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We study the process of low-energy electron capture by the SF6 molecule. Our approach is based on the
model of Gauyacq and Herzenberg �J. P. Gauyacq and A. Herzenberg, J. Phys. B 17, 1155 �1984�� in which the
electron motion is coupled to the fully symmetric vibrational mode through a weakly bound or virtual s state.
By tuning the two free parameters of the model, we achieve an accurate description of the measured electron
attachment cross section and good agreement with vibrational excitation cross sections of the fully symmetric
mode. An extension of the model provides a limit on the characteristic time of intramolecular vibrational
relaxation in highly excited SF6

−. By evaluating the total vibrational spectrum density of SF6
−, we estimate the

widths of the vibrational Feshbach resonances of the long-lived negative ion. We also analyze the possible
distribution of the widths and its effect on the lifetime measurements, and investigate nonexponential decay
features in metastable SF6

−.

DOI: 10.1103/PhysRevA.77.042724 PACS number�s�: 34.80.Lx, 34.80.Ht, 34.80.Gs

I. INTRODUCTION

Electron attachment to SF6 is a fascinating problem. In
spite of a lot of attention and a wealth of experimental data
�1�, some basic questions, e.g., that of lifetimes of metastable
SF6

−, lack definitive answers. In this paper we show that the
electron capture process is described well by a zero-range-
type model �2�. We determine the parameters of the model by
comparing the theory with experimental data on the attach-
ment, total and vibrational excitation cross sections. We then
study the autodetachment widths of SF6

−, and analyze its
lifetimes and nonexponential decay. Here the experimental
situation is less clear. Our calculation yields characteristic
lifetimes of about a millisecond, using possibly the most ac-
curate set of SF6

− vibrational frequencies �3�. We investigate
the nature of nonexponential decay of metastable anions due
to level-to-level fluctuations of the widths and a distribution
of the incident electron and target energies.

Sulfur hexafluoride �SF6� has long been known as an elec-
tron scavenger because of its large low-energy electron at-
tachment cross section. This feature of SF6 is important for
its applications as a gaseous dielectric and makes for the rich
physics of low-energy electron collisions with it. The energy
dependence of the electron capture cross section is well es-
tablished experimentally �1,4–9�. Below 10 meV it shows
1 /v behavior characteristic of s-wave inelastic processes.
At higher energies toward 100 meV it approaches 60% of
the unitary limit � /k2 for the reaction cross sections, where
k is the incident electron momentum �atomic units are used
throughout�. In addition, SF6 also has a large elastic scatter-
ing cross section reaching �103 a.u. at electron energies
of a few meV, which can be inferred from the measured
total cross section �10,11�. Note though that experimental
data on low-energy elastic collisions, including differential

cross sections �12�, and inelastic scattering cross sections,
e.g., those of vibrational excitations �9,13,14�, are relatively
scarce.

Low-energy electron attachment leads primarily to the
formation of long-lived parent negative ions,

e− + SF6 → SF6
−�, �1�

At electron energies ��0.2 eV �and below 3 eV� dissocia-
tive attachment,

e− + SF6 → SF5
− + F, �2�

becomes dominant. Although this process is usually regarded
as a channel separate from Eq. �1�, some recent evidence
suggests that SF5

− can be formed in the decay of metastable
SF6

− �15,16�,

SF6
−� → SF5

− + F. �3�

However, at low energies the lifetimes of SF6
−� in the ab-

sence of collisions are limited by electron autodetachment,

SF6
−� → SF6 + e−. �4�

Numerous SF6
−� lifetime measurements �17–26� show con-

siderable variation, depending on the technique used. Time-
of-flight experiments �17–22� typically yield values of sev-
eral tens of microseconds, while ion-cyclotron-resonance
methods �23–26� give values of about a millisecond or larger.

Using the ion-cyclotron-resonance method, Odom et al.
�24� found that the apparent lifetime of SF6

−� varied as a
function of the observation time, and surmised that SF6

−

were formed in a distribution of states with different life-
times. The most recent study that used a Penning ion trap
�26� also points to the formation of ions with a range of 1–10
ms lifetimes. A similar conclusion was derived from the
time-of-flight measurements by Delmore and Appelhans
�20,21� at microsecond time scales. Their analysis of the
SF6

−� decay indicated multiple lifetimes or groups of life-
times in the interval between 2 and 30 �s, and showed that
the population of states with different lifetimes depended on
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the temperature of SF6 molecules. On the other hand, Ref.
�22� where a free jet expansion was used to cool down the
SF6 molecules, reported a single lifetime of 19.1�2.7 �s.
All these differences are usually attributed to the differences
in the experimental conditions under which SF6

−� are
formed, i.e., the incident electron energy and the internal
energy of the target molecule �1�. However, detailed under-
standing is still lacking.

In contrast to the problem of lifetimes, the process of
low-energy electron attachment to SF6 is described well by a
simple zero-range-type model of Gauyacq and Herzenberg
�2�. According to this model, the incoming s-wave electron
undergoes strong resonant scattering on a virtual or weakly
bound level of the SF6 molecule, with a near-zero energy.
Electron trapping occurs via population of this fully symmet-
ric state which is strongly coupled to the symmetric stretch
�“breathing”� vibrational mode �1. Electron capture initiates
the motion of the fluorine nuclei toward the equilibrium con-
figuration of the negative ion. This process is accompanied
by rapid intramolecular vibrational redistribution �IVR� of
the breathing mode energy among other vibrational degrees
of freedom. As a result, the probability for the nuclei to re-
turn to the equilibrium configuration of the neutral SF6 be-
comes small, and long-lived metastable anions are formed.

In this paper we perform a comprehensive study of elec-
tron attachment using the zero-range model. The attachment
cross section is sensitive to the behavior of the SF6 and SF6

−

potential energy curves, as a function of the S-F bond length,
near their merging point. Details of this behavior are incor-
porated in the model via two parameters, namely, the energy
of the virtual �or weakly bound� level and its coupling to the
breathing mode. We develop a new effective matching pro-
cedure that connects the region of electron capture near the
merging point, where the zero-range model can be applied,
with the outer region of adiabatic semiclassical nuclear mo-
tion. We also generalize the model to include the possibility
of the nuclear framework to oscillate back to its initial con-
figuration, in order to study the influence of the rate of IVR
on e−+SF6 collisions. Our aim here is to test the model by
comparison with experimental data on the attachment, total
and vibrational excitation cross sections, and thus determine
its parameters. Another goal is to compare these parameters
with the results of potential curve calculations. The SF6 and
SF6

− potential curves have been established quite well by
now �3,27�, overcoming earlier uncertainties �28–32�.

A somewhat different theoretical approach was taken re-
cently by Fabrikant et al. �9�. It starts from the R-matrix
formalism, and goes beyond the model of Gauyacq and
Herzenberg by including the long-range polarization poten-
tial −� /2r4 and dipole coupling between the s and p waves.
Contributions of higher electron partial waves are also in-
cluded, to describe the elastic and vibrational excitation cross
sections more accurately. In this theory the two parameters of
the s-wave coupling to the �1 mode are allowed to be com-
plex. Their values are found by fitting the experimental at-
tachment and total cross sections. However, the use of com-
plex parameters makes them phenomenological, and the
physical connection with the molecular potential curves is
lost.

The second part of our paper concerns the evaluation of
lifetimes of SF6

−� due to electron autodetachment. The first

estimates of the metastable anion lifetimes and their relation
to the attachment cross section, vibrational spectrum density
of SF6

− and electron affinity of SF6 were made in Ref. �18�.
The rate constants of the processes �3� and �4�, were later
studied �33–36� using the quasiequilibrium �or RRKM�
theory �37�. The approach of Refs. �18,33,34� is based on the
principle of detailed balance, and requires the knowledge of
the attachment cross section and the anion vibrational spec-
trum density. The standard RRKM approach is similar, as-
suming in addition that the transition probability is unity, i.e.,
that the attachment cross section is equal to its unitary limit.
On the other hand, the RRKM requires the knowledge of the
density of so-called transition states. The autodetachment
lifetime depends strongly on such parameters as the electron
affinity Ea and vibrational spectrum density of SF6

−, which
were not known well. Using different sets of data, lifetimes
from microseconds to milliseconds were obtained in a wide
range of incident electron energies. It should be noted that
these methods yield the detachment rates �inverse lifetimes�
averaged over the ensemble of metastable anion states. The
distribution of lifetimes within such ensemble that may cause
a variation in the observed lifetimes, has not been studied.

In the present paper we analyze the dependence of the
autodetachment rate on the incident electron energy in the
interval from zero to 300 meV for different target tempera-
tures. Our calculations are based on the accurate values of
the attachment cross section, and take into account the dis-
tribution of the target SF6 molecules over the rotational and
vibrational states, as well as the rotational and vibrational
degrees of freedom of the SF6

− anion. We also analyze fluc-
tuations of the decay rate over the ensemble of metastable
SF6

−, to see if they can explain observations of nonexponen-
tial decay.

