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Electron recombination, photoionization, and scattering via many-electron compound resonances
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Highly excited eigenstates of atoms and ions with open f shell are chaotic superpositions of thousands,
or even millions, of Hartree-Fock determinant states. The interaction between dielectronic and multielectronic
configurations leads to the broadening of dielectronic recombination resonances and relative enhancement of
photon emission due to opening of thousands of radiative decay channels. The radiative yield is close to 100%
for electron energy �1 eV and rapidly decreases for higher energies due to opening of many autoionization
channels. The same mechanism predicts suppression of photoionization and relative enhancement of the Raman
scattering. Results of our calculations of the recombination rate are in agreement with the experimental data for
W20+ and Au25+.
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I. CHAOS AND STATISTICAL THEORY

It is well known that a long-time behavior of a classical
chaotic system is unpredictable due to exponential divergence
of phase-space trajectories. Any small changes in the initial
conditions or computer rounding errors are exponentially
enhanced over time. However, the chaos makes statistical
predictions possible. For example, we cannot predict the
motion of a specific molecule in a gas, but we can predict the
diffusion coefficients, distribution of velocities, pressure, etc.

In isolated quantum many-body systems chaos emerges due
to the exponential growth in the energy-level density caused
by the increase in the number of “active” particles. It follows
the increase in the energy of the system, which allows more
particles to be excited into unoccupied orbitals. Indeed, the
number of ways to distribute n fermions over m orbitals is
exponentially large for n,m � 1, even when n itself is not
very large.

By distributing the particles among orbitals in different
ways one generates the Slater determinant states |i〉 (con-
figuration states) from some mean-field, e.g., Hartree-Fock,
single-particle orbitals. These states serve as the basis for
finding the eigenstates |n〉 = ∑

i C
(n)
i |i〉. When the residual

interaction between the particles exceeds the energy spacing
between the basis states coupled by this interaction, the
eigenstates become chaotic superpositions of thousands or
even millions of basis states |i〉.

The expansion coefficients C
(n)
i in such superpositions

behave largely as independent random variables. They are,
however, subject to the normalization condition

∑
i |C(n)

i |2 =∑
n |C(n)

i |2 = 1. Also, the variance of C
(n)
i displays a system-

atic variation with the energy of the eigenstates and basis states
[1,2]:

∣∣C(n)
i

∣∣2 = D

2π

�spr

(En − Ei)2 + �2
spr/4

. (1)

Here D is the mean level spacing between the basis states
(or eigenstates) with a given total angular momentum and
parity Jp, and �spr = 2πH 2

ik/D is the spreading width. It is

determined by the size of the off-diagonal matrix elements of
the Hamiltonian Hik which mix the basis states.

Many-body quantum chaos occurs in excited states of
all medium and heavy nuclei [1,2]. It is also typical in
atoms and ions with open f shells. In particular, their
excitation spectra demonstrate characteristic Wigner-Dyson
level spacing statistics, and the statistics of electromagnetic
transition amplitudes is close to Gaussian, which are both
signatures of quantum chaos [3–6].

“Exact” calculations of the chaotic eigenstates (compound
states) are impossible in principle, since all minor perturba-
tions (e.g., higher-order correlations and relativistic effects)
are enhanced due to exponentially small level spacings, and
completely change the eigenstates. In this case, however,
one can use statistical theory to predict physical quantities
averaged over a small energy interval containing many
compound states. In the problem of electron recombination
with ions like W20+ and Au25+ such averaging occurs naturally,
and the result of the statistical calculation should match the
experimental observation. Indeed, due to a large number of
decay channels, the widths of the compound states are two
orders of magnitude greater than the exponentially small
spacing between neighboring compound states. As a result,
the cross section at any given energy typically contains
contributions of 102 or more individual resonances.

Note that due to the extremely strong configuration mixing,
approximate quantum numbers such as the orbital occupation
numbers (which define configurations, e.g., 4f 26s5d), the
number of excited electrons ne, and the total orbital angular
momentum L and spin S are not defined for the compound
states. One can only consider average values and distributions
for these parameters. For example, the dependence of the
electron orbital occupation numbers on the orbital energy ε

in the chaotic compound states of atoms and ions is close
to the Fermi-Dirac distribution n(ε,μ,T ), where the chemical
potential μ(E) and the effective temperature T (E) depend on
the total excitation energy E [3,4,6].

