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Analytical calculation of cold-atom scattering
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The interaction between atoms behaves as2a/r n at large distances and, owing to the large reduced massm
of the collision pair, allows a semiclassical treatment within the potential well. As a result, the low-energy
scattering is governed by two large parameters: the asymptotic parameterg5A2ma/\@a0

(n22)/2 ~a0 is the
Bohr radius! and the semiclassical zero-energy phaseF@1. In our previous work@Phys. Rev. A48, 546
~1993!# we obtained an analytical expression for the scattering lengtha, which showed that it has 75%
preference for positive values forn56, characteristic of collisions between ground-state neutral atoms. In this
paper we calculate the effective range and show that it is a function ofa, r e5Fn2Gn /a1Hn /a2, whereFn ,
Gn , and Hn depend only ong. Thus, we know thes-phase shift at low momentak!g22/(n22) from the
expansionk cotd0.21/a1

1
2 r ek

2. At k@g22/(n22) the phase shift is obtained semiclassically asd05F
1p/42I ng2/nk(n22)/n, whereI n5@n/(n22)#G„(n21)/n…G„(n12)/2n…/Ap. Therefore,g and F determine
thes-wave atomic scattering in a wide range of momenta, as well as the positions of upper bound states of the
diatomic molecule.@S1050-2947~99!03603-3#

PACS number~s!: 34.10.1x, 34.50.2s
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I. INTRODUCTION

The character of the interaction between atoms in ve
low-energy collisions is determined by the sign and mag
tude of the atom-atom scattering lengtha. Negativea mean
attraction, and positivea correspond to repulsion betwee
the atoms. The value ofa is crucial for the properties o
atomic gases at very low temperatures. In particular,
bosonic atoms witha.0 the possible Bose condensate
stable, whereas fora,0 it is unstable, and only a finite
number of atoms can be found in the condensate state
trap. Large absolute values ofa describe situations when
virtual (a,0) or a weakly bound (a.0) level exists for the
atomic pair. In the latter case the energy of this level can
estimated asE52\2k2/2m ~m is the reduced mass of th
atoms!, wherek51/a. A more accurate estimate can be o
tained by taking into account the next term in the low-ene
expansion of thes-wave phase shiftd0 ,

k cotd0.2
1

a
1

1

2
r ek

2, ~1!

and using

k5
1

a
1

1

2
r ek

2 ~2!

to find the weakly bound energy level, wherer e is the so-
called effective range@1#.

If the interatomic potential is known to sufficiently hig
accuracy, all bound-state and scattering properties can
obtained by numerical integration of the second-or
~Schrödinger! equation. However, in many cases the errors
the calculated potential curves do not allow one to determ
even the sign of the scattering length or the total numbe
bound states. The potential curve can be refined if some
perimental data on the positions of the bound states or p
toassociation intensities are available. To make this proc
PRA 591050-2947/99/59~3!/1998~8!/$15.00
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effective one needs to know what the main characteristic
the interatomic potential are that one has to tune to ob
accurate results, in other words, what the quantities are
the observed effects are most sensitive to. At this point
analytical approach would be most useful in providing gu
ance and uncovering some important physics of the lo
energy atom-atom scattering.

There are two features of the interaction between the
oms that allow one to tackle this problem analytically. Fir
the potential at large distances behaves as an inverse p
of the interatomic distance,

U~r !.2
a

r n , ~3!

with n56 for spherically symmetric neutral atoms. Th
asymptotic parametera[C6 is known quite well for most
atomic pairs of interest. Second, for atoms other than hyd
gen and helium the potential curve is usually quite de
even when the electron-exchange part of the atomic inte
tion is repulsive, as for3Su terms of alkali-metal atoms
‘‘Deep’’ here means that the wave function of the atom
pair oscillates many times within the potential well, even
very low collision energies, and accordingly, the interatom
potential supports a large number of vibrational levels. T
latter property enables one to use the semiclassical~or WKB!
approximation to describe the motion of atoms within t
potential well.

