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In open-shell atoms and ions, processes such as photoionization, combination (Raman) scattering, electron
scattering, and recombination are often mediated by many-electron compound resonances. We show that their
interference (neglected in the independent-resonance approximation) leads to a coherent contribution, which
determines the energy-averaged total cross sections of electron- and photon-induced reactions obtained using the
optical theorem. In contrast, the partial cross sections (e.g., electron recombination or photon Raman scattering)
are dominated by the stochastic contributions. Thus, the optical theorem provides a link between the stochastic
and coherent contributions of the compound resonances. Similar conclusions are valid for reactions via compound
states in molecules and nuclei.

DOI: 10.1103/PhysRevA.91.052704 PACS number(s): 34.80.Lx, 31.10.+z, 34.10.+x

I. INTRODUCTION

The aim of this paper is to examine the interplay between
simple singly or doubly excited doorway states and multiply
excited chaotic eigenstates (compound resonances) in pro-
cesses, such as photon and electron scattering, photoionization,
and electron recombination, involving complex atomic or
molecular systems. In particular, we identify the coherent
and incoherent contributions of the compound resonances and
show how these are related to the total and partial cross sections
of various reactions. We outline a method for the calculation
of probabilities of these reactions, which involves summations
over the doorway states rather than the eigenstates.

A. Many-body quantum chaos

Consider a finite quantum system with many degrees of
freedom, such as a many-electron atom or ion, a polyatomic
molecule, or a heavy nucleus. In the zeroth-order approx-
imation, the states of such a system can be constructed
from some single-particle states. For atoms these will be the
electron orbitals obtained in some mean-field potential, e.g.,
using the Hartree-Fock method. For molecular vibrations, the
zeroth-order states are normal-mode vibrations, which are
determined by the quadratic expansion of the ground-state
electronic energy near the equilibrium positions of the nuclei.

In general, this description works well for the ground state
of the system and in many cases it also provides a correct
picture of low-lying excitations. Thus, the ground states of
most atoms and ions are characterized by their electronic
configuration. The ground state of the molecular vibrational
Hamiltonian is simply a product of the zero-point motion
states of all the normal modes. Low-energy excitations then
correspond to promotions of one of the electrons into an
excited-state orbital or adding a vibrational quantum to one
of the normal-mode harmonic oscillators.

Of course, the exact energy of the atomic excitation will
be affected by the residual two-body Coulomb interaction

between the electrons. Such correction can be relatively small
in atoms or ions with a simple ground-state configuration
(e.g., in alkali-metal-like systems with one active electron
above a closed-shell core). At the same time, in systems with
several valence electrons and in particular with open-shell
ground-state configurations, the single-particle picture does
not hold well at all. A state in which one of the electrons is
promoted to a higher-lying orbital will be mixed with other
excited states in which two or three electrons have changed
their places. Such effects are usually described as configuration
mixing. Finding the eigenstates of the system then requires
constructing a basis of many-electron states of the relevant
electronic configurations and diagonalizing the Hamiltonian
of the residual interaction in this basis. Similarly, accurate
vibrational energies can be found by including anharmonic,
e.g., cubic and quartic, terms in the vibrational Hamiltonian
and diagonalizing its matrix, constructed using the zeroth-
order (harmonic) basis states.

A practical limitation to this approach is set by the maxi-
mum size of a matrix that can be diagonalized efficiently on a
computer. The Hamiltonian matrix sizes become very large in
atomic systems with open d and f shells, due to a large number
of active electrons, or in polyatomic molecules with many
vibrational degrees of freedom. Such systems are characterized
by large densities of the energy spectra, which promotes strong
mixing of the zeroth-order basis states. As a result, each of the
eigenstates becomes a superposition of a large number of basis
states, with the expansion coefficients behaving like random
variables. Further, these eigenstates often cannot be assigned
any meaningful quantum numbers, except the exact ones,
such as the total angular momentum or parity. Even when the
Hamiltonian matrix sizes are manageable, exact calculations
of the spectra and processes in such systems are virtually
impossible due to the extreme sensitivity of the eigenvalues to
small perturbations, e.g., the effect of states omitted from the
basis, or higher-order corrections to the perturbation.

This behavior of quantum systems is termed quantum
chaos. Besides the Gaussian statistics of the eigenstate
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FIG. 1. (Color online) Interplay between (a) simple single-particle degrees of freedom and multiply excited states in the infrared
photoabsorption by a polyatomic molecule and (b) electron recombination with a many-electron open-shell ion (see the text for details).

components, there is also a specific correlation between the
energy eigenvalues, which is characteristic of the spectra
of random matrices [1]. Well-known examples of quantum-
chaotic systems are excited heavy nuclei, e.g., those formed
by neutron capture [2,3], and heavy atoms and ions with open f

shells, such as Ce or Au24+ [4–6]. Another example is given by
the vibrational motion of polyatomic molecules where anhar-
monic mixing between normal modes leads to intramolecular
vibrational redistribution (IVR) [7–10]. Chaotic resonances
have also been found recently in ultracold collisions of erbium
atoms [11] (a manifestation of chaotic states in the excited Er2

molecule).
In each of these examples the quantum-chaotic behavior of

the system leads to important observable effects beyond the
energy-level statistics. Narrowly spaced neutron resonances in
heavy nuclei provide strong enhancements of parity noncon-
servation due to the weak interaction [12,13]. Electron capture
in chaotic multielectronic resonances in open-shell ions results
in recombination rates 102−103 times greater than the single-
particle radiative recombination rate [5,14–16], as seen in
many experiments [17–22]. Similar states feature in photoion-
ization and photoemission in many ions, producing a complex
interplay of broad and narrow resonances [23–29]. Intramolec-
ular vibrational redistribution is an essential step in most chem-
ical reactions. It also plays a key role in electron attachment
and positron annihilation in polyatomic molecules [30,31].