Earlier papers [7,8] and reviews [9,10] present the de-
velopment of the statistical theory for the matrix elements
between chaotic compound states. This theory enables one to

1050-2947/2013/88(6)/062713(6) 062713-1 ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.062713


DZUBA, FLAMBAUM, GRIBAKIN, HARABATI, AND KOZLOV PHYSICAL REVIEW A 88, 062713 (2013)

calculate mean values of orbital occupation numbers, squared
electromagnetic amplitudes, electronic and electromagnetic
widths, and enhancement of weak interactions in chaotic
excited states of nuclei, atoms, and multicharged ions [3–13].

II. ELECTRON-ION RECOMBINATION

A. Chaotic compound resonances
and dielectronic doorway states

In most ions except bare ones the electron-ion recombi-
nation rate is enhanced by dielectronic recombination (DR).
In this process the incident electron excites a target electron
to form a quasistationary doubly excited state which then
emits a photon, completing the radiative electron capture
[14]. The DR mechanism often dominates over the direct
radiative recombination (RR), and has been the subject of
intense theoretical and experimental work. Experimentally,
much progress has been due to the use of ion storage rings and
electron-beam ion traps [15–17]. On the theory side, a number
of computational approaches have been used successfully to
describe DR for many simpler ions and to produce data for
plasma modeling (see [18–27] and references therein).

For more complex targets such as U28+ or W20+, con-
ventional DR approaches severely underestimate measured
recombination rates [28,29]. Experiment shows that the re-
combination rates at low (∼1 eV) electron energies in these
ions and in Au25+ exceed the direct RR rates by two orders of
magnitude. At the same time the rates do not show the sharp
resonance structure normally associated with DR [30–32].
Reference [4] explained this phenomenon as being due to
electron capture in multiply excited, strongly mixed, chaotic
eigenstates. It is caused by the open-shell structure of the
compound ion Au24+ and the electronic orbital spectrum with
no large gaps. These features lead to a very dense spectrum of
multiply excited states, as described in Sec. I. The subsequent
calculation [5] based on the statistical theory provided a
quantitative explanation of the enhanced recombination rates
near threshold.

Experimentally, direct evidence of trielectronic recom-
bination (i.e., via resonances with three excited electrons)
was obtained for Be-like ions (N3+, O4+, Cl13+) [33,34].
In these systems electron capture into a Rydberg state was
accompanied by simultaneous 2s2 → 2p2 excitations. Addi-
tionally, trielectronic and quadruelectronic recombination was
observed in Li-like to N-like ions of Ar, Fe, and Kr [35–37]. It
involved intershell excitations leading to 1s−12p3 and 1s−12p4

resonances. However, in the case of chaotic compound
resonances one cannot separate dielectronic, trielectronic, or
any other capture process into a resonance with a fixed number
of excited electrons. Indeed, a compound state is a chaotic
mixture of the states with two, three, four, and even five excited
electrons, and contributions from all of these configurations are
mixed and interfere in the capture amplitude.

Nevertheless, dielectronic states play a special role. To start
with, consider the temporal picture of radiative recombination.
In the first step, the incident electron collides with an ion and
excites one electron (by exchanging a virtual photon) and
produces an intermediate state with two excited electrons.
We call such state a doorway state. This is followed by a

“chain reaction” in which one of the excited electrons collides
with ground-state electrons and excites them. This process
continues until all energy of the incident electron equili-
brates through excitation of as many electrons as possible.
Thus the doorway state (with two excited electrons) “decays”
into other configurations with more excited electrons. This
fast internal decay on time scales τ ∼ �/�spr is characterized
by the spreading width �spr [see Eq. (1)], which is several
orders of magnitude greater than the autoionization or radiative
widths of the dielectronic state. The notion of the spreading
width is somewhat similar to the quasiparticle width in
condensed-matter systems where quasiparticles also decay
into other internal excitations of the system.

Due to the time-energy uncertainty relation the temporal
picture cannot be used if the energy of the system is fixed. In
this case the configuration mixing picture is more appropriate.
According to this, the dielectronic doorway states are present
as components in every chaotic compound state, and their
weights (1) determine the probability of electron capture into
the compound state. The autoionization width of a compound
state n is �(a)

n = ∑
d �

(a)
d |C(n)

d |2, where the sum is taken over
the dielectronic doorway states whose autoionization widths
�

(a)
d are calculated at the incident electron energy ε. By

the normalization condition
∑

n |C(n)
d |2 = 1, the sum of the

autoionization widths of the compound resonances is equal to
the sum of the autoionization widths of the doorway states.
Therefore, the energy-averaged total resonance cross section
may be approximately described by treating the dielectronic
resonances as quasistationary states with the width �spr (see
Sec. III A).

