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Formation of positron-atom bound states in collisions between Rydberg Ps and neutral atoms

A. R. Swann,1,* D. B. Cassidy,2,† A. Deller,2,‡ and G. F. Gribakin1,§

1School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, United Kingdom
2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

(Received 4 March 2016; published 20 May 2016)

Predicted 20 years ago, positron binding to neutral atoms has not yet been observed experimentally. A scheme
is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms.
Estimates of the charge-transfer reaction cross section are obtained using the first Born approximation for a
selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers.
We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by
comparison with earlier predictions for charge transfer in Ps collisions with hydrogen and antihydrogen. We
describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal
rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed
methodology is capable of producing such states and of testing theoretical predictions of their binding energies.
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I. INTRODUCTION

Being antimatter particles, positrons (e+) are of fundamen-
tal importance for tests of QED and the standard model [1–3],
and in astrophysics [4]. They also find numerous applications
in condensed-matter physics, surface science, atomic physics,
and medicine (see, e.g., Refs. [5–7]). Though positrons were
discovered more than 80 years ago [8], there is still much about
their interactions with matter that is not fully understood.

One such outstanding question is positron binding to neutral
atoms. Positron-atom bound states were first predicted by
many-body-theory calculations in 1995 [9]. Two years later,
variational calculations carried out by Ryzhikh and Mitroy
[10] and Strasburger and Chojnacki [11] confirmed that a
positron can bind to lithium. Soon after, many calculations
of positron binding to other atoms appeared; see Ref. [12] for
a 2002 review. Despite a wealth of predictions for positron-
atom binding energies now available (for a survey of the
Periodic Table, see Refs. [13,14]), no experimental evidence
of positron-atom bound states has yet arisen. This is chiefly
due to the limited availability of suitable positron sources, the
difficulty in obtaining the required neutral atom species in the
gas phase, and the need to implement an efficient production
and unambiguous detection schemes.

The situation for positron binding with molecules is
essentially the opposite [15]. Positron annihilation in poly-
atomic molecules is typically mediated by positron capture in
vibrational Feshbach resonances (VFR), where the positron
enters a quasibound state by transferring its excess energy
into molecular vibrations of a single mode with near-resonant
energy. By using a trap-based positron beam [16,17], ex-
perimentalists were able to observe VFRs in the positron
energy dependence of the annihilation rate [18]. The downshift
of a resonance relative to the vibrational excitation energy
provided a measure of the positron binding energy. This
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has enabled positron binding energies to be determined for
over 70 molecules [19–22]. On the side of theory, there are
few calculations of positron binding to nonpolar or weakly
polar molecules. The zero-range potential model [23,24]
captured the qualitative features for the alkanes, and there
were configuration-interaction (CI) calculations for carbon-
containing triatomic molecules [25,26]. For strongly polar
molecules many quantum-chemistry calculations have been
performed, but only a few of them allow direct comparison
with experiment; recent CI calculations for nitriles, aldehydes,
and acetone [27–29] gave binding energies within 25%–
50% of experimental values. A simple theoretical model
was recently proposed to explain the dependence of the
binding energy on the molecular dipole moment and dipole
polarizability [30].

Regarding positron-atom bound states, several ways of
detecting them in experiment have been proposed. In Ref. [31]
it was suggested that positronic atoms could be formed
in collisions with negative ions, e+ + A− → e+A + e−, the
positron affinity determining the energy threshold of this
reaction. As is the case of molecules, for some atoms it may
be possible to observe resonances in the positron annihilation
rate and associate these with binding [32]. Another scheme
for measuring positron-atom binding energies is laser-assisted
photorecombination of positrons from a trap-based beam with
metal atoms in a vapor [33]. It may also be possible to capture
positrons into shallow bound levels using pulses of a very
strong magnetic field [14].

Here we propose an alternative strategy for the creation and
detection of positron-atom bound states in charge-exchange
collisions of Rydberg-state positronium (Ps) with neutral
atoms. Rydberg Ps was first generated by Ziock et al.
using a linac-based positron beam [34], but it was only
possible to demonstrate the production of a few high-lying
states with principal quantum numbers n = 13–15. Modern
positron-trapping [35] and detection [36] techniques have
facilitated much more efficient production of Rydberg Ps
[37]. In particular, it has been possible to selectively populate
individual Rydberg-Stark states [38] through a two-step
excitation scheme Ps(1s) → Ps(2p) → Ps(ns,nd) [34,37,39].
These developments make further experimentation feasible,
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with a view to creating a focused Ps beam suitable for gravity
measurements [40,41]. Rydberg Ps is also important for the
production of low-energy antihydrogen atoms (H) through
collisions with antiprotons (p) [42,43], viz.,

Ps + p −→ H + e−, (1)

where the H production increases rapidly with the excitation
of Ps. This reaction is to be used to create antihydrogen in the
proposed GBAR [44] and AEgIS [45] experiments, designed
to test whether the weak equivalence principle applies to
antimatter in the same way it does to matter. A number of
calculations of reaction (1) have been performed, mostly for
ground-state Ps and ground-state H [46], though there are
some calculations for the collisions involving excited states
[43,47–49].

Recent technological developments [35] in positron trap-
ping and detection have made the method we propose here
more feasible. The basic procedure is as follows: a time-
focused positron pulse is implanted into a suitable material,
resulting in the production of ground-state orthopositronium
(o-Ps) atoms. These are subsequently excited via n = 2 to
levels with n = 3–30 using nanosecond-pulsed UV (λ =
243.0 nm) and IR (λ = 729–1312 nm) laser radiation. Ps atoms
in varying Rydberg states and having kinetic energies in the
range of 10–1000 meV collide with neutral atoms A in a
scattering cell, enabling the reaction

Ps(nl) + A −→ e+A + e− (2)

to take place, where e+A is the positron bound state with
the atom, e.g., Mg, Cu, or Zn [50]. The cross section for this
process depends on the incident Ps energy, the initial state nl of
Ps, and on the positron-atom binding energy εb. Reaction (2)
leads to rapid positron annihilation; the positron-atom bound-
state lifetime is [51,52]

τa ∼ 0.7ε
−1/2
b ns, (3)

where εb is in electronvolts. These are typically a few nanosec-
onds, which is much shorter than Rydberg Ps fluorescence
lifetimes. Thus the formation of bound states in the proposed
experiment can be detected by an increase in annihilation
events in the scattering cell, and a corresponding decrease
in events seen downstream. Varying the Rydberg Ps states and
kinetic energies will provide additional controls and make it
possible to test theoretical predictions.

Detection of positron-atom bound states in reaction (2)
would be the first observation of its kind. A comparison of
the measured cross section with the theoretical results derived
in this paper should provide an estimate of the positron binding
energy, which could be compared with existing high-quality
predictions [12–14]. It would also be interesting to apply
this method to molecules for which the binding energies
are known from the resonant annihilation studies [15,19–22].
Unlike positron-molecule annihilation which probes resonant,
quasibound states, the molecular analog of reaction (2) should
lead to population of the true positron-molecule bound states.
Molecules also allow one to explore reaction (2) for systems
with very small binding energies, e.g., C2H6 or CH3F. Their
positron affinities are expected to be ∼1 meV [53,54] but
have not been measured directly because such shifts of the

annihilation resonances are much smaller than the energy
resolution of the positron beam.

