uncertainty relation,
δtδE � h̄, would then require a large energy uncertainty δE.
In the recombination process the total energy of the system
“electron + ion” is well defined. This means that all the
components (steps in the process in Fig. 1) are present in
the long-lived quasistationary compound state which captures

the electron. The language of strong configuration mixing is
more appropriate in this case. With a perfect energy resolution
one would see a very dense spectrum of narrow, possibly
overlapping resonances. Broad doorway dielectronic states
(with width �spr) can only introduce a variation of the average
height of these narrow compound resonances on the energy
scale �ε ∼ �spr.

Compared with the total resonant capture cross section, the
recombination cross section

σ̄r = ωf σ̄c (2)

contains an additional factor ωf , known as the fluorescence
yield. It accounts for the probability of radiative stabilization of
the resonances (as opposed to autoionization) and is given by

ωf = �(r)

�(r) + �(a)
, (3)

where �(r) and �(a) are the resonance radiative and autoion-
ization widths, respectively. Expressions for these quantities
and for the spreading width are presented in the next section.

Note that the capture cross section (1) is not very sensitive
to the specific value of the spreading width �spr, which for
multicharged ions is about 0.5 atomic units (a.u.) [7] (see
Table I in Sec. III). After angular reduction of the Coulomb
matrix elements in Eq. (1) [Sec. II, Eq. (30)], numerical
calculations of the capture cross section are straightforward.

An additional simplification occurs in heavy open-shell ions
like Au25+ and W20+, which have almost unit fluorescence
yield. Indeed, the compound states in these ions contain
very large numbers of principal basis-state components,
N ∼ 104. Each component contributes to the radiative decay
into a large number of states below this compound state.
In contrast, only one or few dielectronic (doorway) state
components have nonzero Coulomb matrix elements that allow
electron autoionization into the continuum [see Fig. 1 and
Eq. (1)]. Therefore, the autoionization width of the compound
resonance is suppressed by the small weight factor 1/N of the
dielectronic components in the compound state. This means
that the captured low-energy electron cannot escape, i.e., after
the capture the radiative process happens with nearly 100%
probability. (A similar effect in neutron capture by nuclei
is described, e.g., in Ref. [16].) In this situation �(a) �
�(r) and ωf ≈ 1, so that the electron recombination cross
section, Eq. (2), is independent of the radiative width. In this
regime one observes maximum chaos-induced enhancement
of the resonant multielectron recombination. For example,
the electron capture cross section calculated using Eq. (1) for
Au25+ [8], was found to be in good agreement with experiment
at low energies. On the other hand, in ions with a smaller
number of active electrons, the number of components N may
not be so large, leading to �(a) > �(r) and ωf < 1.

II. THEORY

A. Resonant recombination cross section

The resonant radiative electron-ion recombination cross
section is given by the sum over the resonances ν with the
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angular momentum and parity Jπ ,

σr =
∑

ν

g(J )σν, (4)

where g(J ) = (2J + 1)/[2(2Ji + 1)] is the probability factor
due to random orientation of the electron spin and angular
momentum Ji of the target ion [17]. The individual resonant
contributions σν are given by the Breit-Wigner formula [17],

σν = π

k2

�(a)
ν �(r)

ν

(ε − εν)2 + �2
ν/4

, (5)

where �(r)
ν is the the radiative decay rate (the total “inelastic

width”), �(a)
ν is the autoionization decay rate (the “elastic

width”), and �ν = �(r)
ν + �(a)

ν is the total width of the level ν.
(We assume here that other inelastic channels, e.g., electronic
excitation, are closed, which is correct at low incident electron
energies.) The energy of the νth resonance is given relative
to the ionization threshold I of the final compound ion,
εν = Eν − I .

For systems with dense compound resonance spectra, the
recombination cross section displays rapid energy dependence
that may not even be resolved experimentally. Thus it is natural
to average the cross section over an energy interval �ε, which
is large compared with the small mean level spacing DJπ and
the total resonance width, but much smaller than ε. This gives

1

�ε

∫
σνdε = 2π2

k2

�(r)
ν �(a)

ν

�ε�ν

, (6)

where the integration limits are formally infinite, since the
contribution of each resonance to the cross section decreases
rapidly away from ε ≈ εν . The number of resonances with
a given Jπ within �ε is �ε/DJπ , and after averaging, the
recombination cross section (4) becomes

σ̄r = π2

k2

∑
Jπ

2J + 1

(2Ji + 1)DJπ

〈
�(r)�(a)

�

〉
. (7)

Here 〈. . . 〉 means averaging of the width factor at the given
energy.