B. Doorway states

While the exact calculation of many-body chaotic eigen-
states is impossible, their nature allows one to develop a
statistical theory to calculate the mean-square values of matrix
elements and amplitudes involving such states [4,13,32–37].
In this way one can predict observables averaged over a
small energy interval containing many such states (which is
often sufficient since the individual states cannot be resolved
experimentally).

Of particular importance in this approach are doorway
states. A doorway is a state that is coupled in the lowest order to
the initial state. For example, in electron-ion recombination,
doorways are dielectronic states (i.e., one-hole–two-particle
excitations of the combined ion). In molecular infrared

photoabsorption, doorways are single-mode excitations. In
considering the IVR process of a single-mode excitations, the
doorways are two- and three-quantum vibrational excitations
coupled to the single-mode excitation in the lowest order.

To illustrate these examples, Fig. 1(a) shows schematically
the absorption of an infrared photon of energy ω by a
polyatomic molecule, followed by IVR. Figure 1(b) describes
the recombination of an electron with energy ε with a
multicharged positive ion Aq+.

In the description of both processes, we adopt a temporal
picture of the dynamics, as if probed by a short initial pulse.
This picture is observed directly in the pump-probe studies of
molecular IVR [38]. In contrast, the electron-ion recombina-
tion usually deals with incident electrons of definite energy.
(In spite of the high-energy resolution achieved in experiments
with electron coolers in ion storage rings [18,20,39,40], the
measurements for complex targets are incapable of resolving
individual chaotic resonances [41].)

1. Vibrational excitation of molecules

In the process shown in Fig. 1(a), the energy of the photon
is tuned to the frequency of the normal mode 1 (e.g., a
CH or OH stretch mode, with ω ∼ 3000 cm−1). In the first
step the photon excites a single-quantum vibration of this
mode. Lowest-order (cubic and quartic) anharmonic couplings
Vanh perturbatively couple this initial state to some two- or
three-mode vibrational excitations. These off-resonance states
act as doorways that mediate the spreading of the vibrational
energy into more complex multimode vibrational states, whose
density is much higher than that of the modes or doorways.
If Vanh is sufficiently strong (and suitable doorway states are
available), the excitation ultimately spreads into the bath of
closely spaced states [44].

This is the essence of the IVR process. Its time scale
τ ∼ �/�IVR is related to the energy width of the initial
single-mode state with respect to its decay towards the
bath states. High-resolution molecular spectroscopy in fact
allows one to observe these states as clumps of narrowly
spaced absorption lines within the �IVR energy interval of
the vibrational fundamental [43]. The number of such lines is
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N ∼ �IVRρv , where ρv is the total density of the vibrational
spectrum for a given symmetry, at this energy.

2. Electron-ion recombination

Turning to the second process [Fig. 1(b)], the ground state of
the target ion Aq+ is usually a simple state described by a single
dominant electronic configuration. The Coulomb interaction
V between the incident and target electrons couples the initial
state e− + Aq+ to the doubly excited states of the compound
ion A(q−1)+. In such states two electrons occupy some excited-
state orbitals α and β, leaving a hole in one of the target ground-
state orbitals γ . For simple targets, photoemission from the
doubly excited state completes the dielectronic recombination
process [45].

For open-shell targets such as Au25+ (with the 4f 8 outer or-
bital ground-state configuration), the dielectronic resonances
are embedded in a dense spectrum of multiply excited states
and are strongly mixed with them [5,6]. In the temporal picture
this mixing describes a rapid decay of the dielectronic excited
states into chaotic compound states (a term that originated in
nuclear physics, sometimes called Feshbach resonances [46]).
Its time constant τ is determined by the so-called spreading
width �spr, as τ = �/�spr. (It plays the same role as �IVR in
the first example, but on a completely different scale, e.g.,
�spr ∼ 10 eV in Au24+). In the energy eigenstate picture,
each of the dielectronic states appears as a component in
many chaotic compound states, contributing significantly to
N ∼ �spr/D of them (D being the small level spacing between
the compound states).

As a result of this spreading, the weight of every doorway
in a given compound state is ∼1/N and the probability for
the compound states to autoionize (i.e., reemit the electron) is
greatly reduced (∝N−1). On the other hand, their lifetimes
with respect to emitting a photon are similar to those of
the dielectronic (and singly excited) states, since any excited
electron in the compound state can radiate. The electron
trapping in the chaotic compound states thus leads to strongly
increased recombination rates [5,14]. Specific examples of
doorway states for electron recombination with Au25+ can be
found in Table I of Ref. [14], while mixing of doorways with
chaotic states was explored in Ref. [6].

The energy spacing between the compound states can be
very small (see, e.g., the estimates for Au24+ in Refs. [5,14]),
beyond the best resolution available in the recombination
experiments [41]. This does not mean, however, that the
recombination cross section is completely structureless. The
dielectronic doorway states can produce broad maxima with
widths ∼�spr in the energy dependence of the cross section.
This is similar to the way in which the frequencies and
strengths of vibrational fundamentals determine the overall
infrared absorption spectrum of a polyatomic molecule. Here
the normal modes excited by the photon play the role of
doorways for the IVR that follows molecular photoabsorption.