B. Fluorescence yield

The capture or reemission of the electron is mediated
by the dielectronic doorway states. However, they are not
sufficient for describing the process of radiative capture, since
a photon can be emitted at any stage of the “chain reaction.”
Three-electron, four-electron, and five-electron excited states
also radiate, and their total weight in a compound state is
several orders of magnitude greater than that of the dielectronic
states. As a result, the radiative width �(r)

n of the compound
state is enhanced relative to its autoionization width (since
electron emission happens directly from dielectronic states
only). As a result, compound states display strongly enhanced
fluorescence yields ωf = �(r)

n /�n, where �n = ∑
f �

(a)
n→f +

�(r)
n is the total width of the compound resonance n, and the

sum is over all autoionization channels (i.e., autoionization to
the ground and excited states of the ion).

In Refs. [5,11] we argued that the fluorescence yield at
low incident electron energies is close to 100%. Indeed, near
threshold only one autoionization channel (with decay to the
ground state) is available, making the autoionization width
much smaller than the total radiative width which includes
thousands of open photoemission channels. In this case it is
sufficient to calculate the total resonant capture cross section to
describe recombination. However, at higher electron energies,
hundreds of autoionization channels are open (since there
are many low-lying excited states in ions with an open 4f

shell), and the calculation of the fluorescence yield becomes
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necessary. In the present work we show how this can be done
within the statistical theory.

III. CALCULATIONS

A. Theory

The energy-averaged total cross section for electron recom-
bination through the compound resonances is (see, e.g., [11])

σ r = π2

k2

∑
Jp

2J + 1

(2Ji + 1)
ρJp

〈
�

(r)
Jp�

(a)
Jp→i,ε

�Jp

〉
, (2)

where k is the wave number of the incident electron and
i denotes the initial (ground) state of the N -electron target
ion with angular momentum Ji . The sum is over the angular
momentum and parity of the compound states, ρJp = 1/DJp

is the level density of these states for a given Jp in the excited
(N + 1)-electron ion formed by the electron capture, and 〈· · · 〉
denotes averaging over an energy interval 	ε � DJp .

If we assume that the factor in brackets for the dominant
Jp in (2) is approximately the same, we obtain

σ r = π2

k2

�(r)
n �

(a)
n→i,ε

(2Ji + 1)�n

ρ = σ cωf , (3)

where �(r)
n , �(a)

n , and �n are the average widths of the
compound states at energy ε, ρ = ∑

Jp (2J + 1)ρJp is the
total level density of the compound states (which can be
found without constructing the states with definite Jp from
the Hartree-Fock determinant states), ωf = �(r)

n /�n is the
average fluorescence yield, and

σ c = π2

k2

�
(a)
n→i,ε

(2Ji + 1)
ρ (4)

is the energy-averaged total cross section for electron capture
into the compound resonances. It is given explicitly by the sum
over the dielectric doorways (see [5]):

σ c = π2

k2

∑
abh,lj

�spr(
Eci

+ ε − Eci→h̄,a,b

)2 + �2
spr/4

∑
λ

〈a,b‖Vλ‖h,εlj 〉
2λ + 1

[
〈a,b‖V̂λ‖h,εlj 〉 − (2λ + 1)

×
∑
λ′

(−1)λ+λ′+1

{
λ

λ′
ja

jb

j

jh

}
〈b,a‖V̂λ′ ‖h,εlj 〉

]
nh

2jh + 1

(
1 − na

2ja + 1

)(
1 − nb

2jb + 1

)
. (5)

Here Eci
is the energy of the ground-state target ion with

configuration ci and Eci→h̄,a,b is the energy of the dielectronic
doorway obtained from ci by making a hole in orbital h and
adding electrons in orbitals a and b; Eci

+ ε − Eci→h̄,a,b ≈
ε + εh − εa − εb + Q, where εa , εb, and εh are the orbital
energies and Q is the difference in the Coulomb interaction
energies (see, e.g., [4]); na , nb, and nh are the average
occupation numbers of the corresponding orbitals in ci . The
two terms in square brackets in Eq. (5) represent the direct and
exchange contributions,