If the fluorescence yield ωf = �(r)/� fluctuates weakly
from resonance to resonance, the recombination cross section
σ̄r can be factorized, i.e., σ̄ r

c = ωf σ̄c. For ωf ≈ 1 the energy-
averaged capture cross section

σ̄c = π2

k2

∑
Jπ

(2J + 1)

(2Ji + 1)

〈�(a)〉
DJπ

(8)

is the same as the recombination cross section.
In the opposite case of small radiative widths, autoioniza-

tion dominates (�(r) � �(a)) and ωf � 1, so Eq. (7) yields
the recombination cross section in the form

σ̄ a
r = π2

k2

〈�(r)〉
(2Ji + 1)

∑
Jπ

(2J + 1)ρJπ , (9)

where ρJπ = 1/DJπ is the level density and 〈�(r)〉 is given by
Eq. (34). Note that the sum in Eq. (9) is the total density of
states, which can be found without constructing states with
definite J .

FIG. 2. Level density in Au24+. The black dots are the result
of the numerical calculation [7]. The solid line is the analytical fit,
ρ(E) = AE−ν exp(a

√
E), motivated by the level density calculated

using the Fermi gas model [1,7]. The inset shows the densities of
states with different J at ionization energy E = I .

To estimate the recombination cross section in the general
case one can use the following formula:

σ̄r ≈ σ̄cσ̄
a
r

σ̄c + σ̄ a
r

. (10)

It follows from Eqs. (7)–(9) if ωf does not depend on J .

B. Nature of chaotic compound states

The density of excited states ρ(E) in a many-electron ion,
especially with an open shell, increases rapidly (exponentially)
as the number of excited electrons increases. Consider n

electrons that can be distributed among a number of single-
electron states g = ∑

l 2(2l + 1), where l is the orbital angular
momentum of the subshells available. The total number of
many-body states that can be constructed is given by

g!

n!(g − n)!
≈ exp[n ln(g/n) + n]√

2πn
, (11)

where we used the Stirling formula and assumed g � n.
Equation (11) indicates exponential increase of the number

of many-electron states and the corresponding decrease of the
energy interval between them as the number of “active” elec-
trons n increases. For example, Fig. 2 shows how the density
of multielectron excited states of Au24+ increases with energy
E. The small level spacings between the states mean that even
a small residual electron-electron interaction will cause strong
nonperturbative mixing of the many-electron configuration
basis states (Slater determinants) |�k〉. This occurs when the
off-diagonal matrix elements of the Hamiltonian Hij become
greater than the energy spacing Dij between the basis states i

and j coupled by the residual interaction, Hij > Dij .
When the mixing is strong, each eigenstate

|�ν〉 =
∑

k

C
(ν)
k |�k〉 (12)

contains a large number N of principal components |�k〉, i.e.,
basis states for which the expansion coefficients have typical
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FIG. 3. Components of the 590th eigenstate with J π = 13/2−

in Au24+ from a two-configuration calculation [7] and C2
k (E)

(histogram) fit by the Breit-Wigner formula, Eq. (14) (solid
line). The two configurations, 4f 3

5/24f 3
7/25p1/25p3/25f7/2 and

4f 3
5/24f 3

7/25p1/25d3/25g7/2, produce a total of 143 360 many-electron

states with J from 1
2 to 35

2 .

values C
(ν)
k ∼ 1/

√
N . (Recall the normalization condition∑

k |C(ν)
k |2 = 1.) The number of principal components can be

estimated as N ∼ �spr/D, while the spreading width is given
by the golden-rule-like formula

�spr 	 2πH 2
ij

D
, (13)

and D is the mean level spacing between the basis states (or
eigenstates). Such eigenstates are called compound states and
are well known, e.g., in nuclear physics literature [1]. Owing
to the strong mixing, the only good quantum numbers that can
be used to classify the eigenstates are the exactly conserved
total angular momentum and parity Jπ , and the energy.

For example, in Au24+ the mean spacing between the
excited states with a given angular momentum and parity, near
the ionization threshold, is DJπ ∼ 1 meV and �spr ∼ 10 eV, so
that N ∼ �spr/D ∼ 104 [7]. Numerical calculations involving
a relatively small number of configurations confirm that in this
case the eigenstates are indeed chaotic superpositions of the
basis states (see Fig. 3).