Based on these two properties a formula for the scatte
length was obtained in our previous work@2#,

a5āF12tanS p

n22D tanS F2
p

2~n22! D G , ~4!

where ā is the meanor ‘‘typical’’ scattering length deter-
mined by the asymptotic behavior of the potential throu
the parameterg5A2ma/\,
1998 ©1999 The American Physical Society
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ā5cosS p

n22D S g

n22D 2/~n22! GS n23

n22D
GS n21

n22D , ~5!

and F is the semiclassical phase calculated at zero ene
from classical turning pointr 0 whereU(r 0)50, to infinity,

F5E
r 0

`
A22mU~r !dr. ~6!

It also determines the total number of vibrational levels w
zero orbital angular momentum@2#,

Ns5FFp 2
n21

2~n22!G11, ~7!

where@ # is the integer part. When the difference in brack
is just below an integer the scattering length Eq.~4! is
anomalously large negative,uau@ā, which corresponds to
the presence of a virtual level atE5\2/2ma2, and when it
exceeds an integer by a margin,a is very large positive, due
to the existence of a weakly bound state. Unlikeg andā the
phase factorF depends strongly on the actual shape of
interatomic potential well. When the phase is large,F/p
@1, the scattering length is very sensitive to the slight
changes of the potential. The error can be estimated by u
Eq. ~6!.

When the potential is not known to sufficient accurac
i.e., when the error in the phase isdF;1, one can still use
Eqs. ~4! and ~5! to estimate the typical scattering leng
values that one can expect for a given mass and van
Waals constantC6 . For most atomic pairs the value ofg
5A2mC6 ~in atomic units! is much larger than unity, e.g
g54.23103, 7.93103, 2.73104, and 4.13104 for Li, Na,
Rb, and Cs, respectively, and the corresponding scatte
lengthsa;ā'0.478Ag are parametrically large. Equation
~4! also shows that for potentialsU(r )}1/r 6 there is a 3:1
preference for positive values ofa. This means that for abou
75% of atomic pairs the scattering lengths are positive, a
consequently, the corresponding Bose condensates wou
stable.

In this work we calculate the effective range in atom
collisions analytically and show that it is a simple function
g anda ~and, consequently,F!; see Eq.~24!. We calculate
the values ofr e for various collision states of Li2, Na2, and
Cs2 by using the scattering lengths obtained numerically
other authors@3–5#, and demonstrate that our analytical fo
mula for r e is exceptionally accurate. Its results agree w
the direct numericalr e to better than 1%.

From a more general point of view this result is part o
‘‘theorem’’ that states that for deep potentials wi
asymptotic behavior~3! the scattering phase shift is dete
mined byg andF alone, as long as the scattering energy
much smaller than the depth of the potential well. This th
rem follows from the fact that at smaller distances where
potential is deep it can be replaced by an energy-indepen
boundary condition. We illustrate this statement by calcu
ing thes-phase shift semiclassically atkā@1, where it has a
simple explicit dependence onF andg.
gy

s

e

t
ng

,

er

ng

d,
be

y

s
-
e
nt

t-

II. CALCULATION OF THE EFFECTIVE RANGE

The effective ranger e in Eq. ~1! can be found from the
integral @6#

r e52E
0

`

@x0
2~r !2x2~r !#dr, ~8!

wherex(r ) is the solution of the radial Schro¨dinger equation
for the s partial wave at zero energy,

2
\2

2m

d2x

dr2
1U~r !x~r !50, ~9!

with the boundary conditionx(0)50, normalized atr→`
as

x~r !.12
r

a
, ~10!

wherea is the scattering length andx0 is the zero-energy
solution of the Schro¨dinger equation for the free motio
@U(r )50#, equal to the asymptotic form~10! everywhere:
x0(r )512r /a. The integral in Eq.~8! converges providedx
approachesx0 rapidly enough asr→`. This requiresU(r )
to decrease faster thanr 25.