II. ELECTRON SCATTERING AND CAPTURE

A. Attachment model

Following the approach of Gauyacq and Herzenberg �2�
we employ the zero-range potential �ZRP� model to describe
the electron interaction with SF6. ZRP theory is a well-
known tool suitable for problems of low-energy electron
scattering and negative ions �38,39�, especially in those cases
when the cross section is enhanced by the existence of a
shallow bound state or low-lying virtual level with zero an-
gular momentum �i.e., in the s wave�. Application of the ZRP
method to the e−+SF6 system provides the wave function for
the continuous spectrum electron and SF6 in the vicinity of
its equilibrium configuration. On the other hand, the wave
function of SF6

− formed as a result of electron attachment
can be described in the Born-Oppenheimer approximation,
treating the nuclear motion semiclassically. Matching of
these wave functions yields the electron attachment cross
section together with those of elastic scattering and vibra-
tional excitation.

The electronic state responsible for the capture process is
a fully symmetric weakly bound state of e−+SF6. Outside the
molecule the electron wave function �0 is spherically sym-
metric, and is given by
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�0 =� 	

2�

e−	r

r
, �5�

where r is the electron coordinate and 	 is related to the
bound state energy �0=−	2 /2. The energy �0 depends on all
nuclear coordinates. However, due to its symmetry, this elec-
tron state is most strongly coupled to the breathing �symmet-
ric stretch� vibrational mode of SF6. This allows one to con-
sider �0 and 	 as functions of the normal coordinate q of the
breathing mode, q=R−R0, where R is the S-F bond length,
and R0 is its value at the equilibrium of SF6. Near the equi-
librium, 	�q� can be expanded in a power series. Keeping the
first two terms �2�,

	�q� = 	0 + 	1q , �6�

where 	1�0, since the binding increases with the increase in
R �R=3.25 a.u. at the equilibrium of SF6

−, while R0
=2.96 a.u. �3��.

The negative ion bound state �5� exists when 	�0, i.e.,
for q�q0�−	0 /	1, while 	
0 corresponds to a virtual
state �40�. The absolute value of 	0 is expected to be small,
�	0��1 a.u., because for the electron capture to be effective,
the scattering length 	−1 should be large in the Frank-
Condon region. The sign of 	0 indicates whether the negative
ion state is real or virtual at the equilibrium of the neutral.
The two cases are illustrated in Fig. 1, which shows the
potential curves of SF6 and SF6

− for the symmetric stretch
coordinate.

To the right of the merging point q0, indicated in Fig. 1 by
vertical arrows, the negative ion energy U0�q� is given by the
sum of that of the neutral SF6 and the bound state energy
�0�q�=−	2�q� /2. The SF6 potential curve shown was calcu-
lated in Ref. �27�. Near the equilibrium it can be approxi-
mated by 1

2 M�2q2, where � and M are the frequency and
mass of the breathing mode. Using Eq. �6� one obtains a
quadratic approximation for the SF6

− potential curve near the
merging point,

U0�q� 	
M�2q2

2
−

�	0 + 	1q�2

2
. �7�

For q to the far right of the merging point, U0�q� should
approach the anion potential energy curve, e.g., that calcu-
lated in Ref. �27�.

In this model the electron scattering length 	−1 depends
on the breathing vibrational coordinate q. This means that
the electron interacts only with this particular mode, and no
other vibrations are excited in the process of electron scat-
tering or capture. Hence, all nuclear coordinates except q can
be omitted, and the the total wave function of the system can
be written as

�r,q� = eik·r�n0
�q� + 


n

fn

r
eiknr�n�q� . �8�

The wave function �8� is an expansion over the SF6 breathing
mode vibrational states �n�q�, taken in the harmonic approxi-
mation, with energies En=��n+ 1

2 �. The first term in Eq. �8�
describes the electron with momentum k�kn0

incident on
the target in the initial state n0. The sum over n accounts for

elastic scattering �n=n0� and vibrationally inelastic processes
�n�n0�. Energy conservation, 1

2k2+En0
= 1

2kn
2+En, determines

the corresponding electron momenta, kn=�k2−2��n−n0�.
Note that the sum in Eq. �8� includes both open �real kn�

and closed �kn= i�kn�� channels. In the former, the electron
escapes but the nuclear motion is finite. Closed channels in-
volve the electron localized near the origin, with the vibra-
tional motion in progressively higher n states. Its contribu-
tion describes electron attachment, with the nuclei sliding
down the negative ion potential curve toward greater q. It
takes the form of the SF6

− anion adiabatic wave function
att�r ,q� �see below�. Of course, the true anion potential
curve �Fig. 1� does not allow for the infinite nuclear motion,
as the nuclear framework swings back to the neutral equilib-
rium after one vibrational period. However, in a molecule
with many vibrational degrees of freedom the energy may
dissipate into other modes, providing for electron capture on
much longer time scales.
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FIG. 1. �Color online� SF6 and SF6
− potential curves for the

symmetric stretch coordinate. Dashed and dotted curves are the SF6

and SF6
− energies, respectively, calculated using the second-order

Møller-Plesset perturbation theory �27�. Dot-dashed curves show
the SF6

− energy in the quadratic approximation for q0=−0.04, 	1

=2.0 �a� and q0=0.034, 	1=4.1 �b�. Solid curves interpolate be-
tween the quadratic and numerical SF6

− potential curves and repre-
sent the lowest adiabatic energy of the e−+SF6 system. Horizontal
dashed lines show the lowest total energy of e−+SF6 collision, � /2.
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The electronic parts of the wave function �8� are plane or
spherical waves, which ensures its correct asymptotic form.
They are solutions of the free-particle Schrödinger equation.
This is in accordance with the ZRP method, in which the
potential affects the wave function through the boundary
condition at the origin,

� 1

r

��r�
�r

�
r→0

= − 	�q� . �9�

Because of the r→0 limit, the ZRP affects only the electron
s wave.

Applying Eq. �9� with 	�q� from Eq. �6� to the wave
function �8� and projecting the resulting equation onto each
of the nuclear vibrational states �n, one obtains a set of linear
equations for the amplitudes fn �n=0,1 , . . .� �2� as follows:

�ikn + 	0�fn +
	1

�2M�
��nfn−1 + �n + 1fn+1� = − �nn0

.

�10�

The general solution of this second-order recurrence relation
is a linear combination of two independent solutions with
arbitrary coefficients. One “boundary condition” is provided
by Eq. �10� with n=0. The other boundary condition is set at
large n. It is related to the asymptotic behavior of att�r ,q�
at large q. The analysis presented in Appendix A shows that
there is a simple relation between the nuclear coordinate q
and the quantum number n of the terms in the expansion, Eq.
�8�, which contribute significantly to the wave function at
this q,

n � n0 + �k2/2 − �0�q��/� . �11�

Hence, the wave function �r ,q� from Eq. �8� must be ex-
tended to the region where the incident electron is bound,
and matched at some point q=qm with the negative ion wave
function att�r ,q�. The choice of qm should not affect the
capture cross section. Physically, it is restricted to the range
of validity of expansion �6�, so qm should not be too large,
but sufficient to neglect nonadiabatic effects.

In this region one can write att�r ,q� in the Born-
Oppenheimer approximation,

att�r,q� = �0�r,q���q� , �12�

where �0�r ,q� is the bound electron wave function �5�,
which depends on the nuclear coordinate via 	=	�q�, Eq.
�6�, and ��q� is the wave function of the nuclear motion of
the anion. It is, in general, a superposition of the outgoing
and incoming �reflected� waves,

��q� = A��+��q� + B��−��q� , �13�

where ���� can be written explicitly in the semiclassical
�WKB� approximation �40�, as ����=v−1/2e�ipdq, p and v
being the classical nuclear motion momentum and velocity.

The amplitude of reflection, R=B /A, depends on the be-
havior of the negative ion term U0�q� far from the merging
point and also on the coupling of the anion breathing mode
to the other vibrational modes �i.e., on the effectiveness of
IVR�. In the absence of such coupling one has �R�=1 and no
capture takes place. In treating electron attachment to SF6,

the usual assumption is that this coupling is strong, i.e., �R�
�1, so that only the outgoing wave is retained in Eq. �13�
�2�.

In order to find the solutions of Eq. �10� corresponding to
�����q�, note that for a sufficiently large n one has ikn+	0

	−�2�n, and Eq. �10� turns into a recurrence relation with
constant coefficients. Hence, asymptotically, the two inde-
pendent solutions of Eq. �10� behave as fn��

n, where � is
either of the two complex-conjugate roots of the correspond-
ing characteristic equation. It turns out �see Appendix A� that
one of these solutions corresponds to ��+�, while the other
corresponds to ��−�.