The energies Ek of the principal basis components lie
within the spreading width of the eigenenergy Eν of the

compound state, |Ek − Eν | � �spr. The components outside
the spreading width decrease quickly, so that they do not
give much contribution to the normalization. It was tested in
Refs. [6,7] that components of the chaotic eigenstates have the
statistics of Gaussian random variables with zero mean (Fig. 3,
top). On the other hand, the variation of their mean-squared
value as a function of energy (Fig. 3, bottom) is described well
by the Breit-Wigner profile,

∣∣C(ν)
k

∣∣2 = N−1
�2

spr/4

(Ek − Eν)2 + �2
spr/4

, (14)

with N = π�spr/2D fixed by normalization,

∑
k

∣∣C(ν)
k

∣∣2 	
∫ ∣∣C(ν)

k

∣∣2
dEk/D = 1.

Note that the degree of mixing in such chaotic, compound
states is effectively complete, i.e., all basis states that can
be mixed (within a certain energy range) are mixed together.
These states cannot be described in terms of electronic
configurations, as each eigenstate contains significant con-
tributions of all nearby configurations. These properties of
chaotic compound states enable one to calculate mean-squared
matrix elements of different operators without complete
diagonalization of large configuration-interaction Hamiltonian
matrices.

C. Mean-squared matrix elements between compound states

Consider a two-body operator (e.g., the Coulomb interac-
tion)

V̂ = 1

2

∑
abch

〈ab|v̂|hc〉a†
aa

†
bahac.

A matrix element of V̂ between two compound states, |�ν〉
and |�i〉, is given by [see Eq. (12)]

〈�ν |V̂ |�i〉 =
∑
kk′

C
(ν)∗
k C

(i)
k′ 〈�k|V̂ |�k′ 〉 (15)

or

〈�ν |V̂ |�i〉 = 1

4

∑
abch

(〈ab|v̂|hc〉 − 〈ba|v̂|hc〉)

×〈�ν |a†
aa

†
bahac|�i〉, (16)

where 〈�ν |a†
aa

†
bahac|�i〉 determines the contribution of the

two-particle transition ch → ab. Due to the assumption that
the expansion coefficients for chaotic compound states are

random and uncorrelated (C(ν)
k = C

(ν)
k

∗
C

(i)
k′ = 0 for ν = i), the

value of the matrix element averaged over many compound
states ν is zero:

〈�ν |V̂ |�i〉 = 0, 〈�ν |a†
aa

†
bahac|�i〉 = 0. (17)

To determine the autoionization width (Sec. II D) we need
to calculate the mean-squared matrix element. It is derived
using the statistical properties of the expansion coefficients,
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C
(ν)∗
k C

(ν)
l = |C(ν)

k |2δkl , so that

〈�ν |a†
aa

†
bacah|�i〉〈�i |a†

c′a
†
h′ab′aa′ |�ν〉

= δaa′δbb′δcc′δhh′ |〈�ν |a†
aa

†
bahac|�i〉|2 + . . . , (18)

where the dots correspond to three analogous terms with
permutations of a and b, and c and h. Hence, the mean-squared
matrix element is

|〈�ν |V̂ |�i〉|2 = 1

4

∑
abch

|〈ab|v̂|hc〉 − 〈ba|v̂|hc〉|2

× |〈�ν |a†
aa

†
bahac|�i〉|2. (19)

Let us introduce the strength function

w(Ek; Eν,�spr,N ) ≡ C
(ν)2
k , (20)

which describes the spreading of the component k over the
eigenstates ν (C(ν)

k are assumed to be real). This function
depends on the number of principal components N of the
eigenstate [Eq. (12)], the spreading width �spr, and the differ-
ence Eν − Ek between the energies of the compound state and
component k. In the simplest model [1] w(Ek; Eν,�spr,N ) is a
Breit-Wigner function [cf. Eq. (14)]. Using Eq. (15), we then
obtain

|〈�ν |a†
aa

†
bahac|�i〉|2

=
∑
kk′

∑
ll′

C
(ν)
k C

(ν)
l C

(i)
k′ C

(i)
l′

×〈�k|a†
aa

†
bahac|�k′ 〉〈�l′ |a†

ca
†
habaa|�l〉

=
∑
kk′

wi(Ek′)wν(Ek)

×〈�k′ |a†
ca

†
habaa|�k〉〈�k|a†

aa
†
bahac|�k′ 〉. (21)

To obtain the last expression we used the properties of the
components and the definition (20), and denoted wi(Ek′) ≡
w(Ek′ ; Ei,�

(i)
spr,Ni) and wν(Ek) ≡ w(Ek; Eν,�

(ν)
spr,Nν).