There are several calculations of the cross section for reac-
tion (2) and its negative-ion analog. All of them consider the
equivalent processes involving the hydrogen or antihydrogen
atoms,

Ps(nl) + H −→ e+H + e−, (4a)

Ps(nl) + H −→ H− + e+, (4b)

for low n. Biswas [55] estimated the cross section for
Ps(1s)-H(1s) collisions using the two-coupled-channel (2CC)
formalism, treating the outgoing positron as a plane wave.
Later, Blackwood et al. [56] and Walters et al. [57] intimated
that inclusion of the Coulomb interaction between the ion and
lepton in the final state is important for obtaining accurate
results. Roy et al. [58] then calculated the cross section for
Ps(1s)-H(1s) collisions within the Coulomb-modified eikonal
approximation (CMEA), which accounts for this Coulomb
interaction; they obtained results significantly at variance with
those of Biswas [55]. Roy and Sinha [59] extended the work
of Roy et al. [58] to include the n = 2 states of Ps. Most
recently, Comini and Hervieux [60] and Comini et al. [61]
computed the cross section for Ps(nl)-H(n′l′) collisions using
the continuum-distorted-wave–final-state (CDW-FS) method;
they considered n = 1–3 and n′ = 1–5.

Additionally, there exist calculations [62–65] for the reverse
reactions

e+H + e− −→ Ps(nl) + H, (5a)

H− + e+ −→ Ps(nl) + H, (5b)

for n = 1 and 2, and the total for n � 3 [64]. These can be
related to the forward cross sections through the principle of
detailed balance [66]. We are unaware of any calculations of
forward or reverse cross sections for specific n > 3.

Here we provide an approximate theoretical method for
estimating the cross section for reaction (2) for a generic target
atom or molecule A. Calculations have first been carried out
for reactions (4) and benchmarked against the existing data
from the literature to investigate the accuracy of our method.
Results are then given for the Rydberg Ps collisions for various
e+A binding energies.

The paper is organized as follows. Section II describes the
theoretical basis of our calculations; numerical results are then
presented in Sec. III. Section IV outlines the experimental
procedures that will be involved. We conclude in Sec. V with
a summary of the work.

II. THEORY

A. Calculation of the cross section

We seek to compute the cross sections for reaction (2), in
which a Ps atom with principal quantum number n and orbital
quantum number l collides with a stationary atom A (which is
at the origin). The center-of-mass momentum of the incident
Ps is K, and the momentum of the outgoing electron is k.
Unless otherwise stated, atomic units are used.

We work in the first Born approximation, taking the motion
of the incident Ps and the outgoing electron as plane waves
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[67]. The positron-atom binding energy is typically small (a
fraction of an electronvolt). The wave function of the weakly
bound positron is diffuse and located mostly outside the atom;
hence we describe it using the zero-range-potential model [68]
(see also Refs. [23,51,54]).

The amplitude for the process is given by

Am(K) =
∫∫

e−ik·r1ϕ∗
0 (r2)V (r2)eiK·Rψnlm(r) d3r1 d3r2,

(6)

where r1 (r2) is the position of the electron (positron) with
respect to the atom regarded as infinitely massive, ϕ0 is the
wave function of the bound positron (with energy ε0 = −εb),
V is the positron-atom interaction (which serves as the
perturbation), ψnlm is the internal Ps wave function (with m the
magnetic quantum number), R = (r1 + r2)/2 is the position
of the Ps center of mass, and r = r1 − r2 is the position of the
electron in Ps relative to the positron. The cross section σm(K)
is obtained from

dσm = 2π

j
|Am|2δ

(
ε0 + k2

2
+ 1

4n2
− K2

4

)
dρf , (7)

where j = K/2 is the flux density of the incident Ps, dρf =
d3k/(2π )3 is the density of final states, and the δ function
ensures energy conservation [66].

Using spherical polar coordinates (k,θk,φk) in k space,
we have d3k = k2 dk dk = k d(k2/2) dk, where dk =
sin θk dθk dφk is the solid angle element. Integrating Eq. (7)
over d(k2/2) we find the differential cross section,

dσm

dk
= k

2π2K
|Am|2, (8)

with the energy conservation law

k =
√

K2

2
− 1

2n2
− 2ε0. (9)

The total cross section, averaged over the possible magnetic
quantum numbers m of the incident Ps, is then

σ = 1

2l + 1

k

2π2K

l∑
m=−l

∫
|Am|2 dk. (10)

To determine the amplitude Am, Eq. (6), we use the
Schrödinger equation for the bound positron, ϕ∗

0 (r2)V (r2) =
( 1

2∇2
2 + ε0)ϕ∗

0 (r2), where the wave function behaves as
ϕ0(r2) � B e−κr2/r2 at large r2, κ = √−2ε0, and B is a
normalization constant. It is convenient to express the internal
Ps wave function ψnlm in terms of its momentum-space
counterpart ψ̃nlm, viz.,

ψnlm(r) =
∫

eiq·rψ̃nlm(q)
d3q

(2π )3
, (11)

so that

Am =
∫

d3q
(2π )3

ψ̃nlm(q)
∫

d3r1 exp

[
i

(
− k + K

2
+ q

)
· r1

]
×

∫
d3r2 exp

[
i

(
K
2

− q
)

· r2

](
1

2
∇2

2 − κ2

2

)
ϕ∗

0 (r2).

The integral over r1 yields (2π )3δ(−k + K/2 + q). Invoking
the Hermiticity of the Laplacian operator gives

Am = −1

2
ψ̃nlm

(
k − K

2

)
×

∫
ϕ∗

0 (r2)(κ2 + |K − k|2) exp[i(K − k) · r2] d3r2.

Defining ϕ̃0(q) ≡ ∫
e−iq·rϕ0(r) d3r, and adopting the zero-

range-model approximation in which ϕ0(r2) = B e−κr2/r2 in
all space, we have

ϕ̃0(q) = B

∫
e−κr

r
e−iq·r d3r = 4πB

κ2 + q2
, (12)

and B = √
κ/2π . Thus we finally obtain

Am = −
√

2πκψ̃nlm

(
k − K

2

)
, (13)

which gives

σ = 1

2l + 1

kκ

πK

l∑
m=−l

∫ ∣∣∣∣ψ̃nlm

(
k − K

2

)∣∣∣∣2

dk. (14)

The internal Ps wave function in momentum space, ψ̃nlm,
can be written as

ψ̃nlm(p) = (2π )3/2Fnl(p)Ylm(p̂), (15)

where Ylm is a spherical harmonic, and

Fnl(p) =
(

1

2

)−3/2[ 2

π

(n − l − 1)!

(n + l)!

]1/2

n222l+2l!