In practice, Eq. �10� approaches the constant-coefficient
limit slowly, as the coefficients vary slowly with n �41�.
However, this slowness does allow us to truncate the set �10�
at some large n=N by using fN+1=�fN, where � satisfies the
quadratic equation,

	1�N + 1

2M�
�2 − ��kN� − 	0�� + 	1� N

2M�
= 0, �14�

and where kN= i�2��N−n0�−k2= i�kN� is imaginary. The two
roots of Eq. �14� are

�� =
�M���kN� − 	0�
�2�N + 1�	1

� i�� N

N + 1
−

M���kN� − 	0�2

2�N + 1�	1
2 �1/2

.

�15�

The choice of N is related to the matching point qm by means
of Eq. �11�. The expression in square brackets is real because
the anion potential �7� must decrease at large q, which re-
quires 	1

2�M�2. Note also that ����2=�N / �N+1�	1 for
large N, which means that ��	e�i� is just a phase factor.

As follows from Appendix A, solving the set of N+1
equations �10� �n=0,1 , . . . ,N� with the additional condition
fN+1=�+fN, generates a set of amplitudes �we denote them
fn

�+�� that corresponds to the A��+� part of the nuclear wave
function �13�. On the other hand, using fN+1=�−fN, one ob-
tains a set of amplitudes fn

�−�, which corresponds to B��−�.
There is a simple linear relation between the amplitudes fn

�+�

and fn
�−�, and R at large n: fn

�−� / fn
�+��Rf =e−i�nR, where �n is a

phase �see Eq. �A20��.
In the general case R�0, the solution fn of the recurrence

relations �10� that matches att�r ,q�, Eqs. �12� and �13�, has
the form

fn = C�fn
�+� + fn

�−�� , �16�

where C is a normalization constant. Therefore, we can set
fN+1=C�1+Rf� and fN=C��+

−1+Rf�−
−1�. The amplitudes fn for

n=N−1, . . . ,n0 are then found successively from Eq. �10�.
The same is done for fn with n=0, . . . ,n0, starting from an
arbitrary f0, e.g., f0=1. The two solutions are then matched
at n=n0, and the overall normalization is determined by sub-
stitution in the inhomogeneous equation �10� with n=n0.

In practice, Eq. �10� can be truncated at relatively low n
=N, e.g., N�10 can be used for electron energies below 350
meV without significant error. By means of Eq. �11�, this
allows us to keep a physically meaningful value of the
matching coordinate, qm=0.08 �see Fig. 1�.
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The elastic �n=n0� and vibrationally inelastic �n�n0�
cross sections are given by

�n =
4�

k
kn�fn�2, �17�

where kn is real for the open channels. The total cross section
is given by the optical theorem �40�, as

�t =
4�

k
Im fn0

, �18�

and the attachment cross section is obtained as

�att =
4�

k �Im fn0
− 


n

�fn�2Re kn� . �19�

It can also be found directly from the asymptotic behavior of
fn for closed channels, Eq. �A15�.

Note that in comparison with Ref. �2�, our method allows
one to account for nonzero reflection, i.e., for incomplete
vibrational relaxation, and provides the cross sections of all
processes �not just attachment�.

B. Numerical results

The model described in Sec. II A contains five param-
eters. The frequency of the SF6 breathing mode is well es-
tablished experimentally, �=96 meV=3.5�10−3 a.u. �1�,
and the corresponding mass is M =6mF=2.1�105 a.u. The
other parameters of the model, namely, 	0 and 	1, which
characterize the anion potential curve, and the reflection am-
plitude R, are not known a priori.

To determine their values and to verify the model itself,
we have performed numerical calculations of the cross sec-
tions in a wide range of parameters, and compared the results
with the experimental data on attachment �1,5,8�, total scat-
tering �11�, and vibrational excitations �9�. Our calculations
have been done for the target molecules in the ground vibra-
tional state of the breathing mode �i.e., n0=0�, since at room
temperature the fraction of excited states of this mode is
small.

The ZRP model is expected to work best at low electron
energies. Here the attachment data is the most accurate of all
the measured SF6 cross sections, and we use it as our main
guide in the search for the optimal parameters. To character-
ize the discrepancy between the theory and experiment we
calculate the “mean-squared relative error,” �
= 1

36
i=1
36 ���att��i� /�att��i��2, where ��att is the difference be-

tween the theoretical and experimental cross sections, using
36 energies �i between 0.1 and 160 meV, as given in the
tables of recommended cross sections in Ref. �1�. Let us first
examine the results obtained for R=0 �rapid IVR�, and then
look at the effect of the reflected wave R�0 �incomplete
IVR�.

1. Rapid IVR (R=0)

The values of � for R=0 are shown on a density plot in
Fig. 2�a�, as a function of 	1 and q0=−	0 /	1. The range of
parameters is limited by 	1��M�=1.6 a.u., and the use of

q0 instead of 	0 emphasizes the sensitivity of the attachment
cross section to the position of the merging point of the neu-
tral and anion potential curves. To further clarify the magni-
tude of the relative error, in Fig. 2�b� we show � as a func-
tion of q0 for four values of the other parameter, 	1=2, 3, 4,
and 5.

Figure 2 shows that the absolute minimum of � is
achieved for q0�−0.04 and 	1�2. A negative value of q0
means that the electron does form a weakly bound SF6

− state
at the equilibrium of the neutral, q=0. Figure 1�a� shows the
corresponding anion potential curve, U0�q� from Eq. �7�, by
the dot-dashed curve. For comparison we also show the SF6

−

potential curve calculated in �27�. This potential curve does
not reproduce U0�q� near the merging point �42� but should
be reasonably accurate at larger q. Figure 1 also shows that
the analytical and numerical potential curves can be
matched. The position of the matching point qm=0.08 used
in our calculations is indicated by an arrow. Note though,
that for R=0 the calculation does not require any information
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FIG. 2. Upper plate �a� is the density plot of the mean-squared
relative error � of the theory fit of the experimental cross section of
electron attachment to SF6 over the 0.1–160 meV energy range.
Lighter areas mean better fit. Bottom plate �b� shows � as a func-
tion of q0 for 	1=2 �solid curve�, 3 �dashed curve�, 4 �dotted curve�,
and 5 �dot-dashed curve�.
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about the anion potential curve far from the merging point,
and the choice of the matching point �or the truncation num-
ber N� is not critical.

The attachment cross section calculated for q0=−0.04,
	1=2.0, and R=0 �dashed curve in Fig. 3� reproduces both
the smooth decrease of the measured cross section below the
�1 vibrational threshold �
� �43�, and its rapid drop for �
��. However, the total cross section calculated with these
parameters is noticeably higher than experiment for ���
�see Fig. 4�.

The other possibility suggested by Fig. 2 is that q0�0,
where � has a second local minimum in the form of a narrow
“valley.” It corresponds to a virtual electron level at the equi-
librium of SF6. Here the quality of the fit is not very sensitive

to the precise value of 	1. Choosing q0=0.034, 	1=4.1, and
R=0 �thick solid curves in Figs. 3 and 4� we obtain a much
better description of the total cross section, while the fit of
the attachment data is only slightly worse. In Fig. 1�b� we
show the corresponding behavior of the SF6

− potential curve
near the equilibrium. In this case the quadratic curve matches
the SF6

− curve from Ref. �27� even closer at q�qm=0.08.
Note though, that due to the proximity of qm to q0, the adia-
batic approximation for the nuclear motion is not as accurate
here as in the q0
0 case �the required truncation N being
lower�. This means that the actual shape of the SF6

− potential
curve in the vicinity of qm may have a small effect on the
cross section.

Generally, the ZRP model is expected to provide a more
accurate description of the attachment cross section than the
total cross section. Due to the symmetry of the negative ion
state and the role played by the symmetric stretch mode, the
low-energy attachment model can be restricted to the elec-
tron s wave. However, contributions of higher partial waves
to the total cross section �in particular, due to excitation of
the strong infrared-active �3 mode�, may become sizable
even at low energies. This is indicated by the observed an-
isotropy of the total cross section �11� �see also Ref. �9��.
Since the present ZRP model does not take into account any
of these contributions, one could expect that the cross section
�18� would be a lower bound for the true total cross section.
Hence, we believe that the parameters q0=0.034 and 	1
=4.1 are more realistic, in spite of a less accurate fit of the
attachment cross section than that for q0=−0.04, 	1=2.0.

As a final check of the model for R=0, in Fig. 5 we
compare the calculated cross sections with the �1 and 2�1
vibrational excitation differential cross sections measured at
the scattering angles of 30° and 135° �9�. Since the ZRP
model cross sections, Eq. �17�, are isotropic, the differential
cross sections are found as d�n /d�=�n / �4��. As in Figs. 3
and 4, the two sets of theory curves in Fig. 5 correspond to
q0=−0.04, 	1=2.0, and q0=0.034, 	1=4.1. The experimental
cross sections for the two angles are very different close to
the threshold. However, the data within 30 meV of the
threshold may not be reliable �44�, while beyond this region
the anisotropy of the differential cross section is greatly re-
duced. Here the experiment is clearly in much better agree-
ment with the calculation for a positive value of q0 �i.e., that
for which the anion state is virtual at the equilibrium of the
neutral�. This is especially clear for the n=2 excitation. The
calculation for q0=0.034 and 	1=4.1 also shows the same
cusps at higher vibrational thresholds as the experiment. We
thus conclude that the experimental data for the low-energy
attachment and scattering favor the potential curve scheme
shown in Fig. 1�b�.