We can assume, without the loss of generality, that the
number of principal components |�k〉 in state ν is greater than
or equal to the number of components |�k′ 〉 of state i, i.e.,
�(ν)

spr/Dν � �(i)
spr/Di . The matrix element 〈�k|a†

aa
†
bahac|�k′ 〉

does not vanish only if |�k〉 = a
†
aa

†
bahac|�k′ 〉, so that Ek −

Ek′ 	 εa + εb − εh − ε ≡ ωab,ch. Using closure to sum over
k in Eq. (21), we obtain

|〈�ν |a†
aa

†
bahac|�i〉|2 =

∑
k′

wi(Ek′)wν(Ek′ + ωab,ch)

×〈�k′ |n̂hn̂c(1 − n̂a)(1 − n̂b)|�k′ 〉.
(22)

In deriving this equation we used the anticommutation re-
lations satisfied by the creation and annihilation operators,
and introduced the occupation number operators n̂a = a

†
aaa .

The matrix element 〈�k′ |n̂hn̂c(1 − n̂a)(1 − n̂b)|�k′ 〉 is equal
to unity if the orbitals h and c are occupied, while the orbitals a

and b are vacant in the state |�k′ 〉, i.e., the transition ch → ab

is possible.

If one assumes that the single-electron-state occupancies
vary slowly with the excitation energy, then the matrix element
of the operator n̂hn̂c(1 − n̂a)(1 − n̂b) in Eq. (22) can be
replaced by its expectation value,

∑
k′

wi(Ek′)〈�k′ |n̂hn̂c(1 − n̂a)(1 − n̂b)|�k′ 〉

= 〈n̂hn̂c(1 − n̂a)(1 − n̂b)〉i , (23)

subject to the normalization condition
∑

k′ wi(Ek′) = 1. The
right-hand side of Eq. (23) is the value of the occupancy
times “emptiness” in the compound state |�i〉, averaged over
a number of neighboring states.

Replacing the matrix element 〈�k′ | · · · |�k′ 〉 by its average
(23) in Eq. (22), and changing summation to integration, one
obtains

|〈�ν |a†
aa

†
bacah|�i〉|2 = 〈n̂hn̂c(1 − n̂a)(1 − n̂b)〉i

×
∫

wi(Ek′)wν(Ek′ + ωab,ch)
dEk′

Di

.

(24)

This result can be written in the following form:

|〈�ν |a†
aa

†
bahac|�i〉|2 = 〈n̂hn̂c(1 − n̂a)(1 − n̂b)〉i

×Dνδ̃
(
�(i)

spr,�
(ν)
spr,�

)
. (25)

In this expression,

δ̃
(
�(i)

spr,�
(ν)
spr,�

) ≡ 1

Dν

∫
w

(
Ek′ ; Ei,�

(i)
spr,Ni

)

×w
(
Ek′ + ωab,ch; Eν,�

(ν)
spr,Nν

)dEk′

Di

, (26)

where � ≡ Eν − Ei − ωab,ch is a “spread” δ function, which
was studied in Refs. [2,3,6]. It peaks at � = 0 and describes
the approximate energy conservation for the transition between
compound states induced by the two-electron transition ch →
ab and broadened by the spreading widths. For the Breit-
Wigner strength functions one has

δ̃
(
�(i)

spr,�
(ν)
spr,�

) = 1

2π

�spr

�2 + �2
spr/4

, (27)

where �spr = �(i)
spr + �(ν)

spr. From Eqs. (19) and (25), the mean-
squared matrix element of the two-body operator between the
compound states is finally obtained as

|〈�ν |V̂ |�i〉|2 = 1

4

∑
abch

|〈ab|v̂|hc〉 − 〈ba|v̂|hc〉|2

×〈n̂hn̂c(1 − n̂a)(1 − n̂b)〉iDνδ̃
(
�(i)

spr,�
(ν)
spr,�

)
.