At large distances the potential is given by Eq.~3! and Eq.
~9! has an analytical solution in terms of the Bessel functio
J1/(n22) andN1/(n22) @1# ~see below!. This potential also sat-
isfies the condition for the validity of the semiclassical a
proximation

m\uFu

p3
!1, ~11!

whereF52dU/dr andp5A2m@E2U(r )#, at

r !S 2g

n D 2/~n22!

, ~12!

for E50. For interatomic potentials the above boundary
usually much greater than the atomic radii. For examp
inequality ~12! reads asr !117 a.u. for Cs,r !51.2 a.u. for
Na, andr !37.5 for Li. At small distancesU(r ) does not
have the simple form of Eq.~3!; however, the semiclassica
approximation remains valid there. Hence, there is alway
range of distancesr * satisfying Eq.~12! where both the
semiclassical approximation and the analytical solution
Eq. ~9! with U(r )52a/r n are valid. As a result, one ca
present the wave function atE50 explicitly as@2#

x~r !5
C

Ap
sinS 1

\ E
r 0

r

pdr1
p

4 D , r 0,r &r * , ~13!

x~r !5Ar FAJ1/~n22!S 2g

n22
r 2~n22!/2D

2BN1/~n22!S 2g

n22
r 2~n22!/2D G , r * &r ,`,

~14!

wherer 0 is the classical turning point andp5A22mU(r ) is
the classical momentum. To the left ofr 0 the wave function
x(r ) decreases exponentially.
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By matchingx anddx/dr from Eqs.~13! and~14! at r * ,
and comparing the asymptotic form of Eq.~14! at r→` with
Eq. ~10!, we obtain the scattering lengtha, Eq. ~4!, and the
constantsA, B, and C in terms ofg and the semiclassica
phaseF, Eq. ~6!:

B52
1

a
sin

p

n22
GS n23

n22D S g

n22D 1/~n22!

, ~15!

A5B tanS F2
p

2~n22! D , ~16!

C5An22

p

B

cosS F2
p

2~n22! D
. ~17!

The functionsx andx0 can now be used to calculate th
effective range from the integral~8!. The dominant contribu-
tion to the integral*x2dr comes from large distancesr
.r * . Indeed, let us estimate this integral atr;r * using the
semiclassical solution~13!. Substitutingp5A2ma/r n and
replacing sin2( ) with 1

2 we obtain

E x2dr'
C2

2 E r n/2dr

A2ma
5

C2r n/2 11

\g~n12!
. ~18!

This shows that the contribution of the semiclassical par
the wave function, and small distances on the whole, is n
ligible, and the expression forx in terms of the Bessel func
tions, Eq.~14!, can be used for allr .

Both * rx0
2dr and* rx2dr are divergent asr goes infinity;

however, these divergences must cancel to produce a fi
r e . The first integral is trivial,

E
0

r

x0
2dr5r 2

r 2

a
1

r 3

3a2
, ~19!

and we should concentrate on the integration of the func
x2. Using the well-known expression

Nn~x!5
1

sinnp
@cosnpJn~x!2J2n~x!#, ~20!

and the expressions forA andB from Eqs.~15! and~16!, as
well as Eqs.~4! and ~5!, we have

E x2dr52n24n11~gn!2nH @G~11n!#2E x2~4n11!

3@Jn~x!#2dx2
2~gn!2n

a
G~12n!

