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The interaction between atoms behaves-ag'r" at large distances and, owing to the large reduced mass
of the collision pair, allows a semiclassical treatment within the potential well. As a result, the low-energy
scattering is governed by two large parameters: the asymptotic paragvetg®ual/fi>al" 2”2 (a, is the
Bohr radiug and the semiclassical zero-energy phdse 1. In our previous worfPhys. Rev. A48, 546
(1993] we obtained an analytical expression for the scattering leagtiwhich showed that it has 75%
preference for positive values far=6, characteristic of collisions between ground-state neutral atoms. In this
paper we calculate the effective range and show that it is a functian f=F ,— G, /a+H, /a2, whereF,,,
G,, andH, depend only ony. Thus, we know thes-phase shift at low momenta<y~2("~2 from the
expansionk cot y=—1/a+ 3r k2. At k>~ 2("~2) the phase shift is obtained semiclassically &s ®
+ 7l4—1,y2"k( =20 wherel ,.=[n/(n—2)]T((n—1)/n)['((n+2)/2n)/ /. Therefore,y and® determine
the s-wave atomic scattering in a wide range of momenta, as well as the positions of upper bound states of the
diatomic molecule[S1050-294{09)03603-3

PACS numbsds): 34.10+x, 34.50-s

[. INTRODUCTION effective one needs to know what the main characteristics of
the interatomic potential are that one has to tune to obtain
The character of the interaction between atoms in veryaccurate results, in other words, what the quantities are that
low-energy collisions is determined by the sign and magnithe observed effects are most sensitive to. At this point an
tude of the atom-atom scattering lengthNegativea mean  analytical approach would be most useful in providing guid-
attraction, and positive correspond to repulsion between ance and uncovering some important physics of the low-
the atoms. The value d is crucial for the properties of energy atom-atom scattering.
atomic gases at very low temperatures. In particular, for There are two features of the interaction between the at-
bosonic atoms withra>0 the possible Bose condensate isoms that allow one to tackle this problem analytically. First,
stable, whereas foa<0 it is unstable, and only a finite the potential at large distances behaves as an inverse power
number of atoms can be found in the condensate state in @f the interatomic distance,
trap. Large absolute values afdescribe situations when a
virtual (a<<0) or a weakly boundg>0) level exists for the @
atomic pair. In the latter case the energy of this level can be U(r)=- mn ©)
estimated a€ = —#%2«?/2u (u is the reduced mass of the
atoms, wherex=1/a. A more accurate estimate can be ob-\yiy n=g for spherically symmetric neutral atoms. The
tained t_>y taking into account the next term in the |°W'ener9yasymptotic parametex=Cy is known quite well for most
expansion of the-wave phase shifdy, atomic pairs of interest. Second, for atoms other than hydro-
1 1 gen and helium the potential curve is usually quite deep,
kcotSy=— =+ =1 k2, (1)  even when the electron-exchange part of the atomic interac-
a 2 tion is repulsive, as for’s, terms of alkali-metal atoms.
“Deep” here means that the wave function of the atomic

and using pair oscillates many times within the potential well, even at
1 1 very low collision energies, and accordingly, the interatomic
K= —+ —r.Kk2 (2)  potential supports a large number of vibrational levels. This
e . .
a 2 latter property enables one to use the semiclas&icaVKB)
approximation to describe the motion of atoms within the

to find the weakly bound energy level, whergis the so- potential well.

called effective ranggl]. » _ Based on these two properties a formula for the scattering
If the interatomic potential is known to sufficiently high length was obtained in our previous wdi¥
accuracy, all bound-state and scattering properties can be '

obtained by numerical integration of the second-order
(Schralingep equation. However, in many cases the errors in aza[ 1—tar<i tar( d— L)

the calculated potential curves do not allow one to determine n-2 2(n=2)

even the sign of the scattering length or the total number of

bound states. The potential curve can be refined if some exwherea is the meanor “typical” scattering length deter-
perimental data on the positions of the bound states or phanined by the asymptotic behavior of the potential through
toassociation intensities are available. To make this proceshe parametety= 2 al#,
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n-3 Il. CALCULATION OF THE EFFECTIVE RANGE
o I'f——=
_ 71' y \?#n=2) (n—z) . The effective range. in Eq. (1) can be found from the
a=c3h=2/ h=2 (n—l) ’ ®  integrai[6]
1—‘ -
n—-2

re=2f [xa(r)—x*(r)]dr, ®)

and ® is the semiclassical phase calculated at zero energy 0

from classical turning point, whereU(ro) =0, to infinity,  wherey(r) is the solution of the radial Schiinger equation
for the s partial wave at zero energy,