(28)

In this expression the summation is carried out over the single-
electron states a, b, h, and c. Note that if |�i〉 is a simple,
unmixed state, there is no sum over k′ in Eqs. (21)–(23). In
this case �(i)

spr = 0 and �spr = �(ν)
spr in Eq. (27).
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For a one-body operator M̂ = ∑
ab Maba

†
aab, the mean-

squared matrix element is obtained similarly [2,3,6]:

|〈�ν |M̂|�f 〉|2 =
∑
ab

|〈a|m̂|b〉|2〈n̂a(1 − n̂b)〉ν

×Df δ̃
(
�(ν)

spr,�
(f )
spr ,Ef − Eν − ωba

)
, (29)

where ωba = εb − εa is the energy of the single-electron
transition a → b.

D. Capture cross section and autoionization width

The autoionization width �(a)
ν = 2π |〈�ν |V̂ |�i〉|2 gives

the transition rate between the initial state, e− + Aq+, and
the multiply exited compound resonance of the ion A(q−1)+
due to the two-body Coulomb interaction V̂ . Unlike the
complex multiply excited states |�ν〉, the initial state of the
recombination process is simple. It describes an electron with
the energy ε incident on the ground (or low-lying excited)
state |�0〉 of the target, which is often dominated by one
configuration. It is clear that the autoionization width averaged
over compound resonances is determined by the mean-squared
matrix element of the Coulomb interaction between electrons,
which is given by Eq. (28). The initial state |�i〉 = |�0,c〉
is thus a compound state with negligible spreading width
�(i)

spr � �(ν)
spr. The total width of the function δ̃ [Eq. (27)] is

dominated by the compound resonance width �spr ≈ �(ν)
spr.

Nonzero contributions to the sum in Eq. (28), i.e., to �(a),
arise from the basis states, which differ from the initial state
|�0,c〉 by the single-particle states of two electrons. Therefore,
it is sufficient to sum over the doubly excited basis states,

�(a) = 2π
∑

d

C
(ν)2
d |〈�d |V̂ |�0,c〉|2.

Such two-electron excitations |�d〉 play the role of doorway
states for the electron capture process. Since these states are
not the eigenstates of the system, they have a finite energy
width �spr. The wave function of a doorway state can be
constructed using the creation-annihilation operators |�d〉 =
a
†
aa

†
bah|�0,c〉, where a ≡ nalajama and b ≡ nblbjbmb are

excited single-electron states, and h ≡ nhlhjhmh corresponds
to the hole in the target ground state. Of course, to form the
doorway states with a given total angular momentum J , the
excited electrons and the ionic residue must be coupled into J .
However, the 2J + 1 factor and summation over J in Eq. (8)
account for all possible couplings. This means that the sum
over the eigenstates in Eq. (8) can be replaced by the sum over
the one-hole–two-electron excitation, as in Eq. (28), and one
obtains the capture cross section in the form of Eq. (1).

Note that when the number of active electrons and orbitals
is large, the occupation numbers for different orbitals become
statistically independent. In this case, the correlated product
of the single-particle occupancies, Eq. (23), can be approxi-
mated by the fractional occupation numbers of the electronic
subshells with definite j . The orbital c is taken as a continuum,
c ≡ εljm, in Eq. (1). Its wave function is normalized to the δ

function of energy, and it is occupied in the initial state, i.e.,
n̂c = 1. After summation over the magnetic quantum numbers
ma , mb, etc. and angular reduction of the Coulomb matrix

elements, the final expression for the capture cross section is

σ̄c = π2

k2

∑
abh,lj

�spr

(ε − εa − εb + εh)2 + �2
spr/4

×
∑

λ

〈a,b‖Vλ‖h,εlj 〉
2λ + 1

[
〈a,b‖Vλ‖h,εlj 〉 − (2λ + 1)

×
∑
λ′

(−1)λ+λ′+1

{
λ ja j

λ′ jb jh

}
〈b,a‖Vλ′ ‖h,εlj 〉

]

× nh

2jh + 1

(
1 − na

2ja + 1

) (
1 − nb

2jb + 1

)
. (30)

Here na , nb, and nh are the occupation numbers of the
corresponding subshells (ranging from 0 to 2ja + 1, etc.), and
εa , εb, and εh are their energies. The two terms in square
brackets represent the direct and exchange contributions, and
〈a,b‖Vλ‖h,εlj 〉 is the reduced Coulomb matrix element,

〈a,b‖Vλ‖h,c〉 =
√

(2ja + 1)(2jb + 1)(2jh + 1)(2jc + 1)

× ξ (la + lc + λ)ξ (lb + lh + λ)

×
(

λ ja jc

0 − 1
2

1
2

)(
λ jb jh

0 − 1
2

1
2

)
Rλ(a,b; h,c),

(31)

where ξ (L) = [1 + (−1)L]/2 is the parity factor and

Rλ(a,b; h,c) =
∫∫

rλ
<

rλ+1
>

[fa(r)fc(r) + ga(r)gc(r)]

× [fb(r ′)fh(r ′) + gb(r ′)gh(r ′)]drdr ′ (32)

is the radial Coulomb integral, f and g being the upper and
lower components of the relativistic orbital spinors.