〈a,b‖Vλ‖h,c〉
=

√
[ja][jb][jh][jc]ξ (la + lc + λ)ξ (lb + lh + λ)

×
(

λ

0

ja

− 1
2

jc

1
2

)(
λ

0

jb

− 1
2

jh

1
2

)
Rλ(a,b; h,c)

is the reduced Coulomb matrix element, in which ξ (L) = [1 +
(−1)L]/2 is the parity selection factor, [ja] ≡ 2ja + 1, and

Rλ(a,b; h,c) =
∫∫

rλ
<

rλ+1
>

[fa(r)fc(r) + ga(r)gc(r)]

× [fb(r ′)fh(r ′) + gb(r ′)gh(r ′)]dr dr ′

is the radial Coulomb integral, f and g being the upper and
lower components of the relativistic radial spinors.

The form of Eq. (5) is similar to the expressions which
emerge in the so-called average-configuration approximation
[38]. The difference between the two approaches is that in
a system with chaotic eigenstates, the averaging that leads
to Eq. (5) occurs naturally due to the strong configuration

mixing, rather then being introduced by hand to simplify the
calculations.

Note that expressions (4) and (5) allow us to calculate
�

(a)
n→i,ε. In order to find the fluorescence yield wf (ε) we need

to calculate the total autoionizing width �(a)
n = ∑

f �
(a)
n→f,ε,

where the sum runs over all states of the target ion with energies
Ef < Ei + ε. The expression for the radiative width of the
compound state was given in Ref. [5],

�
(r)
d =

∑
a,b

4ω3
ba

3c3
|〈a‖d‖b〉|2 nb

2jb + 1

(
1 − na

2ja + 1

)
, (6)

where na and nb are the occupation numbers of orbitals a

and b in the compound state at the incident electron energy ε,
〈a‖d‖b〉 is the reduced single-electron dipole matrix element,
and the sum is over a and b such that ωba = εb − εa > 0. The
calculations of the spreading widths give �spr ≈ 0.5 a.u. for
Au25+ [4–6] and 0.68 a.u. for W20+ [11].

B. Results

The results of our calculations of the fluorescence yield are
shown in Fig. 1. At ε � 1 eV the fluorescence yield in the
compound states of Au24+ is close to unity, but quickly drops
to ωf ∼ 0.2.

In Fig. 2 the calculated total resonant capture cross section
σ c and the recombination cross section σ r are compared
with the experimental data for W20+ [32] and Au25+ [31]. To
eliminate the strong kinematic dependence the cross sections
have been multiplied by k2/π2. Note that the experimental
data display large fluctuations and show some unphysical
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FIG. 1. (Color online) Calculated fluorescence yields in Au24+

and W19+ averaged over 1 eV energy interval.

negative values for the recombination rate (due to background
subtraction). To reduce these fluctuations we have averaged
the experimental data for (k2/π2)σr over 1 eV energy interval.
We also averaged over 1 eV range the calculated fluorescence
yields (see Fig. 1) to reduce fluctuations in the density of states.

In Fig. 3 we compare the results of our calcula-
tions of the recombination rate for W20+ with raw (un-

Ref. [29]
Ref. [32]

FIG. 3. (Color online) Recombination rates for W20+. Solid red
line is our theory, dashed black line is the calculation of Ref. [29],
and dotted blue line is the experimental data [32].

averaged) experimental data [32] and calculations from
Ref. [29].

C. Suppression of photoionization due
to chaotic compound resonances

As discussed above, for energies �1 eV above the ion-
ization threshold the radiative width of a compound state

FIG. 2. (Color online) Reduced cross sections σk2/π 2 for electron capture by W20+ and Au25+, averaged over 1 eV energy intervals to
suppress fluctuations. Dotted lines show the calculated total resonant capture (σ c), solid lines are the calculated recombination cross section
σ r = σ cωf , and the dashed lines correspond to the measured recombination cross section for W20+ [32] and Au25+ [31].
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can be much greater than its autoionization width. Besides
enhancing recombination, this effect leads to suppression
of near-threshold photoionization, since a compound reso-
nance excited by the incident photon will decay primarily
by emission of another photon rather than by emitting an
electron. Therefore, at these energies the inelastic, Raman
photon scattering dominates over the photoionization. Similar
to the electron resonant capture, the energy-averaged total
photon capture cross section into compound resonances may
be approximately described by treating the simple doorway
resonances as quasistationary states with the width �spr. To
obtain the photoionozation cross sections one should multiply
the result by the fluorescence yield calculated in the present
work. Taking the corresponding ratios of the widths one can
also obtain the cross sections for elastic and inelastic (Raman)
photon scattering.