× (2np)l

[(2np)2 + 1]l+2
C

(l+1)
n−l−1

(
(2np)2 − 1

(2np)2 + 1

)
, (16)

with C(α)
ν being a Gegenbauer polynomial [69]. Substituting

Eq. (15) into Eq. (14) and invoking the addition theorem for
spherical harmonics gives

σ = 2πkκ

K

∫ ∣∣∣∣Fnl

(∣∣∣∣k − K
2

∣∣∣∣)∣∣∣∣2

dk. (17)

Choosing the incident Ps momentum K along the z axis
means that the integrand in Eq. (17) has no dependence on
the azimuthal angle φk. Therefore,

σ = 4π2kκ

K

∫ π

0

∣∣∣∣∣Fnl

(√
k2 + K2

4
− kK cos θk

)∣∣∣∣∣
2

sin θk dθk,

and making the substitution p = (k2 + K2/4 − kK cos θk)1/2,
we find

σ = 8π2κ

K2

∫ k+K/2

|k−K/2|
p|Fnl(p)|2 dp. (18)

Note that the cross section is proportional to the probability
of finding the electron with momentum p = k − K/2 in the
initial Ps state [see Eq. (14) or (17)]. This is the momentum
that must be added to the average momentum of the electron
within the incident Ps (K/2) to create an outgoing electron
with momentum k, i.e., p is the momentum transfer.
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Before looking at numerical values of the cross section (18),
there is an important point to note concerning the energy-
conservation relation (9). For εb > 1/4n2, the reaction is
exothermic and feasible for any Ps momentum K . Conversely,
for εb < 1/4n2 the reaction is endothermic and only feasible
for K > Kth, where Kth is the threshold Ps momentum,

Kth =
√

1

n2
− 4εb. (19)

For a fixed binding energy εb there is a critical value
ncrit = (4εb)−1/2 such that the reaction is endothermic for the
Ps principal quantum numbers n < ncrit and exothermic for
n > ncrit.

In the exothermic case the cross section (18) behaves as
σ ∝ 1/K near threshold (K → 0), while in the endothermic
case one has σ ∝ k ∝ √

E − Eth, when the Ps center-of-
mass-motion energy, E = K2/4, is close to the threshold
energy Eth = 1/4n2 − εb. Such behavior is in agreement
with the Wigner threshold laws for particles with short-range
interactions [66]. In a more accurate treatment, the Coulomb
interaction between the final-state electron and e+A must
be included, which would change the latter threshold law
to σ = const. As we will see in Sec. III, in the εb < 1/4n2

case, a rapid rise of the cross section from threshold quickly
turns into decrease. One can thus expect that the effect of the
Coulomb interaction is small outside the narrow near-threshold
region in which the electron’s kinetic energy is smaller
than the Coulomb interaction in the initial Ps state, i.e., for
k2/2 < 1/r ∼ 1/2n2 [using the mean Coulomb interaction in
Ps(nl) in the last estimate].

B. Semiclassical approximation

Although it is straightforward to calculate the cross section
by evaluating the integral in Eq. (18) numerically (see
Sec. III), an approximate analytical solution can be derived
by invoking a semiclassical approximation. This leads to a
simple expression for the cross section and provides additional
physical insight into the nature of the problem.

The quantity p2|Fnl(p)|2 is the probability density of the
internal momentum of the incident Ps. For large principal
quantum numbers n, the motion in the Coulomb field can
be described semiclassically [66]. The Ps Rydberg states
produced by two-photon excitations [37,38] have l = 0, 2.
The simplest answer for n � l can be obtained by replacing
p2|Fnl(p)|2 by its classical counterpart wn(p) for zero classical
angular momentum (L = 0) (see, e.g., Ref. [70]):

wn(p) = 4p3
n

π
(
p2 + p2

n

)2 , (20)

where pn = √−2μEn, with μ = 1
2 the reduced mass of Ps

and En = −1/4n2 the quantized Ps energy levels.
Note that the classical angular momentum L is related to the

orbital quantum number l by L = l + 1
2 . In principle, one could

calculate the cross sections for l = 0 and 2 using the generic
classical momentum distribution for L � 0 (see Ref. [70])
instead of Eq. (20). In this case, however, the cross section
does not have a simple analytical form. As we will see in

Sec. III, the semiclassical cross section derived from Eq. (20)
is a good approximation for low l, such as l = 0 and 2.

Substituting wn(p)/p2 in place of |Fnl(p)|2 in Eq. (18) we
have

σ = 32πκp3
n

K2

∫ k+K/2

|k−K/2|

dp

p
(
p2 + p2

n

)2 , (21)

which gives the semiclassical cross section

σ = 16πκ

pnK2

[
ln

(
k + K/2

k − K/2

)2

+ ln
(k − K/2)2 + p2

n

(k + K/2)2 + p2
n

+ p2
n

(k + K/2)2 + p2
n

− p2
n

(k − K/2)2 + p2
n

]
. (22)

Note that this expression diverges weakly (logarithmically)
for k = K/2. This occurs for endothermic reactions at the
incident Ps momentum K = √

2Kth. The corresponding peak
in the semiclassical cross section coincides with the maximum
of the l = 0 quantum-mechanical cross section (see Sec. III).

III. NUMERICAL RESULTS

Cross sections have been computed in the present work by
evaluating Eq. (18) numerically. The functions Fnl(p) were
computed for 0 � p � 15 on a linear grid with 1 000 000
points. For each combination of n and l, the accuracy of the
procedure was tested by evaluating the normalization integral

I =
∫ ∞

0
|Fnl(p)|2p2 dp (23)

numerically. In every case, the computed value of I was found
to be within 10−8 of the exact value I = 1. With the linear grid
it is necessary to use such a large number of points because the
function Fnl possesses n − l − 1 nodes, so for Rydberg states
with large n and small l, Fnl(p) oscillates rapidly at small p.

A. Comparisons with existing calculations for Ps-H collisions

The aim of the theoretical part of this work is to obtain
estimates of the cross sections of reaction (2) for high Rydberg
states of Ps and weakly bound positron states (εb < 0.5 eV), for
which the approximations used in Sec. II A are justified. Since
there are no previous calculations of this process, the only
comparison that can be made is with a number of calculations
for reactions (4) involving (anti)hydrogen and incident Ps with
n = 1–3. When examining these results, one should have in
mind that our method is by far the simplest, and that it is not
expected to be accurate for low n and the relatively strongly
bound H− or e+H (εb = 0.754 eV [71]). What we are looking
for here is a broad order-of-magnitude agreement and correct
energy dependence of the cross sections (except in the narrow
near-threshold energy range).