2. Incomplete IVR (RÅ0)

In the calculations above we used R=0, i.e., we neglected
the reflected wave ��−� in the anion wave function �13�. In
general, the size of the reflection amplitude R is determined
by the rate of IVR, which depends on the coupling between
the vibrational modes. A full calculation of the vibrational
dynamics of highly excited SF6

− is a nontrivial task well
beyond the scope of the present work. Hence, we introduce

FIG. 3. �Color online� Electron attachment cross sections for
SF6. Solid squares are the experimental data for metastable SF6

−

obtained by Hotop et al. as given in Ref. �1�; thin solids curves
show the data for SF6

− and SF5
− obtained at the SF6 nozzle tem-

perature of 300 K �8�. Calculations: q0=−0.04, 	1=2.0, R=0
�dashed curve�; q0=0.034, 	1=4.1, R=0 �thick solid curve�, R�0,
�=0.1�a �dotted curve�, and �=0.01�a �dot-dashed curve�.
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FIG. 4. �Color online� Total cross section for electron scattering
from SF6. Experimental data: solid squares, Ref. �11�. Calculations:
q0=−0.04, 	1=2.0, R=0 �dashed curve�; q0=0.034, 	1=4.1, R=0
�thick solid curve�; R�0, �=0.1�a �dotted curve�; and �=0.01�a

�dot-dashed curve�.
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the IVR rate phenomenologically as a width � of the breath-
ing mode. This is done by adding a small imaginary part
−i� /2 to the anion potential energy U0�q�. The reflection
amplitude R is then obtained semiclassically as outlined in
Appendix A.

In the numerical calculations we treat the anion potential
curve for q�qm in the harmonic approximation. The IVR
damping of the reflected wave is then proportional to � /�a,
Eq. �A19�, where �a is the anion breathing mode frequency.
For strong damping, e.g., � /�a=1, the results are very close
to those obtained with R=0. The reflected wave here is sup-
pressed by a factor of about e−��0.05. In contrast, smaller
IVR rates lead to drastic changes in the cross sections. In
Figs. 3 and 4 we show the cross sections for q0=0.034, 	1
=4.1, and two values of the damping parameter: � /�a=0.1
and 0.01 �45�. �The effect of damping on the cross sections
for q0
0 is broadly similar.�

We see that allowing for a sizable reflected wave results
in the emergence of anion vibrational Feshbach resonances
and overall suppression of the attachment cross section. Both
effects spoil the good agreement with experiment achieved in

the calculations with R=0. We thus conclude that the IVR in
SF6

− is very rapid, ���a. It takes place over the time of one
vibrational period of the breathing mode, that indicates
strong coupling between the breathing mode and other
nuclear degrees of freedom in SF6

−.
In the past, the IVR in highly vibrationally excited SF6

molecules was studied in multiphoton laser excitation experi-
ments �see, e.g., �46�, and references therein�. These and
other studies �47� indicate that the IVR rate of the strong
infrared-active �3 mode is noticeably smaller than our esti-
mate. However, the two situations are quite different. In the
capture process the amount of energy equal to the electron
affinity of SF6, Ea=1.06 eV �recommended value �1��, is
instantaneously deposited into a single mode. This mode
then has a much higher effective vibrational quantum num-
ber n�Ea /�a�14, than those in multiphoton excitation ex-
periments where the energy is distributed between many
modes. At the energies at which it is formed, SF6

− also has a
stronger anharmonicity related to the proximity of dissocia-
tion thresholds.

The vibronic state of SF6
− at the instant of capture, att,

Eq. �12�, is embedded in the dense multimode vibrational
spectrum. The average level spacing of the SF6

− vibrational
spectrum at the e−+SF6 threshold is about 10−10 a.u. �see
Sec. III�. In the process of IVR, the initial state att spreads
over a large number of multiple vibrational excitations of
SF6

−. For a weak coupling �i.e., small ��, att would describe
a simple single-mode vibrational Feshbach resonance. In the
actual case of strong coupling, att plays the role of a door-
way for the final multimode vibrational resonances. There-
fore, the ultimate states of SF6

− populated in electron attach-
ment are extremely closely spaced metastable vibrational
resonances with very large but finite lifetimes. In the next
section we consider their decay via electron autodetachment
and estimate the corresponding lifetimes.

III. DECAY OF THE METASTABLE NEGATIVE ION

A. Evaluation of decay widths

The metastable negative ion species SF6
−� formed by

electron attachment can decay via the reverse, autodetach-
ment process, Eq. �4�. Another decay channel open at low
energies, see, e.g., Refs. �34–36�, is dissociation, Eq. �3�. To
analyze these possibilities, compare the dissociative attach-
ment cross section with the measured cross section for the
production of SF6

− and calculated �att, Fig. 3. The relatively
small SF5

− signal at �
150 meV �below the dissociation
threshold� is due to electron attachment to thermally acti-
vated SF6. It depends strongly on the target molecule vibra-
tional temperature and has been used as a “thermometer” �8�.
At larger energies the SF5

− cross section rises rapidly and at
��0.3 eV it becomes the dominant contribution to the total
electron attachment cross section.

In our view this picture indicates that for most of its part
dissociation does not occur as a decay of SF6

−� formed via
the resonant doorway state att. If the latter were true, the
calculated cross section �att, which is actually the cross sec-
tion of formation of metastable SF6

−�, would follow the total
attachment cross section, i.e., the sum of the dissociative
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FIG. 5. �Color online� Differential vibrational excitation cross
sections of the symmetric stretch mode of SF6 �top, �1; bottom,
2�1�. Thin solid lines are the experimental results of Ref. �9� ob-
tained at 30° and 135°. Dashed curves are the cross sections calcu-
lated for q0=−0.04 and 	1=2.0, and thick solid curves are those for
q0=0.034 and 	1=4.1 �both for R=0�.
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attachment cross section and that of SF6
− production. We

conclude that at low energies, dissociation does not proceed
via the intermediate multimode vibrational resonances
formed in s-wave electron attachment described by att.
Hence, autodetachment is the main process responsible for
the decay of SF6

−� �48�.
The situation when a projectile forms a very dense spec-

trum of resonant states with the target �“compound states”� is
well known in nuclear physics �49�. In this case it is useful to
consider the cross section averaged over an energy interval
containing many resonances. Such average cross section is
described by the optical model �40�. In this model the reso-
nant cross section, in our case �att, accounts for all processes
occurring via intermediate resonant states �i.e., SF6

−��, in-
cluding their contribution to elastic scattering. If the mean
energy spacing between the resonances, D, is much larger
than the resonance widths, the cross section of electron cap-
ture by the SF6 target in the initial vibrational state � can be
written as

�att��,�� =
2�2

k2

�̄�

D
, �20�

where �̄� is the average partial elastic width at a given en-
ergy �40�. It determines the average detachment rate leading
to a free electron with energy �=k2 /2 and neutral SF6 in
state �. In our approach �att depends only on the number of
breathing vibrational quanta in the state �, i.e., on n0 �see

Sec. II A�. Figure 6 shows the ratio �̄� /D obtained from Eq.
�20�, as a function of the electron energy for n0=0 and 1.

Since �̄� /D�1, the assumption of nonoverlapping reso-
nances is valid. Hence, we can evaluate D as the reciprocal
of the level density of resonances ��=D−1�, and use Eq. �20�
to estimate the lifetimes of the metastable states, �=� /�. In
this context, Eq. �20� is sometimes referred to as the prin-

ciple of detailed balance �18�. In addition to finding �̄�, one
also needs to take into account level-to-level fluctuations of
the widths, which affect the shapes of the SF6

−� decay curves
�see Sec. III B�.

Apart from the total energy, the process of electron attach-
ment and detachment considered here conserves the total an-
gular momentum J, its projection M, and parity. The elec-
tronic part �0 of the doorway state att, Eq. �12�, is
spherically symmetric, and the continuum electron is repre-
sented by the s wave. Hence, the angular momenta of the SF6
target and SF6

−� resonances coincide. These resonances also
have the same parity as the initial and final vibrational states
of SF6. Therefore, D in Eq. �20� refers to the average spacing
between the SF6

− levels with definite J, M, and parity. The
SF6 molecule is a spherical top, and its rotational states with
a given J and M are 2J+1 times degenerate with respect to
the quantum number K �40�. For the highly excited SF6

− this
degeneracy can be lifted by rovibrational interactions. The
rotational energies of the anion and neutral molecule are
close, and much smaller than the total vibrational energy of
SF6

−,

E = Ea + E�i
+

k2

2
, �21�

where E�i
is the target initial vibrational energy. Hence, we

can write

D−1 =
1

2
�2J + 1���E� , �22�

where � is the total density of vibrational states of SF6
−, and

1
2 accounts for parity.

