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Enhanced positron annihilation on polyatomic molecules is a long-standing and complex problem. We
report the results of calculations of resonant positron annihilation on methyl halides. A free parameter of
our theory is the positron binding energy. A comparison with energy-resolved annihilation rates measured
for CH3F, CH3Cl, and CH3Br [L. D. Barnes et al., Phys. Rev. A 74, 012706 (2006)] shows good
agreement and yields estimates of the binding energies.
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In this Letter we calculate the positron-molecule anni-
hilation rate due to resonant capture of positrons by
infrared-active vibrational modes and observe good agree-
ment with recent experimental data for methyl halides [1].

When a fast positron interacts with matter, it undergoes a
quick succession of ionizing and other inelastic collisions
and slows down to eV or thermal energies before annihi-
lation. The low-energy positron annihilation rate in a gas
with number density, n, is usually parametrized as

 � � �avn � �r2
0cnZeff ; (1)

where �a is the annihilation cross section, v is the positron
velocity, c is the speed of light, r0 is the classical electron
radius, and Zeff is an effective number of electrons per gas
atom or molecule, which contribute to annihilation [2,3].
Originally, Zeff was introduced in expectation that the
annihilation rate would be in proportion to the number of
target electrons, Z. However, early experiments [4–6] and
later systematic studies [7–9] found that for many poly-
atomic molecules Zeff exceeded Z by orders of magnitude.
It also showed strong chemical sensitivity and rapid growth
with molecular size (for a review, see [10]).

Explanations of high molecular Zeff were sought in
terms of positron virtual or weakly bound states [11],
resonances [12,13], long-lived vibrationally excited
positron-molecule complexes [8], and virtual Ps formation
[14]. At the same time, annihilation calculations which
neglected molecular vibrations failed to reproduce
‘‘anomalous’’ Zeff for polyatomics [15,16], but gave evi-
dence that Zeff depend on the molecular geometry [17].

These efforts highlight the fact that positron-molecule
annihilation is a complex problem. Nevertheless, a theory
developed in Refs. [18–20] provides a framework for
analyzing this phenomenon. There are two basic mecha-
nisms of positron annihilation, direct and resonant. The
direct mechanism applies to both atoms and molecules and
involves annihilation of an incident positron ‘‘in flight.’’ Its
contribution is enhanced when a low-lying virtual or
weakly bound positron state is present, leading to Zeff up
to 103 for room-temperature positrons [18,19].

Resonant annihilation occurs for molecules capable of
binding the positron. To be captured into a bound state, the
positron energy must be absorbed by a vibrational excita-
tion of the positron-molecule complex. This gives rise to a
vibrational Feshbach resonance (VFR) at the incident posi-
tron energy " � E� � "0, where E� is the vibrational
excitation energy, and "0 < 0 is the positron bound state
energy. The positron bound in the VFR can annihilate (or
undergo detachment). The probability of annihilation is
proportional to the resonance lifetime.

For nonmonoenergetic positrons and closely spaced
resonances, their contribution to Zeff is proportional to
the vibrational level density at E � "� "0 [18,19]. If the
positron VFR were due to excitation of fundamentals
alone, this density would be proportional to the number
of modes. Experimental Zeff show much faster increase
(e.g., Zeff � 3500, 11 300, and 37 800 for C3H8, C4H10,
and C5H12, respectively). This means that positron attach-
ment involves excitation of overtones and combination
vibrations. Large Zeff are then related to high total vibra-
tional spectrum densities in the polyatomics.

The important role of vibrations was recently verified
by measuring the energy dependence of Zeff at sub-eV
energies with a high-resolution positron beam [21,22].
These experiments uncovered peaks in Zeff , whose ener-
gies corresponded to those of molecular vibrational
modes. In particular, for all alkanes larger than methane,
Zeff displayed a prominent C-H maximum. Its down-
shift from the C-H mode energy (0.37 eV) provided
a measure of the positron binding energy [23]. Obser-
vation of such peaks means that excited fundamentals act
as vibrational doorway states [20], leading to multimode
vibrations through intramolecular vibrational relaxation
(IVR).

Therefore, to compute Zeff for polyatomics, one must
account for strong electron-positron correlations and posi-
tron binding, the interaction between positronic and vibra-
tional degrees of freedom and intramolecular vibrational
mixing. This makes ab initio calculations of high molecu-
lar Zeff very difficult. However, as we show below, for
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small polyatomics some basic features of resonant annihi-
lation can be tested by relatively simple calculations.

