Positron Binding and Annihilation in Alkane Molecules

A. R. Swann* and G. F. Gribakin†
School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, United Kingdom

(Received 28 May 2019; revised manuscript received 20 June 2019; published 13 September 2019)

A model-potential approach has been developed to study positron interactions with molecules. Binding energies and annihilation rates are calculated for positron bound states with a range of alkane molecules, including rings and isomers. The calculated binding energies are in good agreement with experimental data, and the existence of a second bound state for n-alkanes (CₙH₂ₙ₊₂) with n ≥ 12 is predicted in accord with experiment. The annihilation rate for the ground positron bound state scales linearly with the square root of the binding energy.

DOI: 10.1103/PhysRevLett.123.113402

The ability of positrons to bind to molecules underpins the spectacular phenomenon of resonantly enhanced positron annihilation observed in most polyatomic gases [1]. In this process, the positron is captured by the molecule, its excess energy being transferred into molecular vibrations [2,3]. The corresponding annihilation rates depend strongly on the molecular size and display remarkable chemical sensitivity [4–8]. Observation of energy-resolved resonant annihilation [9] has also enabled measurements of the positron binding energy e_p. Binding energies ranging from a few to a few hundred of meV have been determined experimentally for over 70, mostly nonpolar, molecular species, including alkanes, aromatics, partially halogenated hydrocarbons, alcohols, formates, and acetates [10–13].

This body of data is barely understood from a theoretical standpoint, in spite of a long history of the question [14,15]. Nearly all existing calculations of positron binding considered strongly polar molecules, where binding is guaranteed at any level of theory [16]. A variety of methods were used, including Hartree-Fock [19], configuration interaction [20–22], quantum Monte Carlo method [23–25], explicitly correlated Gaussians [26], and the any-particle molecular-orbital approach [27]. The majority of calculations examined simple diatomics, such as alkali hydrides [24] and metal oxides [23], or triatomics: hydrogen cyanide [21,25] and CXY (X, Y = O, S, Se) [28] (see Ref. [29] for more information). In spite of this effort, of all the molecules studied experimentally, theoretical predictions are available only for five strongly polar species (acetaldehyde, propanal, acetone, acetonitrile, and propionitrile [30–32]), and the best agreement does not exceed 25% (for acetonitrile, e_p = 136 meV, theory [32], vs 180 meV, experiment [11]). Critically, quantum-chemistry calculations have so far failed to predict positron binding to nonpolar molecules with any degree of accuracy [33].

To address this problem, we construct a simple physical model that enables calculations of positron binding to a wide range of polyatomic species and has predictive capability. We apply the model to a range of alkanes and find good agreement with experiment, which confirms that the effective positron-molecule potential is largely “additive” and distributed over the molecule, and that its short-range part is just as important as the long-range behavior determined by the molecular polarizability. While this short-range part cannot be described ab initio with the required accuracy, we show that it can be parametrized in a reliable way. This opens the way for calculating positron binding energies, annihilation rates, and γ spectra for all molecules that have been studied experimentally and for making predictions for other molecules. Understanding positron binding to molecules also sheds light on its counterpart—the problem of electron attachment to molecules and formation of molecular anions.

Theoretical approach.—Since accurate predictions of positron binding to polyatomic molecules are beyond the capacity of the best ab initio calculations, we use a model-correlation-potential approach [29]. The electrostatic potential V_st of the molecule is calculated at the Hartree-Fock level using the standard 6–311++G(d, p) basis, and then a potential that describes long-range polarization of the molecular electron cloud by the positron is added. The explicit form of this potential is

\[
V_{\text{cor}}(\mathbf{r}) = -\sum_A \frac{\alpha_A}{2|\mathbf{r}-\mathbf{r}_A|^2} \left[1 - \exp\left(-|\mathbf{r}-\mathbf{r}_A|^6/\rho_A^6\right)\right],
\]

where the sum is over the atoms A in the molecule, \(\mathbf{r}\) is the position of the positron, and \(\mathbf{r}_A\) is the position of nucleus A, relative to an arbitrary origin. [Atomic units (a.u.) are used throughout, unless stated otherwise.] This model potential uses the hybrid polarizabilities \(\alpha_A\) of the molecule’s constituent atoms [35], which take into account the chemical environment of the atom within the molecule. The factor in brackets provides a short-range cutoff, characterized by the cutoff radius \(\rho_A\), which is a free parameter of the theory. Its values are expected to be