Once σ̄c is known, Eq. (8) allows one to estimate the average
ratio �(a)/D for a typical Jπ ,〈

�(a)

D

〉
= k2(2Ji + 1)σ̄c

π2
∑

Jπ (2J + 1)
= k2(2Ji + 1)σ̄c

2π2J 2
max

, (33)

where the sum in the denominator is over the angular
momentum and parity Jπ , which contribute effectively to the
capture cross section. For example, Jmax ≈ 10 and Ji = 6 for
the recombination of Au25+ and W20+. A typical distribution
of level densities ρJπ for different J is shown on the inset
of Fig. 2.

E. Radiative width

The second step of the recombination process is radiative
stabilization. Any excited electron in the compound state |�ν〉
can emit a photon. Using Eq. (29), the total photoemission rate
�(r) can be estimated as a weighted sum of the single-particle
rates,

�(r) 	
∑
a,b

4ω3
ba

3c3
|〈a‖d̂‖b〉|2

〈
nb

2jb + 1

(
1 − na

2ja + 1

)〉
ν

,

(34)

where ωba = εb − εa > 0, 〈a‖d̂‖b〉 is the reduced dipole
operator between the orbitals a and b, and 〈. . . 〉ν is the
mean occupation number factor. The mean subshell occupation
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numbers for a given energy can be obtained by averaging over
the basis states involved, e.g.,

na(E) =
∑

k

C2
k (E)n(k)

a , (35)

where n(k)
a is the occupation number of the subshell a in the

basis state k.
Since |�ν〉 have large numbers of principal components N ,

the fluctuations of their radiative widths are small, ∼ 1/
√

N .
This can also be seen if one recalls that a chaotic multiply
excited state is coupled by photoemission to many lower-lying
states, and the total radiative width is the sum of a large number
of (strongly fluctuating) partial widths. A similar effect is
known in compound nucleus resonances in low-energy neutron
scattering [1,16]. In multicharged ions with dense spectra of
chaotic multiply excited states, the autoionization widths are
suppressed as �(a) ∝ 1/N . Physically this happens because
the coupling strength of the two-electron doorways state to the
continuum is shared between many complex, multiply excited
eigenstates. The radiative width does not have this suppression,
since all components of a compound state contribute to the
radiative decay. As a result, the radiative width may dominate
in the total width of the resonances, �(r) � �(a), making
their fluorescence yield close to unity. Our numerical results
for the recombination of Au25+ presented in [8] support this
picture.

III. NUMERICAL RESULTS

In this section we apply our theory to calculate the recom-
bination rate for the tungsten ions from W17+ to W24+. Experi-
mental data are available for the recombination of W20+ form-
ing W19+ [13]. We will use this system as an example to de-
scribe the calculations. Calculations for other ions are similar.

When an electron recombines with W20+, it can be captured
into an excited state of the compound W19+ ion. Its ground state
belongs to the 1s2 . . . 4f 9 configuration. Figure 4 shows the
energies of its relativistic orbitals nlj obtained in the Dirac-
Fock calculation. All orbitals below the Fermi level, 1s to 4f ,
were obtained in the self-consistent calculation of the W19+
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FIG. 4. Energies of the occupied and vacant single-particle
orbitals of W19+ obtained in the Dirac-Fock calculation.

ground state. Each of the excited-state orbitals above the Fermi
level: 5s, 5p, etc., was calculated by placing one electron into
it, in the field of the frozen W20+1s2 . . . 4f 8 core. The energy
of the highest orbital occupied (partially) in the ground state
is ε4f7/2 = −18.41 a.u. This value gives an estimate of the
ionization potential of W19+: I ≈ |ε4f7/2 | = 18.41 a.u. This
value is in agreement with NIST data, I = 18.47 a.u. [18].