The total vibrational energy E is large ��1 eV�, but the
mean energy per vibrational mode is comparable to their
frequencies, and we calculate the vibrational spectrum of
SF6

− using the harmonic approximation �see Appendix B�.
Table I lists the mode frequencies of SF6 and SF6

−. In con-
trast to SF6, the fundamentals of SF6

− are not well known. In
the past these frequencies were assumed to be equal to those
of the neutral, or slightly softer �18,33–36�. For example, the
first set of anion frequencies in Table I was used in Refs.
�35,51�. The second set is from Ref. �3�, which is probably
the best calculation of SF6 and SF6

− by the coupled-cluster
and many-body perturbation theory �MBPT� methods. These
lower anion frequencies are supported by a recent photode-
tachment study of SF6

− �52�, and we regard them as more
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FIG. 6. Ratio of the mean resonance width to the level spacing
evaluated from the attachment cross section, Eq. �20�, for q0

=0.034 and 	1=4.1, n0=0 �solid curve� and n0=1 �dashed curve�.

TABLE I. Vibrational modes and frequencies of SF6 and
SF6

−.

Mode Symmetry

Frequencies �cm−1�
SF6

a SF6
− b SF6

− c

1 A1g 774 700 626

2 Eg 642 625 447

3 T1u 948 925 722

4 T1u 616 594 306

5 T2g 525 500 336

6 T2u 347 325 237

aExperimental data from Ref. �50�.
bFrequencies used in Ref. �35� and earlier in Ref. �51�.
cMBPT�2� calculation, Ref. �3�.
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accurate. In the inset of Fig. 7 we show the total vibrational
level densities in the energy range relevant to metastable
SF6

−�. As expected, the density obtained using the second set
of anion frequencies is much greater than the density given
by the first set.

The average total resonance width � is the sum of partial

widths �̄� for all open decay channels � allowed by the con-
servation of energy, angular momentum, and parity. Equa-
tions �20� and �22� give

��E� = 

�

�att���,��k�
2

�2��E�
, �23�

where the energy �� and momentum k� of the emitted elec-
tron are determined by ��=k�

2 /2=k2 /2+E�i
−E�. The sum in

Eq. �23� is over the open-channel vibrational states of neutral
SF6. Summation over 2J+1 states with different K gives an
additional factor 2J+1, which is canceled by the same factor
in Eq. �22�. To compare with experiment, the width �23� can
also be averaged over the distribution of the initial target
states and incident electron energies.

To within a factor of 2 related to parity selection, Eq. �23�
coincides with that derived by Klots �33� using equilibrium
considerations. It has a simple physical meaning. The decay
rate in each channel is given by the probability per unit time
for SF6

−� to enter the doorway state att, which is equal to
the classical frequency D /2�, times the probability P of de-
tachment at each attempt. The latter quantity is determined
by the capture cross section, P=�att�� ,��k2 /�, as follows
from the detailed balance relations �18�.

To show how the number of open decay channels affects
the width, we plot in Fig. 7 the cumulative number of SF6
vibrational excitations for both parities. The parity of the
final SF6 must be the same as that of its initial state. Besides
the ground state, at room temperature only the lowest excited
states, T2u, T2g, and T1u, are populated with probabilities
w��0.05. These are shown in the inset of Fig. 8. In this
figure we also show the energy dependence of the mean reso-

nance width �, Eq. �23�, for each of the above target states.
The dependence of � on � is steplike, each step related to the
opening of a new decay channel. The width is also bigger for
higher-lying target states, as more channels are open.

The widths in Fig. 8 are given in reciprocal time units,
i.e., they represent the decay rates � /�. The smallest of the
widths, for the electron capture by the ground state SF6, is
about 2 ms−1 below 65 meV. This indicates a lifetime of 0.5
ms, which is comparable to the values observed in traps
�23–26�. Note however, that the widths are very sensitive to
the SF6

− vibrational spectrum. Thus, if we used the first set
of anion frequencies from Table I, the widths given by Eq.
�23� would be about 102 times larger, since they are inversely
proportional to the vibrational level density of SF6

− shown in
Fig. 7. The smallest width would then be about 10 �s, i.e.,
in the range of values from time-of-flight experiments
�17–22�. In fact, the earliest of such studies, Ref. �18�, which
analyzed the lifetimes theoretically in a way similar to Eq.
�23�, using SF6 fundamentals and disregarding parity, con-
cluded that the lifetime of 25 �s corresponded to the elec-
tron affinity of �1.1 eV.

It should also be noted that due to the strong energy de-
pendence of ��E�, the widths and lifetimes are sensitive to
the value of the electron affinity. A change of 0.1 eV in Ea
changes the lifetimes by a factor of 3. In addition, our cal-
culation of the density neglects anharmonic effects in the
anion vibrational spectrum. The amount of energy deposited
in each mode is relatively small, but the total vibrational
energy E is close to the dissociation threshold. In this case
anharmonicity can increase ��E�, and hence the lifetimes, by
a factor of 2 or 3.

Figure 8 shows that if the electrons and SF6 molecules
possess broad thermal energy distributions, e.g., when the
anions are formed in a trap, the decay of SF6

−� will be char-
acterized by a set of average widths rather than a single
detachment width. This was indeed observed by Delmore
and Appelhans �20,21�, who detected several lifetimes or
bunches of lifetimes depending on the temperature �in the
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10 �s range, though�. For monoenergetic electrons with �

65 meV and vibrationally cold SF6, the decay process is
governed by a single average width. Such experiment was
done by Garrec et al. �22�, who did report a single lifetime
��19 �s. However, the corresponding width would be
close to the values found using the neutral or similar vibra-
tional frequencies �35�. It is incompatible with the more ac-
curate softer anion vibrational spectrum, unless a much
lower electron affinity is used.

In our view, the present calculation does explain observa-
tions of sizable SF6

−� signals at millisecond and greater
times, and its slow nonexponential decay �24–26�, at least
qualitatively. Equations �20� and �23� yield the widths aver-
aged over large numbers of closely spaced resonances.
Given the large density ��E�, these resonances cannot be
resolved experimentally, even with a highly monoenergetic
electron beam. As a result, one always observes an ensemble
of such states. Some of them may have widths much smaller
than the average. Such states will form a tail of long-lived
anions, as was first suggested by Odom et al. �24�. Therefore,
to determine the survival curve of SF6

−�, one must take into
account the distribution of resonance widths.

B. Fluctuations of the widths and nonexponential decay

The width of a particular multimode vibrational resonance
is determined by the size of the doorway state att compo-
nent in its wave function. This component is extremely small
since att spreads over a large number of such resonances,
which can be estimated as ���E���a��E��1010 �Sec.
II B 2�. Physically, this situation is similar to that of neutron
capture by heavy nuclei, where each of the narrow com-
pound resonances contains only a small fraction of the
“neutron+target” state, which allows their coupling to the
continuum. Due to strong mixing between the basis states
that make up the compound states, the statistics of their com-
ponents becomes Gaussian �see, e.g., Ref. �53��. This leads
to the following probability density for the partial widths ��,

f���� =
e−��/2�̄�

�2����̄�
, �24�

where �̄� is the mean. Equation �24� is known as the Porter-
Thomas distribution �49,54�.

If only one decay channel is open, every resonance decays
exponentially as e−��t. However, it is easy to see that fluc-
tuations of �� result in a nonexponential time dependence of
the survival probability P�t� for the ensemble. Assuming that
at t=0 all levels in the ensemble have equal populations and
using Eq. �24�, one obtains,

P�t� = �
0

�

e−��t f����d�� = �1 + 2�̄�t�−1/2. �25�

For more than one decay channel, the survival probability is
given by �see, e.g., �55,56��

P�t� = �
�

�1 + 2�̄�t�−1/2, �26�

where the product includes all open channels. When the

number of open channels, Nc, is large, then for �̄vt�1 one

can use �1+2�̄�t�−1/2	e−�̄�t in Eq. �26�, which gives

P�t� 	 e−�t, �27�

where �=
��̄��Nc�̄� is the total width. The exponential

behavior that holds for �t
� / �̄��Nc is a consequence of
suppression of fluctuations in the total width. The case of
Nc�1 in fact corresponds to the classical limit of the decay
process of a compound system with a dense spectrum of
states. The parameter Nc determines whether the decay pro-
cess is classical with an exponential behavior, or quantum
where sizable deviations from the pure exponent can be ex-
pected �see, e.g., �57��.