<I>=f v=2mU(r)dr. (6) 7?2 d2y
fo —5— —+U(r)x(r)=0, 9
25 gz P ©

It also determines the total number of vibrational levels with
zero orbital angu]ar momentufﬂ], with the boundary conditiory(0)=0, normalized at — o~
as
B ) n—1 1 - ;

S 2(n—2) +L @) X(r):l—a, (10

where[ ] is the integer part. When the difference in bracketsyherea is the scattering length ang, is the zero-energy
is just below an integer the scattering length Ed) is  solution of the Schidinger equation for the free motion
anomalously large negativéa|>a, which corresponds to [U(r)=0], equal to the asymptotic forrtl0) everywhere:
the presence of a virtual level &=%22ua?, and when it  yo(r)=1-r/a. The integral in Eq(8) converges provideg
exceeds an integer by a marganis very large positive, due approacheg, rapidly enough as—oc. This requiresJ(r)

to the existence of a weakly bound state. Unlikanda the  to decrease faster than®.

phase factoP depends strongly on the actual shape of the At large distances the potential is given by E8).and Eq.
interatomic potential well. When the phase is large,= (9) has an analytical solution in terms of the Bessel functions
>1, the scattering length is very sensitive to the slightes?1/n-2) @andNy,_2) [1] (see below: This potential also sat-
changes of the potential. The error can be estimated by usirigfies the condition for the validity of the semiclassical ap-
Eq. (6). proximation

When the potential is not known to sufficient accuracy, | F|

i.e., when the error in the phased® ~1, one can still use <1, (11)
Egs. (4) and (5) to estimate the typical scattering length p?

values that one can expect for a given mass and van der _ _

Waals constan€s. For most atomic pairs the value of  WhereF=—du/dr andp=y2u[E—-U(r)], at

=2uCg (in atomic unitg is much larger than unity, e.g., 2y\2n=2)

y=4.2x10°, 7.9x10°, 2.7x10% and 4. 10* for Li, Na, r<|4 , (12

Rb, and Cs, respectively, and the corresponding scattering
lengthsa~a~0.478/y are parametrically large. Equation for E=0. For interatomic potentials the above boundary is
(4) also shows that for potentiald(r)«1/r® there is a 3:1 usually much greater than the atomic radii. For example,
preference for positive values af This means that for about inequality (12) reads ag <117 a.u. for Csy<51.2a.u. for
75% of atomic pairs the scattering lengths are positive, andYa, andr<37.5 for Li. At small distances)(r) does not

consequently, the corresponding Bose condensates would Bave the simple form of Eq3); however, the semiclassical
stable. approximation remains valid there. Hence, there is always a

In this work we calculate the effective range in atomicange of distances™ satisfying Eq.(12) where both the

collisions analytically and show that it is a simple function of Semiclassical appI’OXImaIEIOH and the analytical solution of
y anda (and, consequentlyD); see Eq.24). We calculate Ed- (9) with U(r)=—a/r" are valid. As a result, one can
the values of ,, for various collision states of L Na,, and  Present the wave function &=0 explicitly as[2]
Cs, by using the scattering lengths obtained numerically by c 1 r -
other author$3-5|, and demonstrate that our analytical for- x(r)= —sin(—f pdr+ —
mula forr is exceptionally accurate. Its results agree with \/5 e 4
the direct numericat to better than 1%.