0031-9007/19/123(11)/113402(6) 113402-1 © 2019 American Physical Society
The model potential is obtained generally very good agreement with the measured hexane C_6 was found to increase close to linearly with also for isopentane C_5 does not support a positron bound state, and while ethane C_2 shows the values of α_{em} appears to bind a positron, e_b is too small to measure), and also for isopentane C_5H_{12}, cyclopropane C_3H_6, and cyclohexane C_6H_{12} [41]. The binding energy for the n-alkanes was found to increase close to linearly with n, and a second bound state was observed for $n \geq 12$.

We choose $a_C = 7.096$ and $a_H = 2.650$ a.u., which provide the best fit, $\alpha = n a_C + (2n + 2) a_H$, of the polarizabilities of alkanes [35]. We use the same cutoff radius for the C and H atoms, and set $\rho_A = 2.25$ a.u. to reproduce the measured $e_b = 220$ meV for dodecane $C_{12}H_{25}$. Figure 1 shows the values of e_b obtained for the n-alkanes C_nH_{2n+2} in terms of n. Also shown are the experimental data [41] and the crude zero-range-potential (ZRP) calculations (in which each of the CH$_2$ or CH$_3$ groups was replaced by a short-range deltalike potential, whose strength was chosen to fit the binding energy for dodecane) [42]. The present calculations and the experimental data are also shown in Table I. We obtain generally very good agreement with the experimental data. For $n = 3$–7, our results follow the near-linear trend of the experiment much more closely than do the zero-range-potential calculations. In particular, we report a positive binding energy for $n = 3$ (propane), where the ZRP model shows no binding. Also, the present calculation predicts the emergence of a second bound state for $n = 12$ (dodecane), in agreement with experiment, while the ZRP model only shows this for $n = 13$. For $n = 8$ (octane) and 9 (nonane), we observe a somewhat larger discrepancy with the measured binding energies. We note, however, that the experimental data for these molecules lie slightly below the linear trend set by the other molecules. This difference may therefore be due to an experimental error. From $n \approx 12$ upwards, the calculated binding energies show signs of saturation and drop below the near-linear trend observed for smaller n; this effect is even more pronounced in the ZRP data. Indeed, for $n = 14$ and 16, our e_b for the first bound states underestimate the experimental values by 5% and 15%, respectively, although the second bound state is still very well described. The exact reasons for this discrepancy are not clear. One possible explanation is that the short-range potential used in our calculations is not sufficiently accurate.

TABLE I. Calculated binding energies e_b, independent-particle-approximation contact densities $\delta_{\epsilon \rho}^{(0)}$, and enhanced and renormalized contact densities $\delta_{\epsilon \rho}$ for n-alkane molecules C_nH_{2n+2}. Also shown are the experimental (exp.) binding energies [41]. Square brackets indicate powers of 10.