3G~11n!E x2~4n11!Jn~x!J2n~x!dx

1
~gn!4n

a2
@G~12n!#2E x2~4n11!@J2n~x!#2dxJ ,

~21!
f
g-

ite

n

wheren51/(n22) andx52gnr 21/2n is the new integration
variable. The divergence now comes from the lower lim
whereJ6n}x6n. The next step is to integrate by parts a
single out the divergence within the surface terms. For
ample, the first integral is transformed as

E x2~4n11!@Jn~x!#2dx52
1

2n
@x22nJn~x!#2

2
1

n E x24nJn~x!Jn11~x!dx,

~22!

where the remaining integral is well behaved atx50, and
has a finite value when calculated between 0 and`. After
substitution into Eq.~21!, the surface term and the integr
part appear as

E x2dr524n~gn!2n@G~11n!#2H @x22nJn~x!#2

12E x24nJn~x!Jn11~x!dxJ 1¯ ~23!

for the first integral in Eq.~21!. Since the expansion for th
Bessel function forx!1 (r→`) is

Jn~x!.
xn

2nG~11n!
,

the surface term in Eq.~23! goes to infinity as
(2gn)2nx22n5r which cancels exactly the first divergen
term of the integral~19!, when we substitute both into Eq
~8!. Similarly, the other two divergent terms on the rig
hand side are removed by the surface terms of the sec
and third integrals in Eq.~21!, respectively. Finally, the re-
maining integrals are finite and have simple analytical
swers@7#.

As a result, the effective range is obtained in the form

r e5Fn2
Gn

a
1

Hn

a2
, ~24!

whereFn , Gn , andHn depend only on the asymptotic pa
rametersg andn51/(n22):

Fn5
2

3

p

sinnp
~gn!2n

G~n!G~4n!

@G~2n!#2G~3n!
, ~25!

Gn5
4

3

p

sinnp
~gn!4n

G~122n!G~4n!

nG~n!G~2n!G~3n!
, ~26!

Hn5
2

3

p

sinnp
~gn!6n

G~123n!G~12n!G~4n!

n2@G~n!#2@G~2n!#2
, ~27!

which, apart from some numerical factors, scale asFn;ā,
Gn;ā2, andHn;ā3 @see Eq.~5!#. Therefore, the effective
range in this problem is not an independent parameter, b
simple function of the mean scattering lengthā and the true
scattering lengtha. The typical value ofr e is determined by
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the long-range behavior ofU(r ) in terms ofg, the way it
determines the characteristic mean scattering lengthā. The
particular values ofr e and the scattering lengtha are decided
by the short-range part of the potential curve, which de
mines the actual magnitude of the zero-energy semiclas
phaseF.

This means that if one considers two different interatom
potentials characterized by the same asymptotic beha
~equalg! and phasesF that differ by an integer multiple o
p, such potentials will produce the same scattering len
and effective range. As a result thes-phase shifts in these
potentials will be essentially the same at low scattering m
mentakā!1, Eq.~1!. As we show in Sec. IV this statemen
is in fact valid in a much larger range of momenta,kā.1,
provided the scattering energy is much smaller than the c
acteristic minimum depth of the potential curve.

The asymptotic part of the atomic interaction, i.e., the v
der Waals constantC6 , is usually known much better tha
the details of the potential curve at smaller distances.
present calculation shows that the low-energy scatterin
sensitive to these details to the extent that they influence
semiclassical phase. From this point of viewF andg are the
best parameters to describe the low-energy atomic scatte
In conclusion we present the results of our calculation in
physically important casen56 (n5 1

4 ) for the scattering
length

a5ā@12tan~F2p/8!#, ~28!

ā5A2gG~ 3
4 !/G~ 1

4 !'0.477 989Ag, ~29!

and the effective range

r e5
A2g

3 F GS 1

4
D

GS 3

4
D 22

A2g

a
1

GS 3

4
D

GS 1

4
D

4g

a2 G ~30!

5
ā

3F GS 1

4D
GS 3

4D G
2

F122
ā

a
12S ā

aD 2G ~31!

'AgS 1.394 7321.333 33
Ag

a
10.637 32

g

a2D . ~32!

Expression~31! makes it clear that in agreement with th
general theoryr e is always positive.