From a more general point of view this result is part of a ()= r| AJ 2y r—(n=2)12
“theorem” that states that for deep potentials with X Un=2\n-2
asymptotic behavio(3) the scattering phase shift is deter-

, ro<<r=r*, (13

mined byy and® alone, as long as the scattering energy is _BN ( 2y r(n2)/2” P <r<oo
much smaller than the depth of the potential well. This theo- Yn=2\n—2 ' ’
rem follows from the fact that at smaller distances where the (14)

potential is deep it can be replaced by an energy-independent

boundary condition. We illustrate this statement by calculatwherer is the classical turning point amg=  —2mU(r) is
ing thes-phase shift semiclassically k> 1, where it has a the classical momentum. To the left of the wave function
simple explicit dependence ch and v. x(r) decreases exponentially.
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By matchingy anddy/dr from Egs.(13) and(14) atr*, wherev=1/(n—2) andx=2yvr ~¥? is the new integration

and comparing the asymptotic form of E44) atr —c with ~ variable. The divergence now comes from the lower limits
Eq. (10), we obtain the scattering length Eq. (4), and the whereJ. ,«x™”. The next step is to integrate by parts and
constantsA, B, andC in terms ofy and the semiclassical single out the divergence within the surface terms. For ex-

phased, Eq. (6): ample, the first integral is transformed as
1 w n-3\( y |\Y"2 f —(4v+1) 2 1. 2
=— _gj XU (X)) ]edX= — =[x "I, (X
5 as.nn_zr(n_z)(n_z) s (3,00 2ex=— > [x~23,(x)]
™ - f “43,(03,41(x)d
= — -7 X {X)dy+1(X)UX,
A Btar(d) 2(n—2))’ (16) v
(22)
n—2 B L .
C= . (17)  where the remaining integral is well behavedxat0, and
™ cod @ — ™ has a finite value when calculated between O andhfter
2(n—2) substitution into Eq(21), the surface term and the integral

part appear as
The functionsy and y, can now be used to calculate the

effective range from the integré8). The dominant contribu- Y v oy

tion to the integralf y2dr comes from large distances f xXodr=2%(yv)? [F(1+V)]2[[X #3,(01%
>r*. Indeed, let us estimate this integralratr* using the

semiclassical solutior{13). Substitutingp=+2ua/r" and +2j X 43 (x)J H(x)dx]%—--- (23
replacing sif() with 2 we obtain e

for the first integral in Eq(21). Since the expansion for the
(18) Bessel function fox<<1 (r—o) is

2 ] 2ma Ry(nt2)’

This shows that the contribution of the semiclassical part of
the wave function, and small distances on the whole, is neg-
ligible, and the expression for in terms of the Bessel func- the surface term in EQ.(23) goes to infinity as
tions, Eq.(14), can be used for al. (2yv)?’x~2"=r which cancels exactly the first divergent
Both f’)(gdr and " x?dr are divergent as goes infinity;  term of the integral19), when we substitute both into Eq.
however, these divergences must cancel to produce a finit®). Similarly, the other two divergent terms on the right

) C2 I.n/Zdr C2rn/2 +1
xdr~
v

JV(X)Zm,

ro. The first integral is trivial, hand side are removed by the surface terms of the second
and third integrals in Eq(21), respectively. Finally, the re-
r, r2 3 maining integrals are finite and have simple analytical an-
J; xodr=r— ’ + ; (19  swers[7].
a As a result, the effective range is obtained in the form
and we should concentrate on the integration of the function G. H
2 H H n n
x°. Using the well-known expression re=Fn——+—, (24)
a a
N, (X) = Gy [COSPTIL(X) = I ,(X)], (200 whereF,, G,, andH,, depend only on the asymptotic pa-
rametersy andv=1/(n—2):
and the expressions fér andB from Egs.(15) and(16), as
well as Eqs(4) and(5), we have F 2 ()2 I'(v)I'(4v) (25
"3 sinpm ¥ [[(2v)]2(3v) "

f xzdr=—vz“”“(w)z”[[ruw)]zf x4t 4 m . T(1-20)I(4v)

2wy Cn=3 snon ") T (20T @y 20

14
X[3,0012dx— — 2T (1— )
a 2w ( )GVF(1_3V)F(1—V)F(4V) 27
== 14
" 3siner AT () T (20) 12

XF(1+v)f x~ WD (x)J_,(x)dx
which, apart from some numerical factors, scaleFgs-a,
G,~a?, andH,~a® [see Eq.5)]. Therefore, the effective
[I'(1- V)]Zf X_(A"H)[J—V(X)]deJ . range in this problem is not an independent parameter, but a
simple function of the mean scattering lengtland the true
(21) scattering lengtla. The typical value of . is determined by