In what follows we consider a variety of processes initiated
by a photon or electron impact on a complex atomic or
molecular system. We aim to determine the roles played by
the simple doorway states and chaotic compound states in
each case. Although most of the expressions and conclusions
are quite general, we will use the language of atoms (or ions)

and atomic processes, with the many degrees of freedom and
complexity (chaos) arising from the large numbers of active
electrons and available orbitals.

II. THEORY

A. Compound states

In isolated quantum many-body systems chaos emerges
due to a rapid exponential growth of the level density with
energy. This growth is caused by the increase in the number of
active particles promoted into unoccupied orbitals, following
the increase in the excitation energy of the system. When
the residual interaction between the particles is greater than
the energy spacing between the levels that it mixes, the
eigenstates |n〉 become chaotic superpositions of the basis
states |b〉, constructed from the single-particle orbitals (e.g.,
Slater determinants for the Fermi system). In this regime the
coefficients in the eigenstate expansion

|n〉 =
∑

b

C
(n)
b |b〉 (1)

behave as uncorrelated random variables

C
(n)
b = 0, C

(m)
a C

(n)
b = δmnδabC

(n)
b

2
. (2)

Note that we use indices m, n, etc., to denote the compound
eigenstates and a, b, etc., for the basis states and the averages
are taken over nearby eigenstates.

For the system under consideration the Hamiltonian matrix
Hab and the coefficients C

(n)
b can be made real. We also

assume that the basis states and the eigenstates have the same
exact quantum numbers (e.g., the total angular momentum
and parity for a spherically symmetric system) and the usual
normalization condition applies:

∑
b |C(n)

b |2 =∑
n |C(n)

b |2 = 1.
Besides Eq. (2), the coefficients display a systematic

dependence on the eigenstate energy. This dependence can
be described by (see, e.g., [4])

C
(n)
b

2 = D

2π

�spr

(En − Eb)2 + �2
spr

/
4
, (3)

where En is the energy eigenvalue of state n, Eb ≡ Hbb is
the expectation energy of the basis state b, and D is the
mean energy spacing between the eigenstates. The parameter
�spr is the spreading width. It characterizes the size of the
energy interval in which the typical coefficients are close
to maximum C

(n)
b ∼ 1/

√
N , where N = π�spr/2D is the

number of principal components, i.e., the number of basis
states that contribute significantly to a given eigenstate. In the
strong-mixing regime, �spr � D and N � 1. The spreading
width can be calculated using the golden rule as �spr =
2π |Hab|2/Db, where Db is the mean spacing between the
states b to which a given basis state a is coupled [15] or
evaluated in relatively-small-scale configuration-interaction
calculations [6]. Its values in atomic systems range from ∼1 eV
in atoms, such as Ce [4], to ∼10 eV in multicharged ions, e.g.,
Au24+ [5,6] or Wq+ (q = 18 − 24) [15].
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B. Coherent amplitudes

Let us consider the process of photoexcitation of a many-
electron atom or ion A from the ground state |0〉 to an
excited state |n〉 above the ionization limit. This leads to either
autoionization (A + γ → A+ + e) or radiative quenching of
the excited state (A + γ → A∗ + γ ′). The corresponding
amplitudes are

M
γe

kε =
∑

n

〈k,ε|V̂ |n〉〈n|D̂|0〉
E0 + ω − En + (i/2)�n

, (4)

Mγγ ′
m =

∑
n

〈m|D̂|n〉〈n|D̂|0〉
E0 + ω − En + (i/2)�n

, (5)

where D̂ is the electron-photon interaction operator, ω is the
photon energy, and V̂ is the electron Coulomb interaction.
The first amplitude corresponds to the final state |k〉 of the
ion A+ and an electron in the continuum state |ε〉. The second
amplitude describes photon (Raman) scattering leading to the
final atomic state m and a photon γ ′. The sums are over the
compound eigenstates n with the energy En and total width
�n (due to both autoionization and radiative decay).

Note that in considering the photon impact we neglect the
possibility of direct electron emission into the continuum. Such
a process will either produce a distinct smooth background
for the resonant contributions or, more likely for complex
targets, the continuum states will be strongly mixed with the
autoionizing resonances [47].

Using Eq. (1) in Eq. (4) and averaging this amplitude over
a small energy interval containing many compound states n

gives the coherent part of the photoionization amplitude

M
γe

kε =
∑
nd

C
(n)
d

2 〈kε|V̂ |d〉〈d|D̂|0〉
E0 + ω − En + (i/2)�n

, (6)

where we also made use of Eq. (2). The sum in Eq. (6) is
over the compound states n and basis states d. Since D̂ is a
one-body operator, the matrix element 〈d|D̂|0〉 is nonzero only
for the basis states d in which one of the ground-state electrons
is excited by the photon (assuming that the ground state has
a well-defined configuration). Such states d play the role of
doorway states for the resonant photoabsorption process.