<table>
<thead>
<tr>
<th>n</th>
<th>e_b (meV)</th>
<th>e_b (exp.) (meV)</th>
<th>$\delta_{\epsilon \rho}^{(0)}$ (a.u.)</th>
<th>$\delta_{\epsilon \rho}$ (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-2.177^a</td>
<td>>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.302</td>
<td>10</td>
<td>5.717$^{[-4]}$</td>
<td>2.605$^{[3]}$</td>
</tr>
<tr>
<td>4</td>
<td>25.81</td>
<td>35</td>
<td>1.600$^{[-3]}$</td>
<td>7.221$^{[3]}$</td>
</tr>
<tr>
<td>5</td>
<td>55.75</td>
<td>60</td>
<td>2.547$^{[-3]}$</td>
<td>1.138$^{[2]}$</td>
</tr>
<tr>
<td>6</td>
<td>87.23</td>
<td>80</td>
<td>3.328$^{[-3]}$</td>
<td>1.476$^{[2]}$</td>
</tr>
<tr>
<td>7</td>
<td>117.2</td>
<td>105</td>
<td>3.948$^{[-3]}$</td>
<td>1.740$^{[2]}$</td>
</tr>
<tr>
<td>8</td>
<td>144.4</td>
<td>115</td>
<td>4.426$^{[-3]}$</td>
<td>1.943$^{[2]}$</td>
</tr>
<tr>
<td>9</td>
<td>168.1</td>
<td>145</td>
<td>4.791$^{[-3]}$</td>
<td>2.096$^{[2]}$</td>
</tr>
<tr>
<td>10</td>
<td>188.8</td>
<td></td>
<td>5.068$^{[-3]}$</td>
<td>2.209$^{[2]}$</td>
</tr>
<tr>
<td>11</td>
<td>206.5</td>
<td></td>
<td>5.280$^{[-3]}$</td>
<td>2.300$^{[2]}$</td>
</tr>
<tr>
<td>12</td>
<td>221.7</td>
<td>220</td>
<td>5.445$^{[-3]}$</td>
<td>2.367$^{[2]}$</td>
</tr>
<tr>
<td>12b</td>
<td>10.14</td>
<td>0</td>
<td>2.587$^{[-3]}$</td>
<td>1.158$^{[2]}$</td>
</tr>
<tr>
<td>13</td>
<td>234.8</td>
<td></td>
<td>5.570$^{[-3]}$</td>
<td>2.420$^{[2]}$</td>
</tr>
<tr>
<td>13b</td>
<td>32.12</td>
<td></td>
<td>3.337$^{[-3]}$</td>
<td>1.482$^{[2]}$</td>
</tr>
<tr>
<td>14</td>
<td>246.0</td>
<td>260</td>
<td>5.666$^{[-3]}$</td>
<td>2.458$^{[-2]}$</td>
</tr>
<tr>
<td>14b</td>
<td>54.56</td>
<td>50</td>
<td>3.858$^{[-3]}$</td>
<td>1.703$^{[2]}$</td>
</tr>
<tr>
<td>15</td>
<td>255.7</td>
<td></td>
<td>5.744$^{[-3]}$</td>
<td>2.492$^{[-2]}$</td>
</tr>
<tr>
<td>15b</td>
<td>76.19</td>
<td></td>
<td>4.257$^{[-3]}$</td>
<td>1.872$^{[2]}$</td>
</tr>
<tr>
<td>16</td>
<td>264.1</td>
<td>310</td>
<td>5.805$^{[-3]}$</td>
<td>2.516$^{[-2]}$</td>
</tr>
<tr>
<td>16b</td>
<td>96.40</td>
<td>100</td>
<td>4.568$^{[-3]}$</td>
<td>2.004$^{[-2]}$</td>
</tr>
</tbody>
</table>

aWith no binding, this value is determined by the size of the basis.

bSecond bound state.
A bound state has a p-wave character. It changes sign when crossing a nodal surface (\(\Delta = 0.0015\)). The wave function of the second bound state [12,29] near the center of the molecule. The change in the magnitude of the wave function between neighboring contours is \(\Delta = 0.0015\).

Figure 2 shows the shapes of the first and second bound positron states for dodecane \(\text{C}_{12}\text{H}_{26}\). The contour for which the magnitude of the wave function is largest is indicated. The change in the magnitude of the wave function between neighboring contours is \(\Delta = 0.0015\).

The annihilation rate \(\gamma_{\text{ann}}\) for the positron from the bound state, for a system with a zero total electron spin, is given by \(\Gamma = \pi r_0^2 \delta_{\text{ep}}\), where \(r_0\) is the classical electron radius, \(c\) is the speed of light, and \(\delta_{\text{ep}}\) is the electron-positron contact density in the bound state [1]. A useful conversion from the contact density to the annihilation rate \(\Gamma\) is \(\Gamma = 50.470 \times \delta_{\text{ep}}[\text{au}]\). The lifetime of the positron-molecule complex with respect to annihilation is \(1/\Gamma\).