(y»)*

+
a2
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the long-range behavior dfi(r) in terms of y, the way it TA.BLE. I. The scgttering lengtta and. effective range, (in
determines the characteristic mean scattering leagtfihe  atomic unit3 for alkali-metal atom scattering.
particular values of . and the scattering lengthare decided

by the short-range part of the potential curve, which deterAtoms — State »*(a.u) a e re
mr:nes the actual magnitude of the zero-energy semiclassicg|_ ; Iy 4213.3 369 66.5 66.3
phased. o -17.7 1014.8  1006.3

This means that if one considers two different interatomicN N
potentials characterized by the same asymptotic behavior. o 3
S 77.286 62.5 62.4

(equaly) and phase$® that differ by an integer multiple of 3
7, such potentials will produce the same scattering Iengtf?s'cs Ty 412340 68218 62455  624.01

and effective range. As a result tlsephase shifts in these , —— . .
potentials will be essentially the same at low scattering mo-"; 122’£<61c§3tamed ufgg_tngzdulcf;jzmasgejgjogdh7‘ ?é)t9_54,
mentaka<1, Eq.(1). As we show in Sec. IV this statement ?3?\1 ' nd133calur" an tif/il ‘ - an au. 1oz
is in fact valid in a much larger range of momenka>1, bCaTz’u;te q ansz tii?ﬁecfro;yé 432
provided the scattering energy is much smaller than the ChaEE:alculated numirically if5] '
acteristic minimum depth of the potential curve. dCalculated numericall{x i3 '5]

The asymptotic part of the atomic interaction, i.e., the van, . i L . ,
der Waals constantg, is usually known much better than (3?;;'?:;unsl:mfggailg5'g4i’ using the potential frori2] with the
the details of the potential curve at smaller distances. Thé ¢ o
present calculation shows that the low-energy scattering i .
sensitive to these details to the extent that they influence th able .l' Our Vall.JeS of . agree to better than 1% with the
semiclassical phase. From this point of vidwand y are the nhumerical ones(fifth cqurr_m), W.h'Ch clearly de_monstrates
best parameters to describe the low-energy atomic scatterirgfe ?CC“fﬁ‘_CY of 9#:. selmlclas?_lcal ar;l)prpach n Iow-engrgy
In conclusion we present the results of our calculation in thetomic collisions. This also confirms that in atomic scattering

physically important cas@=6 (v=1) for the scattering relis not really an independent parameter of shghase-shift
expansion(1).

sy 78542 34.936 187.8 187.3

length As a further illustration, let us consider the phase shifts
a=a[l—tan(®— w/8)], (28) produced by two different potentials with the same
asymptotic behavior. The first one is the,C%; interpola-
a= \/z_yr(%)/r(%)~0477 983/—, (29) tion potentlal of REf[z:l,
i 1 Ce Cs C
and the effective range U(r)=—Brie~7— _:+ _88Jr _113 (), (33
2 r r r
1
- Ir{- o , ,
\/Z—y (4) \/Z—y (4) 4vy where the first item on the right-hand side represents the
re= - ) (30 exchange repulsion between the valence electronsf gnil
3 3 a 1\ a ; : :
F(—) F(—) in the long-range part is a cutoff function that cancels the
4 4 1/r" divergence at small distances:
—| T E) 2 a ) fc(r):‘g(r_rc)""e(rc_r)ei(rclril)zy (34)
a 4 2
-3 3 [1_25+2 5) } B where #(x) is the unit step functiong(x)=1(0), when x
F(Z> >(<)0. The values of the parameteBs=0.0016,\ =5.53,

7=1.072, Cg=7020, Cgz=1.1x1C°, and C,;=1.7
Sy x 10% a.u. of the potentia(33) are from[8]. The cutoff ra-

- \/;< 1.39473-1.33333"2 +0.637 3212) _ (32 diusrc~23a.u. can be viewed as a free parameter, due to a
a a lack of accurateb initio calculations or experimental infor-

. . . i mation about the potenti&f].
Expression(31) makes it clear that in agreement with the  The second potential is the simple Lennard-Jones poten-
general theory . is always positive. tial

I1l. NUMERICAL EXAMPLES B a
U(I’):—m——n (m>n). (35)