III. NUMERICAL EXAMPLES

To test our analytical formula forr e we first refer to Refs.
@3–5#, where the scattering lengths and effective ranges w
obtained for alkali atoms by direct numerical solution of t
Schrödinger equation. Their results for Li, Na, and Cs pa
interacting via singlet and triplet potentials are shown
Table I. Using the asymptotic parametersg and the scatter-
ing lengthsa from the above calculations we calculate t
effective ranges analytically from Eq.~32!, sixth column of
r-
al

c
or

th

-

r-

n

e
is
he

g.
e

re

Table I. Our values ofr e agree to better than 1% with th
numerical ones~fifth column!, which clearly demonstrate
the accuracy of our semiclassical approach in low-ene
atomic collisions. This also confirms that in atomic scatter
r e is not really an independent parameter of thes-phase-shift
expansion~1!.

As a further illustration, let us consider the phase sh
produced by two different potentials with the sam
asymptotic behavior. The first one is the Cs2

3S3 interpola-
tion potential of Ref.@2#,

U~r !5
1

2
Brle2hr2S C6

r 6 1
C8

r 8 1
C10

r 10D f c~r !, ~33!

where the first item on the right-hand side represents
exchange repulsion between the valence electrons, andf c(r )
in the long-range part is a cutoff function that cancels
1/r n divergence at small distances:

f c~r !5u~r 2r c!1u~r c2r !e2~r c /r 21!2
, ~34!

whereu(x) is the unit step function,u(x)51(0), when x
.(,)0. The values of the parametersB50.0016,l55.53,
h51.072, C657020, C851.13106, and C1051.7
3108 a.u. of the potential~33! are from@8#. The cutoff ra-
dius r c'23 a.u. can be viewed as a free parameter, due
lack of accurateab initio calculations or experimental infor
mation about the potential@9#.

The second potential is the simple Lennard-Jones po
tial

U~r !5
b

r m 2
a

r n ~m.n!. ~35!

For this potential the semiclassical phase~6! is given by

F5A2ma~m22!/2~m2n!b2~n22!/2~m2n!

3
1

m2n
BS 3

2
,

n22

2~m2n! D , ~36!

TABLE I. The scattering lengtha and effective ranger e ~in
atomic units! for alkali-metal atom scattering.

Atoms State ga ~a.u.! a re r e
b

Li-Li 1Sg 4213.3 36.9c 66.5c 66.3
3Su 217.2c 1014.8c 1006.3

Na-Na 1Sg 7854.2 34.936d 187.5d 187.3
3Su 77.286d 62.5d 62.4

Cs-Cs 3Su 41234.0 68.216e 624.55e 624.01

ag5A2mC6 obtained using the reduced massesm56394.7, 20954,
and 1.2113105 a.u., andC651388, 1472, and 7020 a.u. for7Li 2,
23Na2, and133Cs2, respectively.
bCalculated analytically from Eq.~32!.
cCalculated numerically in@5#.
dCalculated numerically in@3,5#.
eObtained numerically in@4#, using the potential from@2# with the
cutoff radiusr c523.165 a.u.
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whereB( ) is the beta function, and the scattering length a
effective range are calculated analytically from Eqs.~4! and
~24!. Interatomic potentials are often approximated by E
~35! with m512 andn56 ~the so-called Lennard-Jones 12
potential, LJ12,6!, and we will stick to this case hereafte
Then

F5A2ma5/6b21/3
ApG~ 1

3 !

10G~ 5
6 !

'0.420 654 63A2ma5/6b21/3.

~37!

Our theory asserts that the two potentials~33! and ~35!
~with a5C6! should give the same values ofa, r e , and in
fact the same low-energys-phase shifts, provided they hav
equal semiclassical phasesF, even though the potentia
curves at smallr can be quite different; see Fig. 1.