The mean spacing D between the compound resonances is
very small, which allows one to replace summation over n by
integration

∑
n

−→
∫

dEn

D
. (7)

Using Eq. (3) in Eq. (6), we then obtain

M
γe

kε =
∑

d

〈k,ε|V̂ |d〉〈d|D̂|0〉
E0 + ω − Ed + (i/2)�spr

, (8)

where �n � �spr has been assumed. The latter relation is
supported by numerical calculations [5,6,14–16], which show
that the natural width of compound states �n is several
orders of magnitude smaller than �spr. Similarly, averaging

the amplitude in Eq. (5) gives

M
γγ ′
m =

∑
d

〈m|D̂|d〉〈d|D̂|0〉
E0 + ω − Ed + (i/2)�spr

. (9)

Equations (8) and (9) reveal the physical meaning of
the coherent amplitudes. They describe the excitation of the
system into simple doorway states d, which then decay directly
into the final states. (In the incoherent stochastic contribution,
the capture into a compound state n and its decay are due
to different basis-state components d and e; see Sec. II D.)
Doorway states are not the eigenstates of the Hamiltonian,
as they are mixed by the Coulomb interaction with other
basis states with two, three, and more excited electrons. In the
temporal picture of the process, the photon initially excites one
electron. This is followed by a chain of electron interactions,
until all the excitation energy is shared between as many
electrons as possible (cf. Fig. 1). This internal decay of the
doorway state on the time scale ∼�/�spr explains the origin
of the spreading width in the denominators of Eqs. (8) and (9).
The spreading width �spr is similar to the quasiparticle width in
a solid where quasiparticles also decay into internal excitations
of the solid (see, e.g., Ref. [48] and references therein).

The doorway states for photoionization are single-electron
excitations from the ground state. The eigenstates of the Hamil-
tonian (i.e., the compound resonances) contribute coherently to
each doorway state. Therefore, this contribution is not included
in the standard independent-resonance approximation [49,50].

C. Total cross section

The total cross section of the photon- or electron-induced
reactions, averaged over the compound resonances, can be
found using the optical theorem [49] from the elastic forward-
scattering amplitude, e.g., for the photon-induced case σ

γ
tot ∝

ImM
γγ

0 . Averaging this relation over the compound resonances
involves the coherent contribution (9) for |m〉 = |0〉 and we
have

σ
γ
tot ∝ ImM

γγ

0 = 1

2

∑
d

|〈d|D̂|0〉|2�spr

(E0 + ω − Ed )2 + �2
spr

/
4
, (10)

where the sum is over the doorway states d.
Note that the integral contribution of each of the doorway

states in Eq. (10) (
∫

σtotdω) is independent of �spr. The total
photoabsorption cross section is given by the sum of the single-
particle (i.e., doorway) contributions. The only manifestation
of the strong mixing and chaotic dynamics in the system is
the broadening of these single-particle peaks by �spr (which
is much greater than the natural widths of the single-particle
excitations).

A familiar example of this picture is the infrared absorption
spectra of molecules, which are dominated by characteristic
peaks of various modes. A low-resolution measurement of the
total cross section will not reveal any features related to the
strong mixing or IVR, which take place after the absorption of
the photon.

As a consistency check we can obtain the result of Eq. (10)
starting from the sum over compound states in Eq. (5). Setting
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m = 0, we have

ImM
γγ

0 = 1

2

∑
n

|〈n|D̂|0〉|2�n

(E0 + ω − En)2 + �2
n

/
4
. (11)

Using Eqs. (1) and (2), one obtains

ImM
γγ

0 = 1

2

∑
nd

C
(n)
d

2 |〈d|D̂|0〉|2�n

(E0 + ω − En)2 + �2
n

/
4

(12)

and applying Eqs. (3) and (7) again leads to Eq. (10). One can
also obtain Eq. (10) by averaging Eq. (11) over a photon energy
interval ω, �n � ω � �spr, containing a large number of
resonances ω/D (i.e., integrating the resonant contributions
over ω instead of En).

A calculation similar to that in Sec. II B yields co-
herent amplitudes of the electron-induced processes, i.e.,
photorecombination (Aq+ + e → A(q−1)+ + γ ) and electron
scattering (Aq+ + e → Aq+∗ + e′) via compound resonances:

M
eγ

im =
∑

d

〈m|D̂|d〉〈d|V̂ |i,ε〉
Ei + ε − Ed + (i/2)�spr

, (13)

Mee′
ik =

∑
d

〈k,ε′|V̂ |d〉〈d|V̂ |i,ε〉
Ei + ε − Ed + (i/2)�spr

. (14)

Here the doorway states d are dielectronic excitations of
the ion A(q−1)+, produced by capturing the incident electron
simultaneously with excitation of an electron of the target Aq+.
In Eqs. (13) and (14), i is the initial (e.g., ground) state of the
target ion, m is the final state of the ion A(q−1)+, and k is the
final state of Aq+∗.

In analogy to Eq. (10), the averaged total resonant electron-
impact cross section is

σ e
tot ∝ ImMee

ii = 1

2

∑
d

|〈d|V̂ |i,ε〉|2�spr

(Ei + ε − Ed )2 + �2
spr

/
4
. (15)

It describes all processes following the capture of an electron
in the dielectronic doorway states, broadened (via �spr) by
multiconfigurational mixing, which defines the compound
eigenstates.

Equations (10) and (15) can be written in the familiar
Breit-Wigner form by replacing the squared matrix elements
by the corresponding partial widths for the decay of the door-
way state. Hence, we introduce the radiative width �

(r)
d→0 ∝

|〈d|D̂|0〉|2 and the autoionization width �
(a)
d→i ∝ |〈d|V̂ |i,ε〉|2.