Besides the fluctuations of the partial widths described by
Eq. �24�, the distribution of resonance widths in the negative
ion ensemble depends on the conditions of its formation.
Thus, SF6

−� formed in a trap will have a different distribution
of autodetachment widths and hence, different decay curves,
to SF6

−� formed with a high-resolution electron beam. In
particular, the population of SF6

− resonances created in a
beam experiment at time t=0 is proportional to the level
density and their elastic �entrance� widths. For a single decay
channel � �identical to the entrance channel�, the number of
ions that have survived to time t is found as

N�t� � ��E�� ��e−��t f����d�� =
�̄���E�

�1 + 2�̄�t�3/2
. �28�

Note that compared with Eq. �25�, the account of the initial
resonance population has resulted in an additional factor

�1+2�̄�t�−1. For more than one decay channel, Eq. �26� will
be similarly modified,

N�t� �
�̄�i
��E�

1 + 2�̄�i
t
�
�

�1 + 2�̄�t�−1/2, �29�

where �i is the initial vibrational state of the target molecule.
If the target molecules are characterized by a distribution

of initial states with vibrational and rotational quantum num-
bers �i and J, with probabilities w�iJ

, the decay curves must
be averaged over these. This gives

N�t� �

�iJ

w�iJ
�̄�i
��E�

1 + 2�̄�i
t/NJ

�
�

�1 +
2�̄�t

NJ
�−NJ/2

, �30�

where NJ is the number of channels with different rotational
quantum numbers K� of the final SF6 that can be populated
for a given K of the target molecule. If the K quantum num-
ber is not conserved then NJ=2J+1, while if K were con-
served, one would have NJ=1. In the former case the decay
should be close to exponential for room temperature �or even
much colder� SF6, since typical J and NJ are large. Indeed,
the probabilities for a thermal ensemble of SF6 molecules are
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w�iJ
�exp�−�E�i

+J�J+1� /2I� /T�, where T is the temperature
in energy units, and I=1.23�106 a.u. is the moment of in-
ertia of SF6. Hence, from J�J+1� /2I� 3

2T we have J�50 at
room temperature.

The widths in Eq. �30� depend on the initial vibrational
state of the target and the incident electron energy. For SF6

−�

formed in a trap in equilibrium with thermal electrons, the
resonances will be populated uniformly, with Boltzmann
probabilities �e−E/T. In this case the decay curve is given by
the right-hand side of Eq. �30� without the factor

w�iJ
�̄�i

/ �1+2�̄�i
t /NJ�, averaged over the Boltzmann anion

energy distribution.
Figures 9 and 10 show the results of our modeling of the

decay curves of SF6
−� formed under different conditions. In

both figures the bottom plates show the apparent lifetime �
estimated from the instantaneous decay rate �−1

= �dN /dt� /N. This quantity should be constant for a purely
exponential decay, but in general, given Eqs. �28�–�30�, in-
creases with time. The rate of such increase is asymptotically
linear, �� t, since the fraction of long-lived ions increases
with time.

In Fig. 9 we assume that the anions are produced in col-
lisions of monochromatic electrons with four different ener-
gies with the SF6 gas at T=300 and 10 K. As expected from
the energy dependence of the widths, Fig. 8, the decay be-
comes much faster with the increase of the electron energy.
However, even at the highest energy the lifetime remains
greater than 100 �s, which is compatible with the laser pho-
toelectron attachment experiments �5,8�. Nonexponential
features clearly seen in Fig. 9 at small times are due to the
contribution of short-lived anions formed by vibrationally
excited target molecules. Naturally, this effect is more pro-
nounced at higher temperatures. The nonexponential decay at
large times is caused by the Porter-Thomas fluctuations of
the autodetachment widths. This effect is greater at small
molecular temperatures, where the number of rotational
channels is not too large. However, at room temperature NJ
�50, and the decay is close to exponential over the time
interval shown.
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FIG. 9. Time evolution of the survival probability of SF6
−�,

N�t� /N�0� �top� and apparent lifetimes, � �bottom� calculated for
two target temperatures T=300 K �thick curves� and T=10 K �thin
curves�, and different electron energies: 0.45 meV �solid�, 44 meV
�dashed�, 79 meV �dotted�, and 113 meV �dot-dashed�.
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FIG. 10. Time evolution of the survival probability of SF6
−�,

N�t� /N�0� �top� and apparent lifetimes, � �bottom�, calculated for
anions formed at equilibrium conditions at two trap temperatures,
T=300 K �solid� and T=77 K �dashed�. The dotted curve corre-
sponds to the decay of SF6

−� produced by the capture of electrons
with fixed energy �=38 meV, equal to the mean energy at room
temperature. The dot-dashed curve shows � obtained assuming con-
servation of the angular quantum number K �i.e., for NJ=1�.
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The curves that model the decay of SF6
−� formed in a trap

at two temperatures, T=300 and 77 K, are shown in Fig. 10.
In addition to nonexponential features at small times, the
presence of long-lived anions formed by low-energy elec-
trons leads to a nonexponential decay at large times. To il-
lustrate this effect, we show for comparison in Fig. 10 the
decay curve for anions formed by monoenergetic electrons
with the energy of 3

2T. Also shown in Fig. 10 is the decay
curve calculated assuming that K is conserved �i.e., neglect-
ing the effect of the rotational motion on the number of de-
cay channels�. As expected, this decay curve is strongly non-
exponential, with the apparent lifetime growing as �� t. This
feature of the SF6

− decay was observed experimentally in
Refs. �24,26�. It is a consequence of the fact that the fraction
of surviving long-lived ions increases with t. On the other
hand, allowing for the mixing of the rotational quantum
number K makes for a faster �exponential� depletion of SF6

−,
which makes it hard to explain how the anion signal can be
observed at much longer times.

There is another effect that molecular rotations can have
on the SF6

−� lifetimes, and that has not been taken into ac-
count in the present consideration. Due to a difference be-
tween the equilibrium S-F bond lengths of the neutral and
anion, the moment of inertia of SF6

− is about 20% greater
than that of the neutral. This means that the contribution of
the rotational energy J�J+1� /2I in SF6 and SF6

− differs by
20% as well. At room temperatures this difference is close to
10 meV, which means that the amount of energy available for
IVR in different rotational states is different, and is larger for
higher J. This is another source of fluctuations in the detach-
ment widths, which can, in principle, affect the anion decay
curves.

IV. CONCLUSIONS

Comparison of calculated cross sections with experimen-
tal data demonstrates that low-energy electron attachment to
SF6 proceeds via capture into a virtual state with a strong
coupling to the breathing vibrational mode. The model pro-
vides an accurate description of the attachment cross section,
and is in agreement with the measured total and vibrational
excitation cross sections. From this comparison, we have de-
termined the two parameters of the model which describe the
behavior of the SF6 and SF6

− potential curves near the equi-
librium of the neutral. This behavior is in accord with the
quantum chemistry calculations of the potential curves.

By allowing a reflected wave in the nuclear dynamics of
the SF6 breathing mode, we have studied the effect of the
IVR rate on the cross sections. Comparison with experiment
indicates that the IVR in SF6

− formed by electron attachment
is very fast, its rate being comparable to the frequency of the
breathing mode.

We have evaluated the autodetachment widths of meta-
stable SF6

−� resonances, assuming statistical distribution of
the energy over the vibrational spectrum of the molecule.
The magnitude of the widths depends strongly on the set of
SF6

− vibrational frequencies used, as well as on the adiabatic
electron affinity of SF6. Using the recommended value of

1.06 eV together with the best calculated fundamentals we
obtain estimates of SF6

−� lifetimes in the 100 �s to 1 ms
range, shorter lifetimes corresponding to the anions formed
by higher-energy electrons. These lifetimes are broadly in
agreement with the values inferred in laser photoelectron at-
tachment experiments and found in ion-cyclotron-resonance
experiments and in traps. At the same time, we cannot ex-
plain the observation of tens of �s lifetimes in time-of-flight
experiments. Such values would be compatible with a much
stiffer set of SF6

− fundamentals �similar to the neutral�, or
smaller electron affinity values.

By using the Porter-Thomas distribution we have modeled
the effect of fluctuations of autodetachment widths due to the
statistical �“chaotic”� nature of highly excited vibrational
states of SF6

−. We have also investigated the effect of SF6

temperature and electron energy on the SF6
−� decay curves.

Fluctuations of the widths result in nonexponential decay of
SF6

−�. However, the presence of a large number of rotational
channels for all but very low temperatures of the neutral
molecule makes these effects relatively small.