To test this we calculate thes-wave phase shifts for C
atoms (m51.2113105 a.u.) using the Cs2

3S3 potential with
five different cutoff radii; see Table II. We do it by solvin
the radial Schro¨dinger equation

2
\2

2m

d2x

dr2
1U~r !x~r !5Ex~r ! ~38!

numerically at E5\2k2/2m, and finding d0 from the
asymptotic behavior of the wave functionx(r );sin(kr1d0)
@10#. The phases at smallk are used to extract the scatterin
length numerically from Eq.~1!. We also calculate the zero
energy semiclassical phasesF for these potentials, and ob
tain the values ofa and r e from Eqs.~28!, ~29!, and ~32!,
usingg541 234.0 a.u.

Once F is known, we consider scattering in th

FIG. 1. Cs2
3Su potential of Eq.~33! with r c523.165 a.u. and

the Lennard-Jones 12-6 potential with the same asymptotic be
ior and semiclassical phaseF5182.895.
d

.

LJ12,6 potential ~35!, with a5C657020 a.u. and b
5(0.420 654 63A2mC6

5/6/F)3, which ensures that this po
tential returns the same semiclassical phase~37!. The low-
energy scattering phase shifts produced by the two poten
are shown in Fig. 2, and the scattering lengths are comp
in Table II. The difference between the scattering lengths
the Cs2

3S3 and LJ12,6 potentials in Table II does not excee
0.3%. The scattering lengths obtained analytically from E
~28! are also very close to the numerical ones. Moreover,
s-phase shifts from the two potentials are almost indist
guishable in Fig. 2, and the low-energy phase-shift fits~1! in
terms ofa andr e are in good agreement with the numeric
values. For the potential with the Cs2 asymptotic behavior
the mean scattering length from Eq.~29! is large, ā

v-

FIG. 2. s-wave phase shifts calculated in the Cs2
3S3 potential of

Eq. ~33! with different cutoff radii~circles! and in the LJ12,6 poten-
tials with equal phasesF ~crosses!. Dashed line isd052ak and
solid line isd0 from Eq.~1!, with a andr e obtained from Eqs.~28!,
~29!, and~32!; see Table II.

TABLE II. Comparison of the scattering lengths obtained n
merically for the Cs2

3Su and LJ12,6 potentials and, analytically
using the semiclassical theory.

r c
a F

Scattering lengths~a.u.!

r e
cCs2

3Su
b LJ12,6

b Eq. ~28!c

23.115 184.4258016 477.16 477.86 477.29 191.
23.140 183.6562031 272.23 272.44 272.59 2053.28
23.165 182.8954135 68.24 68.13 68.06 627.
23.190 182.1432966 145.45 145.43 145.37 157.
23.215 181.3997181 350.65 351.02 350.73 169.

aSmaller cutoff radii correspond to stronger~deeper! potentials and,
consequently, greater semiclassical phasesF.
bScattering lengths obtained from numericald0 using Eq.~1! at k
→0.
cAnalytical calculation by means of Eqs.~28!, ~29!, and~32! using
F from the second column andg541 234.0.
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597.1 a.u., and the validity of Eq.~1! is limited to k!ā21

'0.01 a.u.

IV. SEMICLASSICAL CALCULATION OF THE
PHASE SHIFT

We saw in Fig. 2 that the phase shifts produced by
two different potentials from Fig. 1 are practically the sam
at smallk. Let us now look at 100 times greater momen
that go well beyond the validity range of expansion~1!. Fig-
ure 3 shows that the two potentials still give very close ph
shifts. If we change the cutoff radius of the Cs2

3Su , thereby
changing the strength of the potential well, the phase sh
on a large momentum scale go ‘‘parallel’’~Fig. 4!. At small
k they of course behave differently, as prescribed by th
scattering lengths~Table II, Fig. 4 inset!. In accordance with
Levinson’s theorem atk→0 the phase shifts go toNsp,
where Ns is the number ofs bound states in the potentia
~58 or 59, depending onr c!.