IV. CONCLUSIONS

We see that in both electron- and photon-induced processes
the interaction between dielectronic and multielectronic con-
figurations leads to broadening of the dielectronic doorway
resonances (due to the internal decay) and redistribution of the
branching between the “external” decay channels in favor of
the photoemission.

In principle, within the statistical theory one can take
into account the exact quantum numbers of the dielectronic
doorway states (angular momentum and parity). One can
even diagonalize the Hamiltonian using the basis of the
dielectronic states, and then use the “dielectronic eigenstates”
as the doorway states with the weights from Eq. (1). However,
the spreading width �spr is comparable to the energy spread
of a single configuration. Therefore, our present use of the
Hartree-Fock (determinant) basis states as doorway states
without a definite J should not significantly reduce the

accuracy of the approach. A greater possible error in our
calculations is due to the uncertainty in the energies of the
doorway states corresponding to the transitions to the ground
and excited states of the final (N + 1)-electron ion, which
are needed to calculate the fluorescence yield. It is likely this
uncertainty that leads to a factor of 2 differences between the
theoretical and experimental values. However, this discrepancy
will be greatly reduced for the Maxwellian, thermally averaged
recombination rates at high electron temperatures. Such rates
are very important in modeling plasmas in astrophysical
environments and thermonuclear reactors, and they are less
sensitive to the precise doorway state positions. A deviation
from the experimental data may also be due to the presence
of the metastable species in the initial ion beam. Significant
contributions of such excited ions was pointed to in the
experimental work [32].

We presented numerical calculations for W20+ and Au25+
for which experimental electron recombination data are avail-
able [31,32]. Tungsten is a key plasma-facing component of
ITER and future fusion reactors. A broad range of tungsten
ions from W20+ to W50+ is a major plasma impurity and a
plasma diagnostic tool. Modeling their fractional abundances
and emission spectra reveals that available theoretical recom-
bination rates do not accurately describe the experimental
temperature dependence [39], and empirical adjustments to
the recombination rates were needed to reconcile with the
measurements. Clearly, further experimental and theoretical
work on those complex systems is required, including the
extension of our statistical theory calculations to other tungsten
ions.
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D. W. Savin, Phys. Rev. A 83, 012711 (2011).

[33] M. Schnell, G. Gwinner, N. R. Badnell, M. E. Bannister,
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J. Ullrich, and J. R. Crespo López-Urrutia, arXiv:1306.1029.

[38] M. S. Pindzola, D. C. Griffin, and C. Bottcher, in Atomic
Processes in Electron-ion and Ion-ion Collisions, edited by
F. Brouillard, NATO Advanced Studies Institute, Series B:
Physics (Plenum Press, New York, 1986), Vol. 145, p. 75.

[39] T. Pütterich, R. Neu, R. Dux, A. D. Whiteford, M. G. OMullane,
and the ASDEX Upgrade Team, Plasma Phys. Control. Fusion
50, 085016 (2008).