Finally, dissociative attachment into SF5
−+F has been

largely ignored in the present work. We believe that it can
have only a very small effect on the lifetimes of metastable
SF6

− formed at low electron energies. It appears that for
electron energies below 0.2 eV the SF5

− ions originate from
�thermally activated� metastable SF6

−. However, the disso-
ciation signal is low due to a small branching ratio in com-
parison with autodetachment. At higher electron energies the
SF5

− signal has a large peak. Here the dissociation cross
section exceeds that of the s-wave attachment model. In our
view this means that the main dissociation mechanism at
these energies is different from that responsible for the long-
lived SF6

−.
When this work was completed, we became aware of two

very recent studies of the electron-SF6 problem. In the first
of these �58�, the autodetachment lifetimes of metastable
SF6

− were studied with a time-of-flight and Penning ion trap
techniques, for very low ��1 meV� electron energies as a
function of the gas temperature. At room temperature only
long-lived SF6

−� with ��1 ms were seen. At higher tem-
peratures shorter lifetimes were observed ��0.4 ms�, to-
gether with a small signal of short-lived anions � 10 �s�.
These values are broadly in agreement with our decay curve
modeling. The second set of papers �59� used kinetic model-
ing within the framework of the statistical unimolecular rate
theory. It analyzed the attachment and dissociation data in a
wide range of target and electron temperatures, as well as
SF6 and carrier gas pressures, allowing for additional effects
�e.g., the rate of IVR as a function of the incident electron
energy� by model factors and fitting parameters. One of the
results of this analysis is an indication of a larger electron
affinity of 1.20�0.05 eV. This value would result in a fac-
tor of 3–5 decrease of our autodetachment widths, and a
corresponding increase of the lifetimes. Given the sensitivity
of the decay curves to the conditions under which SF6

−�

are formed, such change still leaves the lifetimes in the
1–10 ms range, for the conditions similar to those used in
Ref. �58�.
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APPENDIX A: MATCHING OF THE WAVE FUNCTION

Here we show how the total wave function �r ,q� of the
e−+SF6 system, Eq. �8�, with the amplitudes satisfying Eq.
�10�, matches the adiabatic wave function att�r ,q�, Eq.
�12�, of SF6

−, in the range of nuclear coordinates where the
incident electron is bound. In order to do this, we project att
onto the SF6 breathing vibrational states �n�q� with large n.
This allows us to determine the asymptotic behavior of fn
corresponding to the two terms on the right-hand side of Eq.
�13� and obtain an explicit relation between fn and the am-
plitudes A and B.

Consider the wave function att�r ,q� far from the merg-
ing point of the neutral and anion potential curves. Here its
nuclear part �13� can be written explicitly using the semiclas-
sical �WKB� approximation �40�. Let us first consider the
contribution of the outgoing wave term,

��q� =
A

�v�q�
exp�i�

a

q

p�q�dq� , �A1�

where p�q�=�2M�E−U0�q��, v�q�= p�q� /M is the corre-
sponding velocity, E= 1

2k2+En0
is the energy of the system,

and a is in the classically allowed region �its choice only
affecting the phase of A�.

Let us now demonstrate that the projection of att
=�0�r ,q���q� onto �n�q�,

gn�r� =� att�r,q��n�q�dq , �A2�

matches the electronic part of the terms in the sum over n in
Eq. �8�.

For a large n, we can use a normalized semiclassical ex-
pression for �n�q� �60�,

�n�q� =� 2�

�vn�q�
cos��

q

an

pn�q�dq −
�

4 � , �A3�

where pn=�2MEn− �M�q�2, vn�q�= pn�q� /M, and an

=�2En /M�2 is the classical turning point. Using Eqs. �A1�
and �A3� in Eq. �A2�, we obtain

gn�r� =
A��
�r

� �	�q�e−	�q�r

�v�q�vn�q�

�exp�i�
a

q

p�q�dq�cos��
q

an

pn�q�dq −
�

4 �dq .

�A4�

The integral above contains rapidly oscillating functions. It
can be evaluated in the saddle-point approximation, and the
main contribution is due to the incoming wave component of
the cosine. Hence, the oscillatory factor in the integrand is of
the form exp�i!n�q��, where

!n�q� = �
a

q

p�q�dq + �
q

an

pn�q�dq . �A5�

The equation for the saddle point �!n /�q=0 gives p�q�
= pn�q�, i.e., the “transition” between the nuclear vibrational
state of the neutral and that of the anion takes place when the
momenta are equal. This gives the following equation for the
saddle point qn:

E − �0�qn� = En. �A6�

It immediately follows that

	�qn� = �− 2��qn� = �2�n − n0�� − k2 � �kn� , �A7�

which shows that gn�r��e−�kn�r /r, exactly as that of the nth
term in Eq. �8� for closed channels. Note also that the saddle
point, found using Eq. �A6�, as

qn =
�kn� − 	0

	1
�

�2�n

	1
, �A8�

lies in the classically allowed region of the oscillator, which
justifies the use of Eq. �A3�.

Completing the saddle-point calculation of the integral
�A4�, we obtain an expression for the amplitude fn at large n,
for the case when ��q� is an outgoing wave as follows:

fn = A� �

2�v�qn�	1
exp�i!n�qn�� �A9�

	A� �

2�	1
�2�n

M
�1 −

M�2

	1
2 ��−1/4

exp�i!n�qn�� . �A10�

In the last equation we used an asymptotic expression for the
velocity v�qn�=�2�E−U0�qn�� /M obtained for large n using
Eq. �7�.

Thus we see that apart from a slowly varying prefactor,
the successive amplitudes differ by their phase, so that

� =
fn+1

fn
	 exp�i

d

dn
!n�qn�� . �A11�

Using Eq. �A5� and taking into account the fact that
�!n�q� /�q=0 at q=qn, we obtain

d

dn
!n�qn� = ��

qn

an dq

vn�q�
� ��n, �A12�

where �n is the time it takes the oscillator with energy En to
pass from qn to an. Hence, we obtain

� = cos ��n + i sin ��n =
qn

an
+ i�1 −

qn
2

an
2 , �A13�
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where

qn

an
=� M�

2n + 1

�kn� − 	0

	1
. �A14�

We can see that expression �A13� coincides with �+ from Eq.
�15� for large n=N. This proves that the solution of the re-
currence relation �10� with the boundary condition
fN+1

�+� / fN
�+�=�+ corresponds to the outgoing wave in the anion

nuclear wave function.
If instead of Eq. �A1� we consider the contribution of the

incoming wave in ��q�, Eq. �13�, the coefficients fn will be
given by the complex conjugate of Eqs. �A9� and �A10� with
A replaced by B. The corresponding phase factor fn+1 / fn is
the complex conjugate of Eq. �A13�, asymptotically equal to
�−=�+

� from Eq. �15�. Hence, the incoming wave contribution
is obtained by solving Eq. �10� with fN+1

�−� / fN
�−�=�−.

The relation between the behavior of att�r ,q� at large q
and the asymptotic form of the amplitudes fn for closed
channels allows one to find the attachment cross section �att
directly from fn. Thus, for the pure outgoing wave case, cal-
culating the flux for ��q� from Eq. �A1�, and using Eq. �A9�,
we have

�att =
�A�2

k
= 2�

�fn�2	1

k�
v�qn� , �A15�

where the last expression is independent of n for large n.
Finally, the reflection coefficient R is evaluated by follow-

ing the semiclassical wave Eq. �A1� along the anion potential
curve U0�q� from the matching point a=qm to the right turn-
ing point b and back. Here we assume that due to IVR the
potential also acquires a small negative imaginary part
−i� /2. This gives

R = − i exp�2i�
qm

b

p�q�dq − ��
qm

b dq

v�q�� , �A16�

where the momentum p�q� and velocity v�q� are calculated
as in Eq. �A1� using U0�q�, and the imaginary part of the
potential results in damping at the rate �. If the anion poten-
tial curve for q�qm is described in the harmonic approxima-
tion,

U0�q� = Ua +
1

2
M�a

2�q − qa�2, �A17�

the integrals in Eq. �A16� are given by

�
qm

b

p�q�dq =
E − Ua

�a
��

2
− arcsin � − ��1 − �2� ,

�A18�

��
qm

b dq

v�q�
=
�

�a
��

2
− arcsin �� , �A19�

where �= �qm−qa� / �b−qa�, b−qa=��E−Ua� / �M�a
2�, �a is

the frequency of the SF6
− breathing mode, and �Ua� is the

adiabatic electron affinity �neglecting the zero-point energy�.
The reflection coefficient that relates the amplitudes cor-

responding to the outgoing and incoming waves, Rf
= fN

�−� / fN
�+�, is obtained with the help of Eq. �A9�, and contains

an additional phase factor as follows:

Rf = R exp�− 2i�
qN

an

pn�q�dq� . �A20�

In the matching procedure the coordinate qm is chosen equal
to qN, Eq. �A8�, where N is the truncation number of the
recurrence relation �10�.

APPENDIX B: VIBRATIONAL SPECTRUM DENSITY

Let us calculate ��E� as the density of states for an en-
semble of s harmonic oscillators with frequencies �i for a
fixed temperature T,

��E� =
eS

�2���E2�
, �B1�

where

S =
E

T
− 


i=1

s

ln�1 − e−�i/T� �B2�

is the entropy of the ensemble,

��E2� = 

i=1

s
�i

2e−�i/T

�1 − e−�i/T�2 , �B3�

is the variance of the energy, and T is measured in the units
of energy. To find the density for a given energy, the tem-
perature must be chosen so that the mean energy of the en-
semble �measured from the ground state� is equal to E as
follows:

E = 

i=1

s
�i

e�i/T − 1
. �B4�

The density of states calculated in this way is in excellent
agreement with that obtained by directly counting the multi-
mode vibrationally excited states.

�1� L. G. Christophorou and J. K. Olthoff, Int. J. Mass Spectrom.
205, 27 �2001�; L. G. Christophorou and J. K. Olthoff, J. Phys.
Chem. Ref. Data 29, 267 �2000�.