At small distances, Eq.~38! at E.0 can be treated usin
the semiclassical approximation, as the increase ofp only
improves its applicability; see Eqs.~11! and ~12!. At large
distances,U(r )→0, andp→\k; thus, the semiclassical ap
proximation is also valid atr→`. Therefore, it may only be
violated somewhere in between. Indeed, when we ana
the left-hand side of Eq.~11! using the asymptotic form~3!,
we see that it has a maximum atr n5(n22)a/
@2(n11)E#. If we require that the height of this maximum
be !1, we obtain

k@g22/~n22! or kā@1, ~39!

FIG. 3. s-wave phase shifts calculated in the Cs2
3Su potential

of Eq. ~33! with r c523.165 a.u.~solid line! and in the LJ12,6 poten-
tials with the same asymptotic behavior and phaseF ~dashed line!.
Solid circles show the semiclassical result~46!. Shown in the inset
is the difference betweend0 in the Cs2

3Su and LJ12,6 potentials,
and the corresponding correction due to the2C8 /r 8 term, obtained
as a difference between Eqs.~47! and~46! ~dotted line! and, in the
first order inC8 , from Eq. ~49! ~dot-dashed line!.
e

e

ts

ir

ze

where we dropped then-dependent numerical factor;1 on
the right-hand side of the first inequality, and used Eq.~5! in
the second. Note that this condition is just opposite
kā!1, where expansion~1! is valid, and where we have
been able to solve the scattering problem analytically
calculatinga and r e .

Now we will calculate the phase shift forkā@1
purely semiclassically. Wave function~13! with p
5A2m@E2U(r )# is now valid everywhere and the phas
shift is

d0~k!5 lim
r→`

S 1

\ E
r 0

r

pdr2kr D 1
p

4
. ~40!

For k→0 the integral on the right-hand side~RHS! ap-
proachesF of Eq. ~6!. The difference between larged0(k)
andF remains relatively small in a wide range ofk ~see Fig.
3!, as long asE!uUminu, where Umin is the characteristic
depth of the potential curve minimum atr 5r min . Thus, we
proceed with the calculation ofd0 as follows~using atomic
units with \51 below!:

d0~k!5E
r 0

`

@Ak222mU~r !2k

2A22mU~r !#dr2kr01F1
p

4
. ~41!

The integral above converges atr→` as U(r )→0. At
smaller distances where 2muU(r )u@k2 the two square roots
essentially cancel each other,

FIG. 4. Solid lines show thes-wave phase shifts calculated i
the Cs2

3Su potential of Eq.~33! with different cutoff radii; see
Table II. Solid circles show the semiclassical analytical result
~46! with the correction, Eq.~49!, phase, calculated usingg
541 234.0 a.u.,F5182.8954, andC851.13108 a.u.
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Ak222mU~r !2A22mU~r !.
k2

2A2muU~r !u
, ~42!

and the corresponding contribution to the integral is e
mated askrminAE/uUminu; hence it is small. The importan
distances in the integral in Eq.~41! are those wherek2

;2muU(r )u; therefore, forE!uUminu we can replaceU(r )
by its asymptotic form and integrate formally from zero
infinity:

E
0

`SAk21
g2

r n2k2Ag2

r n D dr

52@g2/~n22!k#~n22!/nE
0

`

~11t2n/22A11t2n!dt.

~43!

The dimensionless integralI n on the RHS calculated by part
as

I n5
n

2 E0

` xn/2dx

A11xn~11A11xn!
5

nGS 12
1

nDGS 1

2
1

1

nD
~n22!Ap

.

~44!

Thus, starting from Eq.~41! we have obtained the following
expression for the phase shift@11#:

d0~k!5F1
p

4
2I n@g2/~n22!k#~n22!/n . ~45!

For the physically important casen56,

d05F1
p

4
2I 6g1/3k2/3, ~46!

whereI 65 3
2 G( 5

6 )G( 2
3 )/Ap'1.293 55.