To account for the fact that H− can only form in reaction
(4b) if the total electron spin is zero, the cross sections (18)
are multiplied by a factor of 1

4 . Also, using εb = 0.0277 a.u.
gives B = √

κ/2π ≈ 0.1936. However, the true value of B,
extracted from the asymptotic form of the accurate wave
function, is 0.3159 [72]. Therefore, we have multiplied the
cross sections (18) by an extra factor of (0.3159/0.1936)2 ≈
2.66.
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FIG. 1. Cross sections for H− formation in Ps(1s)-H collisions.
Solid purple curve, present; blue circle with error bars, CBA [63]; dot-
dash-dotted yellow curve, 2CC [55]; dot-dashed blue curve, CMEA
[58]; short-dashed green curve, CDW-FS [61]; dotted orange curve,
CPA [64]; long-dashed red curve, DWBA (see text).

Figure 1 compares our calculation for Ps(1s) with the
existing calculations. The computations by McAlinden et al.
[64] were for the reverse reaction (5b), which we have
converted into forward cross sections through the principle
of detailed balance [66]:

σ(4b) = k2

4K2(2l + 1)
σ(5b). (24)

FIG. 2. Cross sections for H− formation in Ps(2s,2p)-H colli-
sions. Solid purple curves, present; dot-dashed blue curves, CMEA
[59]; short-dashed green curves, CDW-FS [60]; dotted orange curves,
CPA [64].

FIG. 3. Cross sections for H− formation in Ps(3s,3p,3d)-H
collisions. Solid purple curves, present; short-dashed green curves,
CDW-FS [60].

These reverse cross sections were obtained from coupled-
pseudostate-approach (CPA) calculations in which one of the
electrons was kept “frozen” in the 1s state of the H atom
and only the Ps pseudostates were included. The reaction for
Ps(1s) is endothermic, with a threshold incident Ps energy of
6.05 eV. The present results and the 2CC results of Biswas
[55] do not include the Coulomb interaction between the ion
and outgoing positron; hence they show zero cross section
at threshold energy. On the other hand, the CPA results of
McAlinden et al. [64], CMEA calculations by Roy et al. [58],
and the CDW-FS method of Comini and Hervieux [60] do
account for this Coulomb interaction, leading to finite cross
sections at threshold. Also shown are the earlier Coulomb-
Born approximation (CBA) results of Straton and Drachman
[63], who obtained a range of cross section values, using
various H− states and orthogonalization corrections at selected
energies. (We have ignored one of their values that was an

052712-5



SWANN, CASSIDY, DELLER, AND GRIBAKIN PHYSICAL REVIEW A 93, 052712 (2016)

FIG. 4. Cross sections for the formation of positron-atom bound states in Ps(ns,nd) collisions with Cu, Mg, and Zn. To identify the value
of n to which each curve corresponds, consider the incident Ps energy of 10 eV. At this energy, the cross section decreases monotonically with
increasing n. Selected values of n are shown explicitly next to the corresponding curves.

order or magnitude above the rest.) In addition, we calculated
the Ps formation cross section from H− using distorted-wave
Born approximation (DWBA), which gives the Ps formation
cross section in He with 20% accuracy, though overestimates
it for heavier noble gases by a larger amount [73,74]. The
corresponding cross section obtained from Eq. (24) is also
shown in Fig. 1.

As seen in Fig. 1, there are significant discrepancies
between the various calculations. The energy dependence of
the 2CC result of Biswas [55] makes it an outlier. Other
calculations show similar energy dependence, though absolute
values differ by an order of magnitude. It is in fact remarkable
that the results of the present approach fit within the range of
values from other, more sophisticated methods, in spite of the
fact that it is not expected to work for Ps(1s).

Figure 2 compares the present calculations for Ps(2s,2p)
with the existing calculations. Here the CPA cross sections of

McAlinden et al. [64] are lowest in magnitude, while the other
three methods are in a better overall agreement. The present
results are in fact quite close to the CDW-FS calculations [60].
A similar level of agreement can also be seen in Fig. 3, which
compares our cross sections for Ps(3s,3p,3d) with the only
other available set of results by Comini and Hervieux [60].

The level of agreement with existing calculations observed
in Figs. 1–3, especially for Ps(n = 3) states, confirms that our
approach should be suitable for making estimates of the charge
exchange cross sections of processes involving Rydberg Ps.

B. Predictions for the formation of positron bound states

We now present our cross sections for the formation of
positron bound states in collisions between Rydberg Ps and
atoms (or molecules) that would be used in the experiment. As
explained in Sec. I, the two-step excitation scheme produces
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FIG. 5. Cross sections for the formation of positron-molecule bound states in Ps(ns,nd) collisions with C2H6, CH3F, and CH3Br. To
identify the value of n to which each curve corresponds, consider the incident Ps energy of 10 eV. At this energy, the cross section decreases
monotonically with increasing n. Selected values of n are shown explicitly next to the corresponding curves.

Ps in s and d states, and we carry out calculations for l =
0, n = 1–20 and l = 2, n = 3–20. The only parameter that
characterizes the positron bound state is its binding energy.
We use the following values: 0.464 eV for Mg [75], 0.170 eV
for Cu [76], 0.107 eV for Zn [14], 0.01 eV for C2H6 [77], and
3 × 10−4 eV for CH3F [54]. For a more complete picture, we
also consider a species with the binding energy of 0.04 eV,
e.g., as measured for CH3Br [53].

Figures 4 and 5 show the results for the atoms and
molecules, respectively. The cross sections are rather feature-
less, rising rapidly from threshold, in the endothermic case, and
decreasing monotonically past the maximum. The latter occurs
at the Ps energy E ≈ 2Eth for the Ps(ns) states (see below),
and even closer to threshold for the nd states. In the exothermic
case the cross sections typically decrease from threshold. In
general, the largest cross section in the incident Ps energy
range studied (0.001–10 eV) is for n ≈ ncrit, i.e., the value of n

for which the positron transfer is resonant, so that 1/4n2 ≈ εb.
For n � 3 for the ns states, and n � 4 for the nd states, one
can also see some oscillations superimposed on the decreasing
cross section background. These are caused by an oscillatory
behavior of the integrand in Eq. (18) and the positions of its
maxima and minima in relation to the integration limits.

In Fig. 6, we compare the quantum-mechanical cross
sections (18) for Cu and CH3F with the corresponding
semiclassical cross sections (22) for several values of n. It
can be seen that the agreement is very close for incident
Ps energies �0.01 eV, even for low n, and particularly for
s states of Ps. This comparison also shows that for l � n

the charge-exchange cross section is almost l independent.
The weak singularity of the semiclassical cross sections
for endothermic reactions at E = 2Eth coincides with the
maximum of the quantum-mechanical cross sections. In both
instances this feature is related to the dominant contribution of
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FIG. 6. Cross sections for positron-bound-state formation in Ps(ns,nd) collisions with Cu and CH3F. Solid curves, quantum-mechanical
cross sections, Eq. (18); dashed curves, semiclassical cross sections, Eq. (22). The values of n are shown explicitly.

small momenta p in the case when the lower integration limit in
Eqs. (18) and (21) is zero. As expected, the semiclassical cross
sections obtained by using the monotonic classical momentum
distribution (20) do not have the oscillatory pattern of their
quantum-mechanical counterparts.