It is also natural to add the total radiative width �
(r)
d and total

autoionization width �
(a)
d of the doorway to its spreading width

to account for all decay modes of this state. The total width
of the doorway state then is �d = �spr + �

(r)
d + �

(a)
d and the

cross sections are given by

σ
γ
tot ∝

∑
d

�
(r)
d→0�d

(E0 + ω − Ed )2 + �2
d

/
4
, (16)

σ e
tot ∝

∑
d

�
(a)
d→i�d

(E0 + ω − Ed )2 + �2
d

/
4
. (17)

In this form it is easy to restore the correct prefactor in
these equations by comparison with the standard Breit-Wigner
formula [49].

In Sec. II B and above, the doorways states were introduced
as particular types of basis states selected by the process
under consideration. To make Eqs. (10) and (15) [or (16)
and (17)] more accurate for application to real systems, one
can diagonalize the Hamiltonian matrix in the subspace of the
doorway states. This should supply more accurate energies
Ed and amplitudes involving the doorways. In complex
systems the doorways are only a small part of the total
Hilbert space in the energy range of interest, making this task
feasible.

Note that Eqs. (16) and (17) provide interpolation formulas
for the total cross sections. They can describe a transition from
the chaotic compound resonance regime, in which �d ≈ �spr,
to the simple resonance regime �d ≈ �

(r)
d + �

(a)
d (in which

the doorway states do not spread). For �
(a)
d + �

(r)
d � �spr, the

doorway state has no time to excite other electrons and is
decoupled from the compound resonances. This can also be
explained using perturbation theory. In this case the energy
difference between a doorway state d and a compound state n,
Ed − En − i(�(a)

d + �
(r)
d )/2, is dominated by the imaginary

part and becomes larger than the the matrix element of
the residual interaction V̂ , which can mix d and n, i.e.,
〈n|V̂ |d〉/�

(a)
d � 1. (Except for the very highly charged ions,

�
(a)
d � �

(r)
d for the dielectronic states.) Numerical calcula-

tions for W19+ and Au24+ show that �
(a)
d � �spr and the

electron recombination processes in such ions are domi-
nated by the many-electron compound resonances [14–16]
(see below).

D. Partial cross sections

The total width of a resonance n is the sum of its partial
widths over all final states or decay channels �n = ∑

f �
(f )
n .

In the independent-resonance approximation the partial cross
section σf for channel f (averaged over the resonances) can
be obtained by multiplying the total cross section σtot by the
average ratio of the corresponding partial width �

(f )
n to the

total width �n. In most cases the compound state n can decay
into many final states, which suppresses the fluctuations of
�n [14–16], and one obtains

σf ≈ σtot�
(f )
n

/
�n. (18)

However, in this approximation one misses a specific coherent
contribution to the partial cross section, which is calculated
below.

The resonance-averaged cross section (or probability) of
a process is proportional to the modulus squared amplitude
P = |M|2. When analyzing this quantity it is convenient to
separate out the coherent term Pcoh = |M|2. The remain-
ing part then represents the stochastic contribution Psto =
|M|2 − |M|2.

Let us consider photoionization as an example. The
corresponding resonance-averaged probability P γe is found
by taking the squared modulus of the amplitude M

γe

kε from
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Eq. (4):

∣∣Mγe

kε

∣∣2 =
∑
n,n′

〈0|D̂|n′〉〈n′|V̂ |k,ε〉
E0 + ω − En′ − (i/2)�n′

× 〈k,ε|V̂ |n〉〈n|D̂|0〉
E0 + ω − En + (i/2)�n

, (19)

Each of the four matrix elements in this expression involves
one compound state (n or n′), which can be expanded as in
Eq. (1). After this, averaging of Eq. (19) reduces to finding the
averaged product of four expansion coefficients

C
(n′)
a C

(n′)
b C

(n)
c C

(n)
d = δabC

(n′)
b

2
δcdC

(n)
d

2 + δn′nδadC
(n)
d

2
δbcC

(n)
b

2

+ δn′nδacC
(n)
a

2
δbdC

(n)
d

2
, (20)

which follows from Eq. (2). Hence, the average of Eq. (19) is
the sum of three distinct terms:

P γe =
∣∣∣∣∣
∑
nd

C
(n)
d

2 〈k,ε|V̂ |d〉〈d|D̂|0〉
E − En + (i/2)�n

∣∣∣∣∣
2

+
∑
nbd

C
(n)
b

2
C

(n)
d

2 |〈k,ε|V̂ |b〉|2|〈d|D̂|0〉|2

(E − En)2 + �2
n

/
4

+
∑

n

∣∣∣∣∣
∑

d

C
(n)
d

2 〈d|V̂ |k,ε〉〈d|D̂|0〉
E − En − (i/2)�n

∣∣∣∣∣
2

, (21)

where E = E0 + ω is the total energy of the system.
The first term on the right-hand side of Eq. (21) is the co-

herent contribution [cf. Eq. (6)]. The second term corresponds
to the independent-resonance approximation and is usually
the only term considered [49,50]. The weights given by the
mean-square coefficients, which multiply the modulus-square
matrix elements for autoionization and photoabsorption, link
the corresponding partial widths of the compound and doorway
states

�
(r)
n→0 =

∑
d

C
(n)
d

2
�

(r)
d→0, (22)

�
(a)
n→k =

∑
b

C
(n)
b

2
�

(a)
b→k. (23)

The last term in Eq. (21) is the remaining part of the stochastic
contribution and we call it the residual stochastic term.
The stochastic contribution thus consists of the independent-
resonance (IR) contribution and the residual stochastic term
Psto = PIR + Pres.