Figure 3 illustrates that Eq.~46! works well for k.ā21

'0.01 a.u. It means that the two parametersF andg indeed
determine the energy dependence of the phase shifts in
wide range of momenta. One cannot help noticing, thou
that the semiclassical formula clearly favors the phase s
in the LJ12,6 potential. The difference betweend0 in the two
potentials shown in the inset of Fig. 3 suggests that it
creases as;kl with 1,l,2. If this difference were due to
the difference between the two potential curves at small
tances~Fig. 1!, it would be proportional tok2, as follows
from Eq.~42!. Thus, we have to conclude that it is due to t
different asymptotic behavior of the potentials~33! and~35!,
namely, due to the next long-range term2C8 /r 8 in the
Cs2

3Su potential. To take this effect into account one c
simply calculate the semiclassical phase shift as
i-

he
h,
ift

-

s-

E
0

`SAk21
g2

r n 1
2mCm

r m 2k

2Ag2

r n 1
2mCm

r m D dr1F1
p

4
; ~47!

cf. Eqs.~41! and~43!, m.n. Unlike Eq.~43! this expression
cannot be evaluated analytically, but its numerical calcu
tion is straightforward~e.g., usingMATHEMATICA @12#!. The
difference between the phase shifts~47! and ~46! obtained
with m58, g541 234.0, andC851.13108 a.u. is shown in
Fig. 3 ~inset! by the dotted line. It is in very good agreeme
with the difference between phase shifts found numerica
from the Schro¨dinger equation for the two potentials.

If we consider the second long-range term in Eq.~47! as a
correction, the integral can be expanded in powers ofCm .
The total phase shift is then presented asd0(k)1Dd0(k),
whered0(k) is given by Eq.~45!, and the correction is given
by

Dd0~k!52mCmg22~m21!/nk2~m21!/n21

3

GS 3

2
2

m21

n DGS m21

n D
S m212

n

2DAp

~48!

'20.350 545mC8g27/3k4/3 ~n56, m58!.
~49!

In spite of a relatively large numerical value ofC8 for Cs the
last expression is also in good agreement with the numer
Dd0 ~Fig. 3, inset!. Figure 4 demonstrates that the sum of t
semiclassical phase~46! and correction~49! provides an ac-
curate description of the momentum dependence of
s-wave phase shift for the Cs atoms.

V. CONCLUSIONS

We have shown that thes-wave scattering properties o
atoms in a wide range of momenta depend only on the z
energy semiclassical phaseF of the potential and its long-
range asymptotic behavior dominated by the2C6 /r 6 term.
The latter influences the result through the large param
g5A2mC6, which explains the large values of atom-ato
cross sections at low energies~through the mean scatterin
length ā! and governs the energy dependence of the ph
shifts. At small momentak,ā21 the phase shift is deter
mined by the scattering lengtha and effective ranger e . We
have obtained a formula which shows thatr e is a function of
g anda. At larger momentak.ā21 the phase shift has bee
calculated semiclassically, and possible corrections due
other long-range terms in the potential have been estima
In particular this means that atomic scattering, as well as
positions of diatomic vibrational bound states near the dis
ciation limit @13#, is relatively insensitive to the shape of th
potential curve at small distances, provided the zero-ene
semiclassical phase is fixed.

Note added in proof.Recently we found that Eq.~30! for
the effective range has been obtained by Gao@14# from the
exact theory of wave functions in the long-range poten
with n56.



-

,

S

ica

the

at

he
B.

cs
,

B

PRA 59 2005ANALYTICAL CALCULATION OF COLD-ATOM SCATTERING
@1# L. D. Landau and E. M. Lifshitz,Quantum Mechanics: Non
Relativistic Theory~Pergamon, Oxford, 1965!.

@2# G. F. Gribakin and V. V. Flambaum, Phys. Rev. A48, 546
~1993!.
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