Figure 7 shows the dependence of the cross sections on
the principal quantum number n of the incident Ps for the
various atoms and molecules, at a fixed incident Ps energy
of 0.1 eV. For systems with larger positron binding energies
this dependence is monotonically decreasing. However, when
the binding energy drops below 0.1 eV [Fig. 7(b)], the n

dependence develops a clear maximum. As the principal
quantum number increases, the size of the Ps(nl) state,
r ∼ 3n2, becomes large compared to the size of the positron
bound state, r2 ∼ 1/κ = 1/

√
2εb. The corresponding n is in

fact not so large, e.g., even for the most weakly bound species
(CH3F, εb = 0.3 meV) this occurs for n > 10. This means
that for large n (and sufficiently large incident Ps energies),
the charge-transfer process probes the internal Ps motion at
small distances. Since the Ps wave function depends on n as
ψnlm(r) ∝ n−3/2 at small r [66], its Fourier transform depends
on n as ψ̃nlm(p) ∝ n−3/2 at large p. Consequently, the cross
section (18) decreases as σ ∼ n−3 at large n, as seen in Fig. 7.

In the experimental setup, the presence of electric fields
means that the Ps atom may not be in a pure s or d state, but
in a Stark state, i.e., a superposition of states with different l.
To estimate the importance of this effect we investigate how
much the cross sections depend on the orbital quantum number
l of the incident Ps state nl. Figure 8 shows the cross sections
for Cu and C2H6, for fixed n and l = 0, . . . , n − 1. It can be
seen that at low incident Ps energies (e.g., �1 eV for n = 10)

the curves for the various values of l are all within an order
of magnitude of each other. This indicates that the effect of
Stark mixing on the cross sections at low energies is relatively
unimportant, i.e., the cross sections for the Stark states and
pure nl states should agree to within an order of magnitude.

IV. EXPERIMENTAL PROCEDURES

The experimental production of positron-atom bound states
in the way we propose requires a beam of Rydberg Ps atoms
that is able to interact with the neutral target atoms in a
controlled manner, such that only the bound-state formation
causes an increase in the annihilation rate. The lifetimes of
Rydberg Ps states are determined almost entirely by radiative
decay and are twice as long as those of the corresponding states
in hydrogen atoms [78]. Thus, as long as the scattering cell is
sufficiently short that no fluorescence is likely to occur during
transit, annihilation events will provide a clear signal of the
formation of positron-atom bound states. This requires careful
control of secondary processes, such as elastic scattering or
ionization events that could lead to annihilation following
wall collisions. As we discuss in the Appendix, for the correct
choice of experimental parameters the cross sections for these
processes compared to those of the interactions of interest can
be sufficiently low that the latter will dominate.

Rydberg Ps beams have recently been utilized in Doppler-
correction [39] and time-of-flight (TOF) experiments [79]. At
UCL we have developed a Rydberg Ps beam for fluorescence
lifetime measurements and also for the implementation of
Ps-atom optics, designed to manipulate the translational
motion of Rydberg states using inhomogeneous electric fields
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FIG. 7. Dependence of the cross section on n for atoms (a)
and molecules (b), at a fixed incident Ps energy of 0.1 eV. In (a):
purple pluses, Ps(ns)-Mg; green crosses, Ps(nd)-Mg; blue asterisks,
Ps(ns)-Cu; open orange squares, Ps(nd)-Cu; filled yellow squares,
Ps(ns)-Zn; open blue circles, Ps(nd)-Zn. In (b): purple pluses,
Ps(ns)-CH3Br; green crosses, Ps(nd)-CH3Br; blue asterisks, Ps(ns)-
C2H6; open orange squares, Ps(nd)-C2H6; filled yellow squares,
Ps(ns)-CH3F; open blue circles, Ps(nd)-CH3F.

[41]. Owing to the manner in which the atoms are created,
Ps beams are highly divergent and have correspondingly low
transport efficiencies. Focusing such beams with electrostatic
lenses is therefore expected to offer significant improvements.
Nevertheless, we have been able to produce long-lived Ryd-
berg Ps atoms that traverse a 0.7 m flight path with flight times
up to ∼12 μs. A schematic of this arrangement is shown in
Fig. 9.

The apparatus is an extension of a system designed for
laser spectroscopy, with the same Ps production and excitation
methods as described in Ref. [36]. Positrons from a solid-neon
moderated [80] 22Na source are captured in a two-stage Surko
trap [81,82] operating at 1 Hz. The trap output (∼105 e+ per
cycle) is bunched [83] and magnetically guided through a 45◦
turn into the Ps production region (see Fig. 9).

The positron beam is implanted into a mesoporous SiO2

film with an energy E ≈ 2 keV and a time width of �t ≈ 4 ns.
This results in the creation of Ps atoms with kinetic energies
of approximately 1 eV, which subsequently cool via collisions
with the internal surfaces of the pores before being emitted
into vacuum. As a result, the average Ps energy is determined
by the incident positron impact energy, until the confinement
energy limit is reached, whereupon the Ps energy becomes
constant [84]. Typically Ps is produced in vacuum with an

FIG. 8. Cross sections for Ps(nl) collisions with Cu (with n =
5 and 10) and C2H6 (with n = 10). Solid purple curves, l = 0;
short-dashed green curves, l = 1; dotted light blue curves, l = 2;
dot-dashed orange curves, l = 3; dot-dash-dotted yellow curves,
l = 4. The long-dashed curves are as follows: dark blue curves, l = 5;
red curves, l = 6; black curves, l = 7; purple curves, l = 8; green
curves, l = 9. For the incident Ps energy of 10 eV and n = 10, the
smallest cross section corresponds to l = 9, the second smallest to
l = 8, etc., up to l = 4, below which the cross sections have similar
magnitudes.

overall efficiency of ∼0.25/e+ [85] and longitudinal kinetic
energies in the range 50–500 meV [86]. The bias applied
to an electrode offset 7 mm from the target and orientated
parallel to its surface determines the electric-field strength
in the intervening Ps-laser-interaction region, |F| ∼ 0 V cm−1

[87]. For the production of Rydberg Ps it is important to control
the electric field in the interaction region as it strongly affects
transitions to the Rydberg states.

The excitation process follows the same two-step scheme
used previously [34,37], namely, Ps atoms in the 1 3S state
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FIG. 9. Apparatus for Rydberg Ps production and TOF spec-
troscopy. The incident positron beam is guided by the magnetic field
of a solenoid and series of four coils (black) through an angle of 45◦

to the Ps converter–laser-interaction region. The dotted red (dashed
green) line represents the path of the positrons (Rydberg Ps). The
MCP-phosphor screen assembly is used to align the positron beam
with the target.

are driven by UV photons (λ = 243.0 nm) to the 2 3PJ level
(J = 0, 1, 2), and a photon in the range of λ = 760–729 nm
(IR) then drives transition to n � 10. For this system, states up
to n = 27 have been resolved [38]. The production of Ps atoms
is monitored via annihilation gamma radiation using a fast
PbWO4 scintillator optically coupled to a photomultiplier tube
(PMT). This γ -ray detector and the technique of single-shot
positron annihilation lifetime spectroscopy [88] can detect
changes in the average Ps decay rate in different time
windows, and since the decay rates for the Rydberg levels are
comparatively small, the excitation of these states can therefore
be inferred in this way [36,38].