Using Eqs. (3) and (7) [or averaging Eq. (21) over the
energy interval ω, as explained below Eq. (12)], we find the
coherent contribution to the partial cross section

P
γe

coh =
∣∣∣∣∣
∑

d

〈k,ε|V̂ |d〉〈d|D̂|0〉
E0 + ω − Ed + (i/2)�spr

∣∣∣∣∣
2

, (24)

the independent-resonance contribution

P
γe

IR = D

2π�n

∑
b

|〈k,ε|V̂ |b〉|2�spr

(E0 + ω − Eb)2 + �2
spr

/
4

×
∑

d

|〈d|D̂|0〉|2�spr

(E0 + ω − Ed )2 + �2
spr

/
4
, (25)

and the residual stochastic contribution

P γe
res = D

2π�n

∣∣∣∣∣
∑

d

〈d|V̂ |k,ε〉〈d|D̂|0〉�spr

(E0 + ω − Ed )2 + �2
spr

/
4

∣∣∣∣∣
2

. (26)

In these expressions the matrix elements and sums involve only
doorway states. Compound resonances have been eliminated
from the sums and only affect the result through the parameters
such as �spr, the mean level spacing D, and the compound
state width �n. Similar expressions can be obtained for the
probabilities of the photon and electron scattering and electron
recombination. These formulas are suitable for the numerical
calculations of the resonance-averaged cross sections. Conver-
sion of these equations to the cross sections involves kinematic
factors, whose precise form depends on the normalization of
the electron continuum states ε and electromagnetic transition
operator D̂.

III. COMPARISON OF THE COHERENT
AND STOCHASTIC CONTRIBUTIONS

A. Photoionization

Let us compare the magnitudes of the three contributions
to the resonance-averaged probability of photoionization (A +
γ → A+ + e) [Eqs. (24)–(26)]. There are two reasons for the
possible suppression of the coherent and residual contributions
in comparison with the independent-resonance term.

The first point to note is that the basis (doorway) states
that contribute to the sums over b and d in the independent-
resonance contribution P

γe

IR [Eq. (25)] are in general quite
different. The operator D̂, which couples the ground state |0〉
with state |d〉, is a one-body operator. Hence, the photoab-
sorption doorway states d are single-electron excitations from
the ground state. On the other hand, the two-body Coulomb
interaction that couples the final state |k,ε〉 with |b〉 favors
dielectronic (doubly excited) doorway states b. The level
density of such states is much higher than that of the single-
electron excitations. This means that the number of terms
that contribute effectively to the sum over b, Nb ∼ �spr/Db,
is much greater than the number of terms that contribute
to the sum over d, Nd ∼ �spr/Dd (where Db and Dd are
the mean spacing between the corresponding doorway states,
Db � Dd ). We thus see that the sum in Eq. (25) contains
∼NbNd positive terms.

In contrast, in both the coherent and residual stochastic
parts P

γe

coh and P
γe
res [Eqs. (24) and (26)] the same doorway

d appears in both matrix elements. As a result, these sums
contain ∼N2

d terms. Besides this, only ∼Nd of these terms (i.e.,
the diagonal ones) are definitely positive, while the remaining
interference terms can have different signs. The expressions
for the independent-resonance and the residual stochastic
contributions [Eqs. (25) and (26)] contain the same prefactors
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and we see that the residual contribution is suppressed as
P

γe
res /P

γe

IR ∼ 1/Nb.
The situation with the coherent contribution is not so

simple. According to the above estimates, we have

P
γe

coh

P
γe

IR

∼ 1

Nb

�n

D
∼ Db�n

�sprD
. (27)

If the compound resonances have a small number of decay
channels, then �n � D would normally hold (see Appendix B
of Ref. [47] and references therein) and the independent-
resonance contribution dominates. However, for the compound
states that lie above the ionization threshold, the number
of decay channels can be large. In this case one can have
�n ∼ D [14] or even observe strongly overlapping resonances
with �n � D. This means that there could be cases in which
the coherent contribution is important.

To illustrate the role of doorways, the photoionization cross
section of Xeq+ ions (q = 4 − 6) in the energy range ω = 90 −
100 eV is dominated by a prominent narrow maximum due to
the 4d → 4f transition [26]. Xe6+ is a closed-shell system and
the 4d-4f peak in this system appears as a structureless single-
particle peak. In the open-shell Xe5+ and Xe4+, the 4d-4f

peak becomes progressively more fragmented, due to mixing
between the 4d-4f doorway and other electronic excitations.