�2� J. P. Gauyacq and A. Herzenberg, J. Phys. B 17, 1155 �1984�.

�3� G. L. Gutsev and R. J. Bartlett, Mol. Phys. 94, 121 �1998�.
�4� A. Chutjian and S. H. Alajajian, Phys. Rev. A 31, 2885 �1985�.
�5� D. Klar, M.-W. Ruf, and H. Hotop, Chem. Phys. Lett. 189,

448 �1992�; D. Klar, M.-W. Ruf, and H. Hotop, Aust. J. Phys.

L. G. GERCHIKOV AND G. F. GRIBAKIN PHYSICAL REVIEW A 77, 042724 �2008�

042724-14



45, 263 �1992�.
�6� P.-T. Howe, A. Kortyna, M. Darrach, and A. Chutjian, Phys.

Rev. A 64, 042706 �2001�.
�7� H. Hotop, M.-W. Ruf, M. Allan, and I. I. Fabrikant, Adv. At.,

Mol., Opt. Phys. 49, 85 �2003�.
�8� M. Braun, S. Barsotti, S. Marienfeld, E. Leber, J. M. Weber,

M.-W. Ruf, and H. Hotop, Eur. Phys. J. D 35, 177 �2005�.
�9� I. I. Fabrikant, H. Hotop, and M. Allan, Phys. Rev. A 71,

022712 �2005�.
�10� J. Ferch, W. Raith, and K. Schröder, J. Phys. B 15, L175

�1982�.
�11� D. Field, N. C. Jones, and J.-P. Ziesel, Phys. Rev. A 69,

052716 �2004�.
�12� K. Rohr, J. Phys. B 12, L185 �1979�.
�13� K. Rohr, J. Phys. B 10, 1175 �1977�.
�14� J. Randell, D. Field, S. L. Lunt, G. Mrotzek, and J.-P. Ziesel, J.

Phys. B 25, 2899 �1992�.
�15� M. Braun, M.-W. Ruf, H. Hotop, and M. Allan, Chem. Phys.

Lett. 419, 517 �2006�.
�16� T. A. Field, K. Graupner, A. Mauracher, P. Scheier, A. Bacher,

S. Denifl, F. Zappa, and T. D. Märk, J. Phys.: Conf. Ser. 88,
012029 �2007�; K. Graupner, T. A. Field, A. Mauracher, P.
Scheier, A. Bacher, S. Denifl, F. Zappa, and T. D. Märk, J.
Chem. Phys. 128, 104304 �2008�.

�17� D. Edelson, J. E. Griffiths, and K. B. McAfee, Jr., J. Chem.
Phys. 37, 917 �1962�.

�18� R. N. Compton, L. G. Christophorou, G. S. Hurst, and P. W.
Reinhardt, J. Chem. Phys. 45, 4634 �1966�.

�19� P. W. Harland and J. C. J. Thynne, J. Phys. Chem. 75, 3517
�1971�.

�20� J. E. Delmore and A. D. Appelhans, J. Chem. Phys. 84, 6238
�1986�.

�21� A. D. Appelhans and J. E. Delmore, J. Chem. Phys. 88, 5561
�1988�.

�22� J.-L. Le Garrec, D. A. Steinhurst, and M. A. Smith, J. Chem.
Phys. 114, 8831 �2001�.

�23� J. M. S. Henis and C. A. Mabie, J. Chem. Phys. 53, 2999
�1970�.

�24� R. W. Odom, D. L. Smith, and J. H. Futrell, Chem. Phys. Lett.
24, 227 �1974�; R. W. Odom, D. L. Smith, and J. H. Futrell, J.
Phys. B 8, 1349 �1975�.

�25� L. Suess, R. Parthasarathy, and F. B. Dunning, J. Chem. Phys.
117, 11222 �2002�.

�26� Y. Liu, L. Suess, and F. B. Dunning, J. Chem. Phys. 122,
214313 �2005�.

�27� H. Tachikawa, J. Phys. B 35, 55 �2002�.
�28� P. J. Hay, J. Chem. Phys. 76, 502 �1982�.
�29� M. Klobukowski, Z. Barandiarán, L. Seijo, and S. Huzinaga, J.

Chem. Phys. 86, 1637 �1987�.
�30� K. W. Richman and A. Banerjee, Int. J. Quantum Chem. 48,

759 �1993�.
�31� R. A. King, J. M. Galbraith, and H. F. Schafer, III, J. Phys.

Chem. 100, 6061 �1996�.
�32� M. Klobukowski, G. H. F. Diercksen, and J. M. Garćia de la

Vega, Adv. Chem. Phys. 28, 189 �1997�.
�33� C. E. Klots, J. Phys. Chem. 46, 1197 �1967�.
�34� C. E. Klots, Chem. Phys. Lett. 38, 61 �1976�.
�35� C. Lifshitz, J. Phys. Chem. 87, 3474 �1983�.
�36� R. E. Weston, J. Phys. Chem. 99, 13150 �1995�.

�37� W. Forst, Unimolecular Reactions: A Concise Introduction
�University Press, Cambridge, 2003�.

�38� Yu. N. Demkov, Zh. Eksp. Teor. Fiz. 46, 1126 �1964�; Yu. N.
Demkov, Sov. Phys. JETP 19, 762 �1964�.

�39� Yu. N. Demkov and V. N. Ostrovskii, Zero-Range Potentials
and their Applications in Atomic Physics �Plenum Press, New
York, 1988�.

�40� L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed.
�Pergamon, Oxford, 1977�.

�41� Such an equation can be treated using discrete WKB methods;
see, e.g., P. A. Braun, J. Phys. B 16, 4323 �1983�.

�42� Regarding the behavior of the calculated SF6
− potential curve

near the SF6 equilibrium, where it lies above the SF6 curve, it
is worth quoting Ref. �38�: “There is no justification whatever
for assuming that such a curve determines, for example, the
position of some quasistationary state ….”

�43� Below 90 meV the experimental attachment cross section is
described accurately by �att=� /��1−exp�−�����, where �
=7130 Å2 meV, �=0.405 meV−1/2, and the electron energy �
is in meV �5�.

�44� M. Allan �private communication�.
�45� The anion potential in the harmonic approximation, Eq. �A17�,

was described using Ua=−0.050 95, �a=0.003 25, and qa

=0.275 a.u., in agreement with the curve from Ref. �27�.
�46� A. A. Makarov, I. Yu. Petrova, E. A. Ryabov, and V. S.

Letokhov, J. Phys. Chem. A 102, 1438 �1998�.
�47� C. Angelié, J. Chem. Phys. 98, 2541 �1993�.
�48� Of course, SF6

−� can be stabilized radiatively. The correspond-
ing rate can be estimated using the dipole transition rates of
individual infrared-active modes �times their average occupa-
tion number at the energies of SF6

−��, and give a lifetime in the
tens of milliseconds, cf. Ref. �26�.

�49� A. Bohr and B. Mottelson, Nuclear Structure �Benjamin, New
York, 1969�, Vol. 1.

�50� T. Shimanouchi, Tables of Molecular Vibrational Frequencies
�National Bureau of Standards, Washington, D.C., 1972�, Vol.
1.

�51� S. P. Heneghan and S. W. Benson, Int. J. Chem. Kinet. 15, 109
�1983�,with reference to D. R. Stull and H. Prophet, JANAF
Thermochemical Tables, 2nd ed. �Wiley, New York, 1976�.

�52� J. C. Bopp, J. R. Roscioli, M. A. Johnson, T. M. Miller, A. A.
Viggiano, S. M. Villano, S. W. Wren, and W. C. Lineberger, J.
Phys. Chem. A 111, 1214 �2007�.

�53� T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey,
and S. S. M. Wong, Rev. Mod. Phys. 53, 385 �1981�.

�54� C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483 �1956�.
�55� W. H. Miller, J. Phys. Chem. 92, 4261 �1988�.
�56� B. Kirmse, B. Abel, D. Schwarzer, S. Yu. Grebenshchikov, and

R. Schinke, J. Phys. Chem. A 104, 10398 �2000�.
�57� H. Alt, H. D. Graf, H. L. Harney, R. Hofferbert, H. Lengeler,

A. Richter, P. Schardt, and H. A. WeidenmullerPhys. Rev. Lett.
74, 62 �1995�.

�58� M. Cannon, Y. Liu, L. Suess, F. B. Dunning, J. D. Steill, and
R. N. Compton, J. Chem. Phys. 127, 064314 �2007�.

�59� J. Troe, T. M. Miller, and A. A. Viggiano, J. Chem. Phys. 127,
244303 �2007�; 127, 244304 �2007�.

�60� This wave function matches the standard harmonic oscillator
eigenstates used in deriving Eq. �10�.

ELECTRON ATTACHMENT TO SF6 AND LIFETIMES… PHYSICAL REVIEW A 77, 042724 �2008�

042724-15