Ground-state Ps atoms emitted from a mesoporous silica
film will typically travel around 1 cm before annihilating.
In order to study Ps interactions with atoms and molecules
in a scattering cell it is therefore advantageous to use
relatively energetic Ps atoms (e.g., Ref. [89]), or to use
long-lived Rydberg Ps which can travel much further before
radiative decay and subsequent annihilation can occur. In our
experiments Ps is detected 0.7 m away from the production
region. The probability of any ground-state atoms traveling
this far is entirely negligible, and indeed we do not detect any
events if the IR laser is off resonance.

Rydberg Ps atoms arriving downstream are detected using
a NaI scintillator, optically coupled to a PMT, located as
shown in Fig. 9. This detector is sensitive to annihilation
γ rays produced from Ps atoms that (1) were emitted from
the film within 1.5◦ of normal to its surface and (2) have
been excited to Rydberg levels able to survive the 2–15 μs
flight time. Considering the solid angle of acceptance (∼2.3 ×
10−3 sr) and coverage of the NaI detector (∼1.7 sr), the
background-subtracted detection rate of 0.02–0.1 Hz equates
to production of roughly (0.2–1.0) × 103 Rydberg Ps per trap
cycle, assuming a cosine angular distribution for emission from

FIG. 10. (a) n = 18 Ps time of flight (tz) as measured along the
z = 0.7 m flight path from the mesoporous SiO2 film to a NaI detector,
recorded using 500 ns time bins. (b) The same data as (a) given in
terms of the corresponding energy distributions Ez ≈ me(z/tz)2. Each

series represents a different laser trigger time of 5 ns (�), 15 ns ( ),

or 25 ns ( ).

the film, and neglecting the possibility of in-flight fluorescence
or direct annihilation.

Figure 10 shows TOF data recorded using the NaI detector
for n = 18 Ps states. The lasers were triggered to intersect
the excitation region at three different times relative to the
positrons being implanted into the film. The distribution
corresponding to the earliest laser time is the hottest of the
three because the Ps atoms that were excited had spent the
least amount of time inside of the film before being emitted
[86]. The data obtained when the laser was delayed by 10 or
20 ns, however, show colder Ps distributions. This is because
the irradiated atoms are those that have had time to cool in the
target via inelastic collisions within the pore structure, and also
because the fastest atoms have had time to leave the excitation
region.

The data in Fig. 10 illustrate how adjusting the laser delay
provides a degree of control over the energy distribution of
the Rydberg Ps. It is also possible to control the Ps energy
distribution by changing the positron implantation energy [86].
This provides access to a wider energy range but has the
disadvantage that this method requires tuning the system in
other ways. In general, the positron implantation energy can
be used as a gross selector, while the laser delay can provide
fine-tuning of the Ps energy distribution. The former alters the
initial Ps energy distribution according to the cooling in the
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mesoporous silica, whereas the latter selects different parts of
whatever Ps energy distribution is present.

The TOF spectra shown in Fig. 10 indicate that it is
already possible to perform an experiment designed to study
the formation of positron-atom bound states. The most direct
approach would be to insert a gas cell in the path of the Rydberg
Ps atoms, as indicated in Fig. 9. This arrangement could be
used to measure the energy thresholds for positron-molecule–
bound-state formation due to charge-exchange collisions with
Rydberg Ps. Suppression of the above-threshold portions of
the TOF spectra would be a clear indicator for such formation
and would be highly sensitive to the n state of the incident
Ps. The Rydberg states can be chosen from a wide range of
possible n values simply by varying the IR laser wavelength
[38], and because the mean energy of the Ps beam can be
controlled from a few tens of meV to ∼1 eV, a diverse range
of molecular species are amenable to study in this way.

To investigate positron binding to the atoms discussed in
Sec. III (Cu, Mg, and Zn), lower n states would be preferable,
in order to observe the energy threshold onset. Experiments
conducted so far have focused on producing Rydberg Ps atoms
with n � 10, but the wavelengths required to populate n = 4–9
(λ = 972–767 nm) could be easily achieved using alternative
laser dyes. Nonetheless, as the cross section typically varies by
over two orders of magnitude for n = 10–20 (Sec. III B), pre-
dictable attenuation of the Rydberg Ps beam as a function of n

would be a strong indication of positron-atom–bound-state for-
mation and could be achieved using our current laser systems.

The experimental arrangement described here was not orig-
inally designed to study positron-atom or positron-molecule
bound states, and there are several significant improvements
that could be made to optimize the system for these mea-
surements. If the transmitted Rydberg Ps beam is monitored
with a microchannel plate (MCP) detector, and the gas cell is
observed using a γ -ray detector, the signal-to-noise ratio would
be substantially improved. Furthermore, there are numerous
ways in which the gas cell could be located much closer to the
target than the arrangement indicated in Fig. 9, which would
allow for significantly higher Rydberg Ps beam intensities. Ex-
amples include using a smaller chamber for the positron beam
deflection, using a transmission Ps converter (e.g., Ref. [90]),
or allowing the incident positron beam to pass through the gas
cell in an inline reflection geometry. Such modifications could
introduce complications: it might be necessary to collimate the
Ps beam, more shielding would be required for the detectors,
and the gas cell could potentially cause contamination of the
Ps converter, but these would have to be weighed against the
corresponding increase in count rates.

The cross sections of interest span a wide range, and for
experimentally accessible parameters are generally quite high,
in the range of 103–104πa2

0 (see Figs. 4 and 5). The target gas
pressure required to ensure an interaction through a single pass
in the scattering cell of length � is approximately 1/(σ�). A gas
cell 5 cm long would allow for efficient detection, with almost
2π solid-angle coverage, and the required pressure would then
be around 5 × 10−5 to 5 × 10−6 Torr. For the molecular target
gases (Fig. 5) this is relatively easy to achieve, but for the
metals (Fig. 4) it is more complicated and requires the use of a
heated scattering cell. To obtain a vapor pressure of ∼10−5 Torr
of Zn or Mg requires heating to 485 K and 555 K, respectively

FIG. 11. Ionization cross sections for Ps(nl) collisions with Cu:
solid curves, l = 0 [Eq. (A8)]; dashed curves, l = 2 [Eq. (A8)
without the interference term and with Fn2 used in (A9b) instead
of Fn0]; dotted curves, results obtained from Eq. (A8) neglecting the
interference term and using the classical momentum distribution (20)
instead of |Fn0(p)|2p2. The values of n are shown next to the curves.

[91], whereas Cu must be heated to around 1200 K [92]. These
are all experimentally achievable, although since Zn and Mg
are considerably easier to implement, these would be the focus
of initial studies.