=
=

To test our analytical formula far, we first refer to Refs.
[3-5], where the scattering lengths and effective ranges were
obtained for alkali atoms by direct numerical solution of theFor this potential the semiclassical phaégis given by
Schralinger equation. Their results for Li, Na, and Cs pairs
interacting via singlet and triplet potentials are shown in & =2 M D/2Am=n) g=(n=2)/2(m=n)
Table I. Using the asymptotic parameterand the scatter-
ing lengthsa from the above calculations we calculate the 1 (3 n-2 )

X ; . X -
effective ranges analytically from E¢32), sixth column of m-—n B 2’2(m—n)

(36)



2002

0.5 T T T T T T T T T T T
¢}
5 -05 .
5 I ]
. i ]
o i i
~— _1 — —
= i ]
- = i
_2 — —
i 1 | 1 1 1 Il | Il 1 1 Il | Il 1 1 Il | Il 1 1 1 ]
10 15 20 25 30
r (au.)

FIG. 1. Cs %3, potential of Eq.(33) with r,=23.165 a.u. and
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TABLE Il. Comparison of the scattering lengths obtained nu-
merically for the Cg33, and LJ,¢ potentials and, analytically,
using the semiclassical theory.

Scattering lengthga.u)

re ® C$°%,” g Eq.(28°  ref
23.115 184.4258016 477.16  477.86 477.29 191.45
23.140 183.6562031 —72.23 —72.44 —7259 2053.28
23.165 182.8954135 68.24 68.13 68.06 627.41
23.190 182.1432966 145.45 145.43 145.37 157.54
23.215 181.3997181 350.65 351.02 350.73 169.84

aSmaller cutoff radii correspond to strongeleepey potentials and,
consequently, greater semiclassical phakes

bScattering lengths obtained from numeridgl using Eq.(1) at k

—0.

“Analytical calculation by means of Eg&8), (29), and(32) using

@ from the second column ang=41234.0.

LJi»6 potential (35, with a=Cg=7020 a.u. and g

the Lennard-Jones 12-6 potential with the same asymptotic behav= (0.420 654 63/2,uC2/6/<I>)3, which ensures that this po-

ior and semiclassical phade=182.895.

tential returns the same semiclassical ph&®. The low-
energy scattering phase shifts produced by the two potentials
are shown in Fig. 2, and the scattering lengths are compared

whereB() is the beta function, and the scattering length andn Table II. The difference between the scattering lengths in

effective range are calculated analytically from E@g.and

the Cs %33 and L], ¢ potentials in Table Il does not exceed

(24). Interatomic potentials are often approximated by Eq.0.3%. The scattering lengths obtained analytically from Eqg.
(35 with m=12 andn=6 (the so-called Lennard-Jones 12-6 (28) are also very close to the numerical ones. Moreover, the

potential, LJ,¢, and we will stick to this case hereafter.
Then

1

Val'(3)

—————~0.420654 6321 a®%37 13

100 (3) pap
(37)

P

/2/1/&5/6 -1/3

Our theory asserts that the two potenti@k3) and (35
(with «=Cg) should give the same values af r., and in
fact the same low-energy-phase shifts, provided they have
equal semiclassical phasa&b, even though the potential
curves at smalt can be quite different; see Fig. 1.

To test this we calculate thewave phase shifts for Cs
atoms (u=1.211xX 10° a.u.) using the GS’3; potential with
five different cutoff radii; see Table 1. We do it by solving
the radial Schrdinger equation

h? d?y

2p dr? 39

+U(r)x(r)=Ex(r)

numerically at E=#2k?/2u, and finding 8, from the
asymptotic behavior of the wave functigu{r) ~ sin(kr+ &)

[10]. The phases at smdlare used to extract the scattering

length numerically from Eq(1). We also calculate the zero-
energy semiclassical phasésfor these potentials, and ob-
tain the values oh andr, from Egs.(28), (29), and (32),
using y=41234.0 a.u.

Once ® is known, we consider scattering in the

s-phase shifts from the two potentials are almost indistin-
guishable in Fig. 2, and the low-energy phase-shift(fi}sn
terms ofa andr, are in good agreement with the numerical
values. For the potential with the £asymptotic behavior
the mean scattering length from E@29) is large, a

0.2

-0.2

-0.4

8, (mod )

-0.6

-0.8

-1

<o

0.001
k (a.u.)