We use the wave functions of the electronic molecular orbitals along with the positron wave function to calculate the electron-positron contact density \(\delta_{\text{ep}}\), viz.,

\[
\delta_{\text{ep}} = \sum_i \gamma_i \int |\psi_i(r)|^2 |\psi(r)|^2 d\tau,
\]

where the sum is over all of the occupied Hartree-Fock electronic spin orbitals with wave functions \(\psi_i\), \(\psi\) is the positron wave function, and \(\gamma_i\) is an annihilation vertex enhancement factor, specific to spin orbital \(i\). The enhancement factor is introduced to improve on the independent-particle approximation by accounting for an increase of the electron density at the positron due to their Coulomb interaction [46]. Similar enhancement factors are used in calculations of positron annihilation in solids [47,48]. Recent many-body-theory calculations for atoms have shown that the enhancement factors are, to a good approximation, functions of the spin-orbital energy \(e_i\) [29,46]:
\[\gamma_i = 1 + \sqrt{\frac{1.31}{-\varepsilon_i} + \left(\frac{0.834}{-\varepsilon_i}\right)^{2.15}}. \]

We also renormalize the positron wave function, to take into account the underlying many-body nature of \(V_{\text{cos}} \). The true correlation potential that describes the interaction of a positron with a many-electron system is a nonlocal and energy-dependent operator \(\Sigma_{\text{E}}(\mathbf{r}, \mathbf{r}') \) [49,50]. When using it in the Schrödinger-like Dyson equation, the negative-energy eigenvalue \(\varepsilon_0 = -\varepsilon_b \) that corresponds to a bound state becomes a function of \(E \), i.e., \(\varepsilon_0 = \varepsilon_0(E) \) and has to be found self-consistently. The corresponding positron wave function is, in fact, a quasiparticle wave function, normalized as [51,52]

\[\int |\psi(\mathbf{r})|^2 d\tau = \left(1 - \frac{\partial \varepsilon_b}{\partial E} \right)^{-1} \equiv a < 1. \]

By considering the dependence of the binding energy on the molecular polarizability, we have determined values of \(a \) for each molecule. The values range from \(a = 0.992 \) for \(\text{C}_1 \text{H}_4 \) to 0.933 for \(\text{C}_{10} \text{H}_{24} \), for the first bound state, and from \(a = 0.967 \) for \(\text{C}_{12} \text{H}_{26} \) to 0.946 for \(\text{C}_{16} \text{H}_{34} \), for the second bound state.

Figure 3(a) shows the contact density for each of the \(n \)-alkanes, for the first and second bound states, when the latter exists. Results are shown for the independent-particle approximation (\(\gamma_i = 1 \) and \(a = 1 \)), and also with enhancement and renormalization, i.e., using Eqs. (3) and (4). These data are also shown in Table I. Including the enhancement factors and renormalization increases the contact density by a factor of approximately 4.5 compared to the independent-particle approximation, irrespective of the size of the molecule. The growth of the contact density with the size of the molecule is related to an increase in the positron binding energy. Previous studies of positron-atom bound states found that the contact density grew linearly with \(\sqrt{\varepsilon_b} \), specifically, as \(\delta_{\text{ep}} \approx 9.0 \times 10^{-4} \sqrt{\varepsilon_b} \), where \(\delta_{\text{ep}} \) is in a.u. and \(\varepsilon_b \) is in meV [1,3]. This dependence is related to the probability of finding the positron in the vicinity of the target for weakly bound s-type states. Figure 3(b) shows that the contact density for the \(n \)-alkanes also scales linearly with \(\sqrt{\varepsilon_b} \), with \(\delta_{\text{ep}}^{(0)} \approx 3.63 \times 10^{-4} \sqrt{\varepsilon_b} \) in the independent-particle approximation (thin black dashed line), and \(\delta_{\text{ep}} \approx 1.58 \times 10^{-3} \sqrt{\varepsilon_b} \), when the enhancement factors and renormalization are included (thin blue dashed line). Thus we see that the contact densities for positron bound states with alkanes are about 1.8 times greater than those for the positron-atom bound states, for the same binding energy. This difference must be related to the fact that in atoms, positron access of high-electron-density regions is always impeded by the nuclear repulsion, while in molecules it is easier for the positron to approach the electrons as they are shared between the constituent atoms. It is also worth noting that the contact density for the second bound state remains finite when its binding energy goes to zero. Such behavior is characteristic of \(p \)-type states that remain localized in the limit \(\varepsilon_b \to 0 \).