The basic measurement process relies on the formation
of bound states to initiate annihilation events that would not
otherwise have occurred. However, competing processes must
also be considered, in particular ionization, elastic scattering,
and ground-state Ps formation (see the Appendix for some
ionization cross section estimates). Any of these could provide
a signal that would be difficult to distinguish from the events
we wish to study. Ionization could be monitored by controlling
the electric field in the gas cell. If free positrons are present
they can be extracted from the cell, and hence not counted as a
spurious signal. If Rydberg Ps atoms undergo elastic scattering
or Ps formation they may nevertheless be detected following
collisions with the cell or direct annihilation.

Both experiments [93] and calculations [94] show that
ground-state Ps atoms scatter from atoms and molecules with
total cross sections similar to those of equivelocity electrons.
The upper limit for the Rydberg Ps ionization cross section
is set by the sum of the equivelocity electron and positron
total scattering cross sections, and drops off rapidly close to
threshold, as shown in Fig. 11. Thus we would expect that in
the appropriate low-energy range, the bound-state formation
cross sections relevant to the proposed experiment may be
considerably larger than those of any other process that could
give rise to an increased annihilation signal (see the Appendix).
This will have to be verified by experiment, however, since the
calculated cross sections are estimates and, as far the authors
are aware, no total cross-section data for the particular target
atoms to be studied are currently available.

V. CONCLUSIONS

An experiment has been proposed to detect the existence
of positron-atom bound states. This would be achieved by
observing the charge-transfer reaction (2), with the incident
Ps in a Rydberg state. We have provided theoretical estimates
for the cross section of this reaction. By comparing these with
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experimental data, it may be possible to infer a positron-atom
binding energy, and compare it with existing theoretical
predictions [12–14].

Our calculations were performed in the first Born ap-
proximation. The problem was reduced analytically to a
one-dimensional integral involving the internal Ps(nl) wave
function in momentum space, and this integral was evaluated
numerically. Using the semiclassical approximation, we also
obtained a simple analytical expression for the cross section for
l � n. As a check, the method was applied to Ps-H collisions
leading to H−, and results were found to be broadly in accord
with existing calculations, including the DWBA calculation
for n = 1, performed in this work. We note that the agreement
is better for n = 3, as could be expected for a method that
should be valid for higher Rydberg states. Estimates of cross
sections were then given for positron binding to Mg, Cu, Zn,
C2H6, CH3F, and CH3Br. In general, the largest cross section
in the incident Ps energy range considered (0.001–10 eV) is
obtained for n ∼ 1/

√
4εb, i.e., the value of n for which the

positron transfer is resonant. At large n and sufficiently large
incident Ps energies, the cross section σ depends on the Ps
principal quantum number n as σ ∝ 1/n3.

There are some important points to note about our theoret-
ical calculations.

(1) The outgoing electron is treated as a plane wave. To
account for the attractive Coulomb field of the positron-atom
complex, one can describe the outgoing electron by using
a Coulomb wave. This would lead to finite cross sections
at threshold energy, but would make the calculation more
cumbersome. We expect that the Coulomb interaction would
be important only for low outgoing electron energies, k2/2 �
1/2n2.

(2) The perturbation V in Eq. (6) only accounts for the
interaction of the positron with the atom; in principle one
should also include the interaction of the electron with the
atom. However, its effect on the formation of the positron-
atom bound state is expected to be comparatively small since
Rydberg Ps is a diffuse object. This is also why the role of
exchange between the diffuse electron within Ps and strongly
bound atomic electrons should be small.

(3) The form of the positron wave function used in the
derivation is correct for binding by atoms or molecules with
ionization potentials I > 6.8 eV. For atoms with I < 6.8 eV,
the asymptotic wave function corresponds to Ps(1s) bound to
the positive ion, and the dominant form of the bound-state
wave function is the “Ps-ion cluster” [12]. However, it still
contains a “positron-atom component,” and the present cross
sections could be used with caution as order-of-magnitude
estimates.

(4) The presence of electric fields in the experimental setup
will lead to Stark mixing of the Ps states. Here we have
considered briefly the dependence of the cross sections on
the value of l and found that at low Ps energies the cross
sections for different l agree to within an order of magnitude.
Theoretically, it is feasible to account for the Stark effect
rigorously by using the internal Ps wave functions in parabolic
coordinates.

We expect that the computed cross sections for the Rydberg-
state-Ps–atom collisions are valid to within an order of
magnitude or better. Measurements of absolute cross sections

would be possible with the molecular targets, all of which
are gaseous at room temperature. However, owing to large
uncertainties in the target number density in hot cells (e.g.,
Ref. [95]) it is likely that only relative cross sections could be
measured for the metal targets.

Relative cross-section measurements could in principle
be normalized using accurate calculations, although the ap-
plicability of such calculations might be compromised by
incomplete knowledge of the Rydberg Stark states produced
in the experiment, since they are highly sensitive to stray fields
[96]. Moreover, it is possible that the presence of a background
ionized gas of metal atoms in the hot cell will generate
large variations in the potential that cannot be controlled
or accurately measured, making it impossible to produce
well-defined Rydberg Stark states. The extent to which this
occurs could be monitored using high-n Ps states, or possibly
a secondary beam of Rydberg He atoms, to probe the electric
field in the cell [97].

The count rates for our experiments, neglecting improve-
ments obtained by reconfiguring the apparatus (which would
likely be substantial), would be the same as those obtained
when measuring the TOF distributions shown in Fig. 10, each
of which can be recorded in around 8–10 h. The measurements
would consist of obtaining such spectra for various different
conditions (i.e., varying n and the initial velocity distributions)
with and without the target gas present. Thus we would
expect to obtain a complete data set sufficient to determine
if bound states have been produced (including null tests and
verifications) in approximately one week for each target gas.
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APPENDIX: PS IONIZATION IN COLLISIONS
WITH ATOMS

Consider the process of ionization of Rydberg Ps in a
collision with a target atom or molecule A,

Ps(nl) + A −→ A + e− + e+. (A1)

Because of the small binding energy of Ps(nl), its constituent
electron and positron can be considered as quasifree during
their interaction with the target. This allows one to use the
impulse approximation (IA) (see, e.g., Refs. [94,98–101]) and
write the corresponding amplitude in the form

Bm = −2π

[∫
ψ̃∗

f

(
q + �K

2

)
fe(k′

e,ke)ψ̃nlm(q)
d3q

(2π )3

+
∫

ψ̃∗
f

(
q − �K

2

)
fp(k′

p,kp)ψ̃nlm(q)
d3q

(2π )3

]
,

where ψ̃nlm and ψ̃f are the internal wave functions of the
incident and final-state Ps in momentum space, fe (fp) is the
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electron (positron) scattering amplitude from the target with
initial and final momenta ke,p = K/2 ± q and k′

e,p = K/2 ±
q + �K, respectively, and �K = K′ − K is the difference
between the final and initial Ps center-of-mass momenta K′
and K.