0.002 0.003

FIG. 2. s-wave phase shifts calculated in the,€%; potential of
Eq. (33) with different cutoff radii(circles and in the LJ, ¢ poten-
tials with equal phase® (crosses Dashed line is5,= —ak and
solid line is &, from Eg.(1), with a andr . obtained from Eqs28),
(29), and(32); see Table II.
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FIG. 3. s-wave phase shifts calculated in the,€X,, potential FIG. 4. Solid lines show the-wave phase shifts calculated in

of Eq. (33) with r.=23.165 a.u(solid ling) and in the Ld, spoten-  the Cs 35, potential of Eq.(33) with different cutoff radii; see
tials with the same asymptotic behavior and phéselashed ling  Taple 11. Solid circles show the semiclassical analytical result Eq.
Solid circles show the semiclassical resdif). Shown in the inset  (46) with the correction, Eq.(49), phase, calculated using

is the difference betweed, in the Cs 33, and L, potentials,  —41 234.0 a.u.®»=182.8954, anCg=1.1x10% a.u.
and the corresponding correction due to th€g/r® term, obtained

as a difference between Ed4.7) and(46) (dotted ling and, in the .
first order inCg, from Eq.(49) (dot-dashed ling where we dropped the-dependent numerical facter1 on

the right-hand side of the first inequality, and used &gin
the second. Note that this condition is just opposite to

= idi i i i <__1 - . . .
=97.1a.u., and the validity of Eq1) is limited to k<a ka<1, where expansiorl) is valid, and where we have

~0.01a.u. been able to solve the scattering problem analytically by
calculatinga andr . o
IV. SEMICLASSICAL CALCULATION OF THE Now we will calculate the phase shift foka>1

PHASE SHIFT purely semiclassically. Wave function(13) with p

- _ =\2u[E—U(r)] is now valid everywhere and the phase
We saw in Fig. 2 that the phase shifts produced by the¢ f;[ (N1 is now valid everyw phas

two different potentials from Fig. 1 are practically the same

at smallk. Let us now look at 100 times greater momenta

that go well beyond the validity range of expansidnh Fig- Su(K) = i 1 ' dr—k

ure 3 shows that the two potentials still give very close phase o )_rm h rop r=Kr

shifts. If we change the cutoff radius of the,C& ,, thereby

changing the strength of the potential well, the phase shifts

on a large momentum scale go “parallelFig. 4. At small  For k—0 the integral on the right-hand sid&kHS) ap-

k they of course behave differently, as prescribed by theiproachesb of Eq. (6). The difference between larg# (k)

scattering lengthéTable 11, Fig. 4 inséet In accordance with and® remains relatively small in a wide rangelofsee Fig.

Levinson’s theorem ak—0 the phase shifts go tdlgw,  3), as long asE<|U |, where U, is the characteristic

where N is the number ofs bound states in the potential depth of the potential curve minimum et&r ;.. Thus, we

(58 or 59, depending on). proceed with the calculation af, as follows(using atomic
At small distances, Eq38) at E>0 can be treated using units with#=1 below:

the semiclassical approximation, as the increase anly

improves its applicability; see Eq§ll) and (12). At large "

distancesJ(r)—0, andp—#Kk; thus, the semiclassical ap- 5o(k):J [Vk2=2uU(r)—k

proximation is also valid at—o. Therefore, it may only be To

violated somewhere in between. Indeed, when we analyze

the left-hand side of Eq11) using the asymptotic forr(3), —J=2pU(r)]dr—kro+d+ Z_ (41)

we see that it has a maximum at"=(n—2)a/ 4

[2(n+1)E]. If we require that the height of this maximum

be <1, we obtain The integral above converges at- as U(r)—0. At
- smaller distances whereu2U (r)|>k? the two square roots
k>y 2(=2) or ka>1, (390  essentially cancel each other,

+ T (40)



2004

2

kZ—2uU(r)—+—-2 U(r)y= ——,
V pU(r)— M()22,u|U(r)|

(42)

and the corresponding contribution to the integral is esti-

mated askr minVE/|Uminl; hence it is small. The important
distances in the integral in Eq41) are those wheré?
~2u|U(r)|; therefore, forE<|U sl We can replacéJ(r)

by its asymptotic form and integrate formally from zero to
infinity:

2 2
Tl X Y
fo( k+rn k rn)dl’

— _[,)/2/(n—2)k](n—2)/njm(1+t—n/2_ W)dt
0

(43

The dimensionless integrh| on the RHS calculated by parts
as

1) (1 1
I _EJ’W x"2dx _nl“(l—ﬁ)l“<§+ﬁ)
" 2)o IHX(1+VIHXY)  (n=2)m
(44)

Thus, starting from Eg41) we have obtained the following
expression for the phase shift1]:

T

So(K)= P+ 7 | [y~ 2k]n=20n, (45)
For the physically important case=6,
_ 11- 13,213
50—(D+Z_|6’y k y (46)

wherelg=2T(2)I'(2)//7~1.29355. B
Figure 3 illustrates that Eq46) works well fork>a"
~0.01 a.u. It means that the two paramet®rand vy indeed

1
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“[ Sy Xy 28Cm
fo Ko+t =k
2uC T
- rv_n+_umm dr+ @+ 2 47

cf. Egs.(41) and(43), m>n. Unlike Eq.(43) this expression
cannot be evaluated analytically, but its numerical calcula-
tion is straightforwarde.g., usinguATHEMATICA [12]). The
difference between the phase shift’) and (46) obtained
with m=8, y=41234.0, andCg=1.1x10°a.u. is shown in
Fig. 3 (inseb by the dotted line. It is in very good agreement
with the difference between phase shifts found numerically
from the Schrdinger equation for the two potentials.

If we consider the second long-range term in &) as a
correction, the integral can be expanded in power€ gf
The total phase shift is then presented &ék) + A dy(k),
wherey(k) is given by Eq(45), and the correction is given

by

Aao(k): _Mcm,y—Z(m—l)/nkZ(m—l)/n—l

(3 m—l) (m—l)
r=- r
2 n n
X ; (48)
(m—l—z)\/;
~—0.35054%.Cgy "*® (n=6, m=8).
(49)

In spite of a relatively large numerical value ©f for Cs the

last expression is also in good agreement with the numerical
A &, (Fig. 3, insel. Figure 4 demonstrates that the sum of the
semiclassical phas@6) and correctior(49) provides an ac-
curate description of the momentum dependence of the
s-wave phase shift for the Cs atoms.

V. CONCLUSIONS

We have shown that the-wave scattering properties of
atoms in a wide range of momenta depend only on the zero-
energy semiclassical phade of the potential and its long-
range asymptotic behavior dominated by th€g/r® term.

The latter influences the result through the large parameter
v=+2uCg, Which explains the large values of atom-atom
cross sections at low energiéhrough the mean scattering
lengtha) and governs the energy dependence of the phase
shifts. At small momentk<a ! the phase shift is deter-
mined by the scattering lengthand effective range.. We

determine the energy dependence of the phase shifts in thave obtained a formula which shows thats a function of
wide range of momenta. One cannot help noticing, thoughy anda. At larger moment&>a"" the phase shift has been
that the semiclassical formula clearly favors the phase shiftalculated semiclassically, and possible corrections due to

in the LJ, ¢ potential. The difference betweedy in the two

other long-range terms in the potential have been estimated.

potentials Showrj in the inset Of. Fig. 3 suggests that it in4n particular this means that atomic scattering, as well as the
creases as- KM with 1<\ <2. If this difference were due to positions of diatomic vibrational bound states near the disso-
the difference between the two potential curves at small diseiation limit [13], is relatively insensitive to the shape of the

tances(Fig. 1), it would be proportional tk?, as follows

potential curve at small distances, provided the zero-energy

from Eq.(42). Thus, we have to conclude that it is due to thesemiclassical phase is fixed.

different asymptotic behavior of the potenti&B3) and(35),
namely, due to the next long-range termCg/r® in the

Note added in proofRecently we found that E430) for
the effective range has been obtained by G4 from the

Cs, 33, potential. To take this effect into account one canexact theory of wave functions in the long-range potential

simply calculate the semiclassical phase shift as

with n=6.
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