Excited states of the ion are generated by transferring one,
two, three, etc. electrons from the ground-state orbitals into
the empty orbitals above the Fermi level (Fig. 4), or into
the partially occupied 4f orbitals. We are interested in the
excitation spectrum of W19+ near its ionization threshold.
This energy (∼20 a.u.) is sufficient to push up a few of the
nine 4f electrons, and even excite one or two electrons from
the 4d orbital. However, the preceding 4p orbital is already
deep enough to be considered inactive. Thus, we treat W19+ as
a system of 19 electrons above the frozen Kr-like 1s2 . . . 4p6

core. Note that in constructing the excited-state configurations,
we disregard infinite Rydberg series which correspond to the
excitation of one electron in the field of W20+. Rydberg states
belong to a single-particle aspect of the e− + W20+ problem
and are not expected to contribute much to the recombination
cross section in this system.

Assuming that the fluorescence yield is close to unity (see
below), we calculate the recombination cross section from
Eq. (30). Before using this formula, one needs to obtain a list of
two-electron–one-hole excitations of W19+ with energies close
to the ionization threshold, which act as the doorway states.
One also needs to estimate the spreading width �spr. For low-
energy electron recombination, we restrict the consideration
to the energy interval,

E = I ± �E/2, (36)

where the energy is measured from the ground state of the final-
state ion, and we choose �E ∼ �spr. In practice, we start from
some initial estimate of the spreading width and subsequently
find a more accurate value using an iterative procedure.

The spreading width is obtained from Eq. (13), where the
mean-squared off-diagonal Hamiltonian matrix element H 2

ij is
found by averaging over Ns basis states whose energies Ek ≡
Hkk lie within the energy interval (36), and D = �E/Ns .
The list of two-electron–one-hole excitations h−1ab which
contribute to the sum (30) includes configurations with basis
states in the interval (36). It is known that the spreading
width is a robust characteristic of the system. Indeed, we have
checked that when more configurations are included, both D

and H 2
ij decrease, whereas �spr does not change much (see also

Ref. [9]).
When finding H 2

ij and D we use basis states with definite
projection of the total angular momentum Jz corresponding
to the minimal value of Jz (0 or 1/2), rather than the states
with definite total angular momentum J . This method is sig-
nificantly simpler than the use of the basis states with definite
J and Jz, and produces the same results for �spr [Eq. (13)].

Table I shows the spreading widths for the compound ions
of tungsten W(q−1)+, with excitation energies close to the
ionization threshold, formed in the process of low-energy
electron recombination with W(q)+. With the exception of
the target ion with the smallest number of 4f electrons
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TABLE I. Electron capture cross sections σ̄c and rate coefficients
αc for the tungsten ions W(q)+ with the open 4f subshell, and
properties of the compound ions W(q−1)+ at excitation energies close
to the ionization threshold I .

Target I a D �spr σ̄c
b αc

b

ion (a.u.) (10−4 a.u.) K (a.u.) (10−16 cm2) (10−7 cm3/s)

W18+4f 10 15.5 0.2 70 0.56 25 1.5
W19+4f 9 17.0 0.1 93 0.65 29 1.7
W20+4f 8 18.5 0.1 105 0.68 30 1.8
W21+4f 7 20.0 0.1 96 0.68 34 2.0
W22+4f 6 21.8 0.2 76 0.65 16 0.98
W23+4f 5 23.5 0.4 48 0.59 11 0.67
W24+4f 4 25.2 1.3 25 0.50 19 1.1
W25+4f 3 27.0 11 5 0.16 12 0.7

aIonization energy of the final-state ions (Ref. [18]).
bCapture cross section from Eq. (30) and rate coefficient for incident
electron energy ε = 1 eV.

(W25+4f 3), the spreading widths are in the range 0.5–0.7 a.u.
In fact, the value of �spr does not strongly affect the magnitude
of the capture cross section [Eq. (30)], since the area under the
Breit-Wigner contour corresponding to each doorway h−1ab

is independent of �spr.
As discussed in Sec. II B, strong mixing of the basis states

results in the eigenstates with large numbers of principal
components, N ∼ �spr/D ∼ H 2

ij /D
2 � 1. This occurs when

K =
√

H 2
ij /D � 1. (37)

Table I shows that this criterion is fulfilled for all the ions
studied and that the expected number of principal components
is indeed large, N ∼ 104. As explained in Sec. II E, in this case
one can expect large fluorescence yields, ωf ≈ 1. This means
that the recombination cross section will be at the limit given
by the total electron capture cross section [Eq. (30)].