We have also calculated contact densities for the isomers of pentane, cyclopropane, and cyclohexane. The values that include the enhancement factors and renormalization are \(1.3 \times 10^{-3} \) for cyclopropane, \(1.2 \times 10^{-2} \) for isopentane and neopentane, and \(1.4 \times 10^{-2} \) a.u. for cyclohexane. With the exception of cyclopropane, the contact densities for the various isomers and ring forms are very close to those for the corresponding \(n \)-alkane in Table I. For cyclopropane, the contact density is half that of \(n \)-propane. This is related to the fact that the calculated binding energy for cyclopropane is 6 times smaller than that of \(n \)-propane.

Summary.—We have developed a method for calculating positron-molecule binding energies and annihilation rates and demonstrated its predictive capabilities for the alkanes. These quantities are key to understanding positron resonant annihilation in molecules. Our method allows one to
investigate positron binding to other molecules that have been studied experimentally. It can also be used to make predictions for other molecular species, to guide future experimental effort and provide comparisons for more sophisticated quantum-chemistry calculations. The positron wave function can also be used to calculate the sophisticated quantum-chemistry calculations. The predictions for other molecular species, to guide future

\[\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} \]

still await theoretical analysis.\(^{[53]}\)

\[\gamma \]

We are very grateful to J. R. Danielson, S. Ghosh, and C. M. Surko for providing recent unpublished experimental data. This work has been supported by the EPSRC UK, Grant No. EP/R006431/1.

\[\text{a.swann@qub.ac.uk} \]
\[\text{g.gribakin@qub.ac.uk} \]

\[^{[1]} \text{G. F. Gribakin, J. A. Young, and C. M. Surko, Positron-molecule interactions: Resonant attachment, annihilation, and bound states, Rev. Mod. Phys. 82, 2557 (2010).} \]
\[^{[3]} \text{G. F. Gribakin, Theory of positron annihilation on molecules, in New Directions in Antimatter Chemistry and Physics, edited by C. M. Surko and F. A. Gianturco (Kluwer Academic, Dordrecht, 2001), Chap. 22.} \]
\[^{[4]} \text{M. Deutsch, Three-quantum decay of positronium, Phys. Rev. 83, 866 (1951).} \]
\[^{[7]} \text{C. M. Surko, A. Passner, M. Leventhal, and F. J. Wysocki, Bound States of Positrons and Large Molecules, Phys. Rev. Lett. 61, 1831 (1988).} \]
\[^{[15]} \text{M. Tachikawa, I. Shimamura, R. J. Buenker, and M. Kimura, Bound states of positron with molecules, in New Directions in Antimatter Chemistry and Physics, edited by C. M. Surko and F. A. Gianturco (Kluwer Academic, Dordrecht, 2001), Chap. 23.} \]
\[^{[16]} \text{A static molecule with a dipole moment greater than 1.625 D will always bind an electron or positron [17], while for a molecule that is free to rotate, the critical value dipole moment increases with the angular momentum of the molecule [18].} \]
\[^{[18]} \text{W. R. Garrett, Critical binding of an electron to a rotationally excited dipolar system, Phys. Rev. A 3, 961 (1971).} \]
\[^{[20]} \text{K. Strasburger, Quantum chemical study on complexes of the LiH molecule with e^+, Ps and Ps^- including correlation energy, Chem. Phys. Lett. 253, 49 (1996).} \]
\[^{[26]} \text{S. Bubin and L. Adamowicz, Non-Born-Oppenheimer study of positron molecular systems: e^+ LiH, J. Chem. Phys. 120, 6051 (2004).} \]
\[^{[29]} \text{A. R. Swann and G. F. Gribakin, Calculations of positron binding and annihilation in polyatomic molecules, J. Chem. Phys. 149, 244305 (2018).} \]
\[^{[30]} \text{M. Tachikawa, Y. Kita, and R. J. Buenker, Bound states of the positron with nitrile species with a configuration interaction multi-component molecular orbital approach, Phys. Chem. Chem. Phys. 13, 2701 (2011).} \]

Calculations for CS$_2$ gave a negative binding energy, vs measured $\varepsilon_b = 75$ meV [11]. Scattering calculations for allene indicate binding [34], but no estimate of ε_b is provided.

The present implementation regards atomic contributions to $V_{\text{cor}}(r)$ as spherically symmetric. In future, they can be made anisotropic, to correlate with the directions of adjacent bonds.