062713-6

http://dx.doi.org/10.1103/PhysRevA.49.1816
http://dx.doi.org/10.1103/PhysRevA.49.1816
http://dx.doi.org/10.1103/PhysRevA.49.1816
http://dx.doi.org/10.1103/PhysRevA.49.1816
http://dx.doi.org/10.1088/0034-4885/60/7/001
http://dx.doi.org/10.1088/0034-4885/60/7/001
http://dx.doi.org/10.1088/0034-4885/60/7/001
http://dx.doi.org/10.1088/0034-4885/60/7/001
http://dx.doi.org/10.1103/PhysRevLett.86.5027
http://dx.doi.org/10.1103/PhysRevLett.86.5027
http://dx.doi.org/10.1103/PhysRevLett.86.5027
http://dx.doi.org/10.1103/PhysRevLett.86.5027
http://dx.doi.org/10.1103/PhysRevA.66.012703
http://dx.doi.org/10.1103/PhysRevA.66.012703
http://dx.doi.org/10.1103/PhysRevA.66.012703
http://dx.doi.org/10.1103/PhysRevA.66.012703
http://dx.doi.org/10.1051/0004-6361:20030816
http://dx.doi.org/10.1051/0004-6361:20030816
http://dx.doi.org/10.1051/0004-6361:20030816
http://dx.doi.org/10.1051/0004-6361:20030816
http://dx.doi.org/10.1103/PhysRevA.69.022704
http://dx.doi.org/10.1103/PhysRevA.69.022704
http://dx.doi.org/10.1103/PhysRevA.69.022704
http://dx.doi.org/10.1103/PhysRevA.69.022704
http://dx.doi.org/10.1139/P07-197
http://dx.doi.org/10.1139/P07-197
http://dx.doi.org/10.1139/P07-197
http://dx.doi.org/10.1139/P07-197
http://dx.doi.org/10.1103/PhysRevA.79.012703
http://dx.doi.org/10.1103/PhysRevA.79.012703
http://dx.doi.org/10.1103/PhysRevA.79.012703
http://dx.doi.org/10.1103/PhysRevA.79.012703
http://dx.doi.org/10.1088/0953-4075/43/20/205201
http://dx.doi.org/10.1088/0953-4075/43/20/205201
http://dx.doi.org/10.1088/0953-4075/43/20/205201
http://dx.doi.org/10.1088/0953-4075/43/20/205201
http://dx.doi.org/10.1016/j.cpc.2011.03.023
http://dx.doi.org/10.1016/j.cpc.2011.03.023
http://dx.doi.org/10.1016/j.cpc.2011.03.023
http://dx.doi.org/10.1016/j.cpc.2011.03.023
http://dx.doi.org/10.1103/PhysRevA.57.4365
http://dx.doi.org/10.1103/PhysRevA.57.4365
http://dx.doi.org/10.1103/PhysRevA.57.4365
http://dx.doi.org/10.1103/PhysRevA.57.4365
http://dx.doi.org/10.1103/PhysRevA.85.052716
http://dx.doi.org/10.1103/PhysRevA.85.052716
http://dx.doi.org/10.1103/PhysRevA.85.052716
http://dx.doi.org/10.1103/PhysRevA.85.052716
http://dx.doi.org/10.1007/BF02274933
http://dx.doi.org/10.1007/BF02274933
http://dx.doi.org/10.1007/BF02274933
http://dx.doi.org/10.1007/BF02274933
http://dx.doi.org/10.1088/0953-4075/31/10/026
http://dx.doi.org/10.1088/0953-4075/31/10/026
http://dx.doi.org/10.1088/0953-4075/31/10/026
http://dx.doi.org/10.1088/0953-4075/31/10/026
http://dx.doi.org/10.1103/PhysRevA.83.012711
http://dx.doi.org/10.1103/PhysRevA.83.012711
http://dx.doi.org/10.1103/PhysRevA.83.012711
http://dx.doi.org/10.1103/PhysRevA.83.012711
http://dx.doi.org/10.1103/PhysRevLett.91.043001
http://dx.doi.org/10.1103/PhysRevLett.91.043001
http://dx.doi.org/10.1103/PhysRevLett.91.043001
http://dx.doi.org/10.1103/PhysRevLett.91.043001
http://dx.doi.org/10.1051/0004-6361:20040559
http://dx.doi.org/10.1051/0004-6361:20040559
http://dx.doi.org/10.1051/0004-6361:20040559
http://dx.doi.org/10.1051/0004-6361:20040559
http://dx.doi.org/10.1103/PhysRevA.80.050702
http://dx.doi.org/10.1103/PhysRevA.80.050702
http://dx.doi.org/10.1103/PhysRevA.80.050702
http://dx.doi.org/10.1103/PhysRevA.80.050702
http://dx.doi.org/10.1103/PhysRevLett.107.143201
http://dx.doi.org/10.1103/PhysRevLett.107.143201
http://dx.doi.org/10.1103/PhysRevLett.107.143201
http://dx.doi.org/10.1103/PhysRevLett.107.143201
http://arxiv.org/abs/arXiv:1306.1029
http://dx.doi.org/10.1088/0741-3335/50/8/085016
http://dx.doi.org/10.1088/0741-3335/50/8/085016
http://dx.doi.org/10.1088/0741-3335/50/8/085016
http://dx.doi.org/10.1088/0741-3335/50/8/085016