In the present calculations of σ̄c [Eq. (30)], we also
include in a semiempirical way the effect of screening of
the Coulomb interaction between valence electrons by core
electrons. This is done by introducing the screening factors
fλ in the two-electron Coulomb integrals, assuming that
these factors depend on the Coulomb integral multipolarity
λ only. The factors were calculated to be f1 = 0.7, f2 = 0.8,
f3 = 0.9 [19]. Coulomb integrals of other multipolarities are
not modified. The above values of the screening factors were
found in the calculations for other atomic systems. However,
in practice they change little from one atom to another.

To compare with experiment for W20+ [13], the cross
section obtained from Eq. (30) is converted into the rate
coefficient αc = σ̄cv, where v is the velocity of the incident
electron. The result is shown in Fig. 5 by the solid line.
Since the sum in Eq. (30) has a weak dependence on the
electron energy, the capture cross section at low energies is
proportional to 1/ε, and the corresponding rate coefficient
behaves as αc ∝ 1/v. The calculated rate agrees well with the
experimental data in the energy range of 0.1–1 eV. At higher
energies the experimental rate coefficient tends to drop faster
than 1/v.
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FIG. 5. (Color online) Recombination rate coefficient of W20+.
Dashed line is the direct radiative recombination rate, Eq. (38); solid
line is the capture rate calculated using the present theory, Eq. (30);
dot-dashed line shows the same, taking into account the velocity
distribution of the electron beam (see text); solid circles represent the
measured rate coefficient [13].

Figure 5 also shows the rate coefficient for the direct
radiative recombination. The latter is estimated using the
Kramers formula for the radiative recombination cross section
[20] (in atomic units),

σ r
d = 32π

3
√

3c3

Z2
i

k2
ln

(
Zi

n0k

)
, (38)

where Zi is the ionic charge (e.g., Zi = 20 for e− + W 20+),
and n0 is the principal quantum number of the lowest
unoccupied ionic orbital (n0 = 5 for W20+) [7]. The energy
dependence of this cross section is close to 1/ε, and the
corresponding rate coefficient (dashed line in Fig. 5) is 3 orders
of magnitude smaller than the measurement in the energy range
shown.

Below ε = 0.1 eV the measured recombination rate co-
efficient can be affected by the velocity distribution of the
electron beam, which is characterized by two temperatures,
T‖ = 0.15 meV and T⊥ = 10 meV [13]. Taking this into
account (see Eq. (18) in Ref. [8]) reduces the calculated
resonant capture rate below 50 meV (dot-dashed line in Fig. 5),
bringing it into closer agreement with experiment. At higher
energies, inelastic (electronic excitation) channels open, and
the fluorescence yield can drop below unity, reducing the
recombination rate relative to that of resonant capture. Also,
the ground-state configuration of W20+4d104f 8 contains 293
closely spaced fine-structure levels [13]. A few of these are
long lived and can be present in the ion beam, which may
contribute to reduced values of the fluorescence yield.

As discussed above, the capture cross section has a simple
1/ε energy dependence at low electron energies. Hence, in
Table I we show the cross sections and rate coefficients for Wq+
(q = 18–25) calculated at one low electron energy, ε = 1 eV.
We see that the largest cross section is predicted for the ion with
the half-filled 4f subshell. On the other hand, all the cross sec-
tions are within a factor of 3 of each other, and much larger than
what one would expect from the direct RR process [Eq. (38)].

Of course, one must keep in mind that compared with
the capture cross section, the recombination cross section
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contains an additional factor ωf . The fluorescence yield may
be significantly smaller than ωf = 1 for ions, in which the
degree of mixing is not as large as it is in the compound W19+
ion. In particular, this may be the case for the ions in which the
mixing strength K (see Table I) and the number of principle
components N is not too large. In this case one should regard
σ̄c as the upper limit, and use Eqs. (9) and (10) to estimate the
recombination cross section.

IV. CONCLUSIONS

A detailed derivation of the statistical theory of resonant
electron capture by many-electron ions has been presented.
Numerical calculations have been performed for a number
of tungsten ions with a partially filled 4f subshell. The
calculated rate coefficient for W20+ is in agreement with the
measurements at low electron energy. The present approach

can be used to investigate other processes mediated by chaotic,
multielectronic excited states.

Note added: Recently we became aware of the work by
Badnell et al. [21]. Their extensive calculation of dielec-
tronic recombination of W20+ underestimates the experimental
recombination rate at low energies by a factor of 3, but it
achieves agreement with experiment by “partitioning” the
autoionization rates using the Breit-Wigner distribution with a
spreading width of 10 eV.
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