B. Photon scattering

For photon scattering (A + γ → A∗ + γ ′), the coherent,
independent-resonance, and residual stochastic contributions
are obtained by averaging |Mγγ ′

m |2, where M
γγ ′
m is given by

Eq. (5). The result is given by expressions similar to those in
Eqs. (24)–(26):

P
γγ ′
coh =

∣∣∣∣∣
∑

d

〈m|D̂|d〉〈d|D̂|0〉
E0 + ω − Ed + (i/2)�spr

∣∣∣∣∣
2

, (28)

P
γγ ′
IR = D

2π�n

∑
b

|〈m|D̂|b〉|2�spr

(E0 + ω − Eb)2 + �2
spr

/
4

×
∑

d

|〈d|D̂|0〉|2�spr

(E0 + ω − Ed )2 + �2
spr

/
4
, (29)

P γγ ′
res = D

2π�n

∣∣∣∣∣
∑

d

〈d|D̂|m〉〈d|D̂|0〉�spr

(E0 + ω − Ed )2 + �2
spr

/
4

∣∣∣∣∣
2

. (30)

For elastic (m = 0) or weakly inelastic scattering (e.g., when
the final state m belongs to the same electronic configuration
as the initial state 0), the same doorways d will be available in
the sums for P

γγ ′
coh and P

γγ ′
res , so the latter is suppressed as 1/Nd

relative to P
γγ ′
IR . Simple single-electron excitation doorways

do not have a dense spectrum, which means that Nd may be
small, making all three contributions comparable.

On the other hand, if the energy of the incident photon
is sufficiently large, inelastic (Raman) photon scattering
becomes much more prominent due to the availability of many
excited final states m. The majority of them will share no or few

doorways with the initial state 0, which means that both P
γγ ′
coh

and P
γγ ′
res will be strongly suppressed in comparison with P

γγ ′
IR .

The same conclusion is true if we consider the total photon
scattering cross section summed over the final states m.

To make the comparison clearer, we can present our results
in a conventional Breit-Wigner form by replacing the squared
matrix elements by the corresponding partial widths. For
example, the coherent contribution (28) to the total photon
scattering cross section is

P
γγ ′
coh =

∑
dm

|〈m|D̂|d〉|2|〈d|D̂|0〉|2

(E0 + ω − Ed )2 + �2
spr

/
4

(31)

∝
∑

d

�
(r)
d→0�

(r)
d

(E0 + ω − Ed )2 + �2
spr

/
4
, (32)

where the total radiative width of the doorway state d is

�
(r)
d ∝

∑
m

|〈d|D̂|m〉|2 ≈
∑

e

|〈d|D̂|e〉|2. (33)

In Eq. (31) we neglected the interference terms between
different doorway states in (28) since their contribution is
strongly suppressed (∼N

−1/2
m ) after summation over the large

number Nm of compound states m populated after the emission
of the final-state photon. Note also that we have replaced the
sum over the compound states in the total radiative width (33)
by the sum over the basis states e, owing to normalization∑

m |C(m)
e |2 = 1. As a result, the final expression in Eq. (32)

includes only the matrix elements between doorway states and
relatively simple states |0〉 and |e〉.

Equation (32) describes the Breit-Wigner-like contributions
of the doorway states d to the coherent part of the photon
scattering cross section. Comparing with the total cross sec-
tion (16), we see that the coherent contribution is suppressed
by the ratio �

(r)
d /�d ≈ �

(r)
d /�spr � 1. In a similar way, the

independent-resonance contribution can be written as

P
γγ ′
IR ∝ �(r)

n

�n

∑
d

�
(r)
d→0�spr

(E0 + ω − Ed )2 + �2
spr

/
4
, (34)

where

�(r)
n =

∑
m

�(r)
n→m =

∑
mb

C
(n)
b

2
�

(r)
b→m (35)

[cf. Eqs. (25) and (22)]. Compared to the total cross section
(in which �d ≈ �spr), the independent-resonance contribu-
tion (34) contains an extra factor �(r)

n /�n, which is the
branching ratio for the radiative decay of the resonances.
Since �(r)

n ∼ �
(r)
d (for the doorways represented in n), the ratio

P
γγ ′
coh /P

γγ ′
IR ∼ �n/�spr � 1, i.e., the coherent contribution is

suppressed in comparison with the independent-resonance
term.

C. Electron scattering

Considering electron scattering (A + e → A∗ + e′), the
three contributions to the resonance-averaged cross section
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are

P ee′
coh =

∣∣∣∣∣
∑

d

〈k,ε′|V̂ |d〉〈d|V̂ |i,ε〉
Ei + ε − Ed + (i/2)�spr

∣∣∣∣∣
2

, (36)

P ee′
IR = D

2π�n

∑
b

|〈k,ε′|V̂ |b〉 |2�spr

(Ei + ε − Eb)2 + �2
spr

/
4

×
∑

d

|〈d|V̂ |i,ε〉|2�spr

(Ei + ε − Ed )2 + �2
spr

/
4
, (37)

P ee′
res = D

2π�n

∣∣∣∣∣
∑

d

〈d|V̂ |k,ε′〉〈d|V̂ |i,ε〉�spr

(Ei + ε − Ed )2 + �2
spr

/
4

∣∣∣∣∣
2

. (38)

For low incident electron energies, one can only have elastic
or quasielastic scattering, when state k is identical or similar
to i. In this case the suppression of the coherent and residual
contributions is ∼1/Nd . However, the doorways involved in
electron capture and reemission are dielectronic excitations of
the compound atom or ion. Their level density is higher than
that of single-electron excitations, leading to greater values
of Nd and stronger suppression than in photon scattering. At
higher incident electron energies more final states k become
available. Such states will have fewer common doorways with
the initial states and the relative importance of the P ee′

IR will
increase further.