The typical electron and positron momenta within Ps(nl)
are small, ∼1/n. This means that for small incident Ps
momenta K � 1 a.u., the initial and final electron and
positron momenta in the amplitudes fe and fp are also small.
Hence we can approximate these amplitudes by their s-wave
contributions and take them in the limit ke,p → 0 for the
simplest estimate:

fe(k′
e,ke) � −a−, (A2a)

fp(k′
p,kp) � −a+, (A2b)

where a− and a+ are the e−-A and e+-A scattering lengths
[66], respectively. Then

Bm = 2π

[
a−

∫
ψ̃∗

f

(
q + �K

2

)
ψ̃nlm(q)

d3q
(2π )3

+ a+
∫

ψ̃∗
f

(
q − �K

2

)
ψ̃nlm(q)

d3q
(2π )3

]
. (A3)

Let k be the internal momentum of Ps after the ionization.
Neglecting the Coulomb interaction between the electron
and positron in the final state, we write the internal wave
function as a plane wave: ψf (r1 − r2) = exp[ik · (r1 − r2)].
Then ψ̃f (s) = (2π )3δ(s − k), and we obtain

Bm = 2π

[
a−ψ̃nlm

(
k − �K

2

)
+ a+ψ̃nlm

(
k + �K

2

)]
.

Instead of using the final-state momenta K′ and k, let us
use the final electron and positron momenta k1 and k2,
respectively. Then k1 = K′/2 + k and k2 = K′/2 − k, giving
a more convenient form for the amplitude:

Bm = 2π

[
a−ψ̃nlm

(
K
2

− k2

)
+ a+ψ̃nlm

(
k1 − K

2

)]
.

The m-dependent ionization cross section σm is found from

dσm(K) = 2π

K/2
|Bm|2δ

(
k2

1

2
+ k2

2

2
− K2

4
− 1

4n2

)
d3k1

(2π )3

d3k2

(2π )3
.

(A4)

Writing k2
2 dk2 = k2 d(k2

2/2) and integrating over d(k2
2/2)

yields the triple differential cross section:

d3σm

dk1 dk1 dk2

= 2k2
1k2

(2π )3K

∣∣∣∣a−ψ̃nlm

(
K
2

− k2

)
+ a+ψ̃nlm

(
k1 − K

2

)∣∣∣∣2

, (A5)

with the energy conservation law

k2 =
√

K2

2
− 1

2n2
− k2

1 . (A6)

Separating the momentum-space wave functions into radial
and angular parts [see Eq. (15)] and averaging the cross section

over the magnetic quantum number m of the incoming Ps, we
find

d3σ

dk1 dk1 dk2

= k2
1k2

2πK

{
a2

−|Fnl(|K/2 − k2|)|2 + a2
+|Fnl(|k1 − K/2|)|2

+ 2a−a+Fnl(|K/2 − k2|)Fnl(|k1 − K/2|)

×Pl

[
(K/2 − k2) · (k1 − K/2)

|K/2 − k2||k1 − K/2|
]}

, (A7)

where Pl is the Legendre polynomial.
As the Rydberg Ps in the experiment described in Sec. IV

is produced mainly in s and d states, we consider the cases
l = 0 and l = 2. Integrating the differential cross section (A7)
and using the same variable substitution that led to Eq. (18),
we find the total ionization cross section for l = 0 as

σ = 2πk4
max

K

[
(a2

− + a2
+)

∫ π/2

0
I2(kmax sin α) sin2 2α dα

+ 2a−a+
∫ π/2

0
I1(kmax sin α)I1(kmax cos α) sin2 2α dα

]
,

(A8)

where kmax =
√

K2/2 − 1/2n2, the variable α determines the
partition of the total kinetic energy between the electron and
the positron (k1 = kmax sin α, k2 = kmax cos α), and

I1(k) = 1

kK

∫ k+K/2

|k−K/2|
Fn0(p)p dp, (A9a)

I2(k) = 1

kK

∫ k+K/2

|k−K/2|
|Fn0(p)|2p dp. (A9b)

As the impulse approximation is valid in the limit of large
n and low K , the cross section was computed numerically for
n = 5–20 with incident Ps energies �1 eV. It was found that
the contribution of the interference term [the second term in
square brackets in Eq. (A8)] is negligible. This is caused by the
oscillatory behavior of Fn0(p), which suppresses the integral
I1(k), Eq. (A9a). Hence we calculated the total cross section
for l = 2 from Eq. (A8) without the interference term, using
Fn2 instead of Fn0 in Eq. (A9b). Neglecting the interference
term also allows one to derive the ionization cross section
in the semiclassical approximation, by using the classical
momentum distribution (20) instead of |Fnl(p)|2p2 for l � n

(cf. Sec. II B).
The positron-atom scattering length a+ can be estimated

from the known binding energy through a+ ≈ −1/
√

2εb [66].
The e−-A scattering length can similarly be estimated from
the target’s electron affinity (EA) [102]. Since the positron
binding energy is usually small, the positron contribution to
the ionization cross section dominates.

As an example, Fig. 11 shows ionization cross sections for
Ps collisions with the Cu atom for l = 0 (with interference)
and l = 2 (without interference), as well as the semiclassical
result. We take the electron affinity to be 1.235 eV [103]. The
cross sections for l = 0 and l = 2 are almost indistinguishable,
except for the lowest principle quantum number n = 5. In the
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scale of Fig. 11, the semiclassical cross section for l = 0 is
identical to the quantum calculation, which confirms that the
interference term is negligible.

The cross sections grow monotonically from zero at
threshold, and in the limit of large Ps energy they become
constant. The value of the cross section at large K (though still
�1 a.u.) may be determined as follows. The typical electron
and positron momenta in the Ps Rydberg state nlm are small
(∼1/n), so for K � 1/n one can replace the corresponding
momentum-space densities by the δ functions. Neglecting
interference, Eq. (A5) gives

d3σ

dk1 dk1 dk2

= 2k2
1k2

K

[
a2

−δ

(
K
2

− k2

)
+ a2

+δ

(
k1 − K

2

)]
,

which yields

σ = 4π (a2
− + a2

+). (A10)

This result arises because the electron and positron in the
incident weakly bound Ps are quasifree, each with momentum
K/2. The total ionization cross section is then simply the
sum of the electron-atom and positron-atom (elastic) scattering
cross sections, σ = σ− + σ+. Unlike Eq. (A10), this latter
result is valid for any Ps momentum K . Instead of having a
plateau, the ionization cross section will then decrease with the
Ps energy, following the decrease of the positron and electron
cross sections σ±.

For Cu, supposing the incident Ps has an energy of
0.05 eV, for n = 15 the ionization cross section is estimated
to be about 25πa2

0 , while the charge-transfer cross section is
approximately 125πa2

0 , i.e., much greater. Depending on the Ps
energy and the value of n, this may or may not be the case, but
we have shown that there should be a “window” of Ps energies
and values of n where charge transfer is the dominant process.
In particular, it appears that for the Ps principal quantum
numbers for which the charge-transfer cross section is largest,
it is also much greater than the corresponding ionization cross
section, making the proposed detection scheme feasible.
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