D. Electron-ion recombination

Electron recombination (Aq+ + e → A(q−1)+ + γ ) is quite
special. For complex targets, many final states (channels) are
available even at the lowest incident electron energy [51].
To obtain the total recombination cross section, one needs
to sum over all final states m of the ion A(q−1)+. The three
contributions to the reaction probability then are

P
eγ

coh =
∑
m

∣∣∣∣∣
∑

d

〈m|D̂|d〉〈d|V̂ |i,ε〉
Ei + ε − Ed + (i/2)�spr

∣∣∣∣∣
2

, (39)

P
eγ

IR = D

2π�n

∑
m

∑
b

|〈m|D̂|b〉|2�spr

(Ei + ε − Eb)2 + �2
spr

/
4

×
∑

d

|〈d|V̂ |i,ε〉|2�spr

(Ei + ε − Ed )2 + �2
spr

/
4
, (40)

P eγ
res = D

2π�n

∑
m

∣∣∣∣∣
∑

d

〈d|D̂|m〉〈d|V̂ |i,ε〉�spr

(Ei + ε − Ed )2 + �2
spr

/
4

∣∣∣∣∣
2

. (41)

For the majority of states m, the doorways b and d in the
two matrix elements in Eq. (40) will be different. This means
that both the coherent and the residual contributions, in which
b = d, are strongly suppressed relative to the independent-
resonance contribution.

Similarly to Eq. (34), the recombination probability P
eγ

IR
can be written in terms of the widths

P
eγ

IR ∝ �(r)
n

�n

∑
d

�
(a)
d→i�spr

(Ei + ε − Ed )2 + �2
spr

/
4
. (42)
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FIG. 2. (Color online) Total rate of electron resonant capture by
W20+, calculated using statistical theory (dotted blue line, Ref. [15];
dashed blue line, Ref. [16]), and the calculated recombination rate
(thick solid red line), obtained by including the effect of the nonunit
fluorescence yield [16]. Thin solid black line is the experimental
recombination rate from Ref. [20].

This large ratio of the number of open channels for photon- and
electron-emission reactions at low incident electron energies
also explains the enhancement of the fluorescent yield in the
resonant electron capture up to nearly 100% (i.e., �(r)

n /�n ≈
1) [5,14–16]. In this case electron recombination dominates
in the total cross section (17) of the electron collisions with
highly charged ions and the total cross section can be calculated
using the IR stochastic contribution only. On the other hand,
the total cross section is expressed via the imaginary part
of the coherent elastic amplitude [cf. Eq. (15)]. Thus, the
optical theorem establishes a relation between the coherent
and stochastic contributions.

To illustrate the effect of the fluorescence yield, Fig. 2 shows
the calculated total resonant capture rate and the photore-
combination rate for electron collisions with W 20+. Working
equations for the process of electron-ion recombination, in
which the quantities of interest are expressed in terms of two-
particle radial Coulomb integrals, angular momentum algebra
coefficients, and sums over single-particle states, can be found
in Refs. [14–16]. The small difference between the resonant
capture rate from Ref. [15] (calculated for ε = 1 eV and
plotted assuming a 1/ε energy dependence of the cross section)
and [16] is due to a slightly different numerical procedure.
Suppression of the recombination rate with respect to the total
resonant capture rate, due to the factor �(r)

n /�n, is clearly
visible (see Refs. [15,16] for the working equations used). The
difference in the detailed energy dependence of the calculated
and measured recombination rate is likely due to inaccurate
energies of the dielectronic doorways in the calculation.

It is interesting that the same mechanism that leads
to strongly enhanced recombination in Aq+ + e collisions
should strongly suppress photoionization of A(q−1)+ at photon
energies close to threshold. Rewriting the corresponding IR
contribution (25) in terms of widths

P
γe

IR ∝ �(a)
n

�n

∑
d

�
(r)
d→0�spr

(E0 + ω − Ed )2 + �2
spr

/
4
, (43)
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where �(a)
n is the total autoionization width of state n, we

see that in ions such as Au24+ or W19+, in which �(r)
n > �(a)

n

near threshold, Raman scattering (34) will be favored over
ionization. A possible way of observing this effect in exper-
iment is to measure and compare the total photoabsorption
and photoionization cross sections. Alternatively, one can
measure the spectrum of secondary photon from the resonant
Raman scattering, varying the primary photon energy across
the ionization threshold.

IV. CONCLUSION

In this work we have investigated the role of doorway
states in electron- and photon-induced reactions mediated by
strongly mixed compound resonances. Our analysis shows
that the resonance-averaged total reaction cross sections
σtot are given by the coherent contributions of the com-
pound resonances. These cross sections are expressed in
terms of doorway resonances (i.e., simple states coupled
directly to the initial state of the target). The only difference
with the standard approach for dielectronic recombination
and photoionization is that the doorway resonances are
broadened by the spreading width �spr, which describes
their coupling to the dense spectrum of chaotic compound
states.

The situation with the partial cross sections is more
complicated. For processes such as radiative electron capture
(photorecombination) or photon scattering at energies that
place the system in the strong-mixing regime, the number of
the decay channels is very large. As a result, the stochastic
contribution, corresponding to the independent-resonance
approximation, dominates. The (resonance-averaged) partial
cross section can then be calculated from the total cross
section by including the appropriate branching ratio, e.g.,

σ e
r = (�(r)

n /�n)σ e
tot, for photorecombination. Here the ratio of

the radiative and total widths of the compound resonances
and the electron capture cross section σ e

tot can be calculated
as in Ref. [16]. On the other hand, if the process leads to
electron emission (photoionization and electron scattering)
and the number of decay channels is small (i.e., the energy does
not exceed threshold by much), the independent-resonance
approximation may be deficient and the coherent contribution
may need to be included.
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