The resonant part of the annihilation cross section can be
written using the Breit-Wigner formalism [19,20,24],

 �a �
�

k2

X
�

g��a��e�
�"� E� � "0�

2 � �2
�=4

; (2)

where �a�, �e�, and �� are the annihilation, elastic, and total
widths of �th resonance, g� is its degeneracy, and k is the
positron momentum (atomic units are used). The annihila-
tion width of the positron bound state is proportional to the
average electron density at the positron, �ep [3,18,19],

 �a� � �r2
0c�ep: (3)

From Eqs. (1) and (2), the resonant Zeff is given by

 Z�res�
eff �

�
k
�ep

X
�

g��e�
�"� E� � "0�

2 � �2
�=4

: (4)

We will now use this equation to calculate the contribution
of infrared-active modes to Z�res�

eff .
Consider a compact polyatomic molecule that can bind

the positron with a small binding energy j"0j � �2=2�
1 eV. The wave function of the bound positron is very
diffuse and behaves as ’0 � Ar�1e��r outside the mole-
cule. Since large distances dominate, the normalization
constant is given by A ’ ��=2��1=2 [25].

Suppose that the vibrational modes in this small-sized
polyatomic are not mixed with overtones or combination
vibrations. Given the smallness of the binding energy, the
vibrational excitation energies of the positron-molecule
complex should be close to the fundamental frequencies
!� of the neutral molecule. In this case the sum in Eq. (4) is
over the modes �, and E� � !�. Some (or even all) of
these modes can be infrared active. The positron capture
into such excited states is mediated by the long-range
dipole coupling. This allows one to calculate their contri-
bution to Z�res�

eff .
Consider a positron with momentum k incident on the

molecule in the vibrational ground state �0�R�, where R
represents all the molecular coordinates. If k2=2 � !� �
"0, the positron can be captured in the VFR, where it is
bound to the molecule in a vibrationally excited state
���R�. The corresponding width �e� can be found from

 �e� � 2�
Z
jA�kj

2��k2=2�!� � "0�
d3k

�2��3
; (5)

where A�k is the capture amplitude. We calculate it by
using a method similar to the Born-dipole approximation
[26,27], as

 A�k �
Z
’0�r��	��R�

d̂ 
 r
r3 eik
r�0�R�drdR

�
4�i

3

d� 
 k����������
2��
p 2F1

�
1

2
; 1;

5

2
;�

k2

�2

�
; (6)

where d̂ is the dipole moment operator for the molecule,
d� � h��jd̂j�0i, and 2F1 is the hypergeometric function
[28]. Substitution of Eq. (6) into Eq. (5) gives

 �e� �
16!�d

2
�

27
h���; (7)

where h��� � �3=2�1� ���1=2�2F1�
1
2 ; 1; 5

2 ;��=�1� ����2

is a dimensionless function of � � 1� "0=!�, such that
��0� � ��1� � 0, and hmax � 0:75 at � � 0:89.

Equation (7) shows that the elastic width of a positron
VFR for an infrared active mode is basically determined by
its frequency!� and transition dipole amplitude d�, known
from infrared absorption measurements [29].

For weakly bound positron states the density �ep is a
linear function of � [19]. It can be estimated as

 �ep � �F=2���; (8)

with F � 0:66 [19]. The same constant characterizes the
contribution of direct annihilation, Z�dir�

eff ’ F=��
2 � k2�

[19]. It is enhanced at small positron momenta by the
presence of a weakly bound (or virtual) state [11,30].

In a recent paper [1], measurements of Zeff for CH3Cl
and CH3Br using a cold trap-based positron beam have
been reported. The energy dependence of Zeff for these
molecules (and CH3F measured earlier [22]) shows peaks
close to the vibrational mode energies. This points to an
important contribution of resonant annihilation in all three
molecules, although the maximum Zeff value for CH3F
(250) is much lower than those for CH3Cl and CH3Br
(1600 and 2000, respectively).

These molecules have C3v symmetry, and all six of their
vibrational modes are infrared active (see Table I for
CH3Cl). Methyl halides are also relatively small, which
means that IVR may not take place [31]. This makes them
ideal for application of our theory. Equatons (4), (7), and
(8) allow one to calculate the contribution of all VFR to
Z�res�

eff , and the only free parameter of the theory, i.e., the
positron binding energy, can be chosen by comparison with
experimental Zeff .

In order to do this, Z�res�
eff from Eq. (4) must be aver-

aged over the energy distribution of the positron beam [22].
The latter can be modeled by a combination of the
Gaussian distribution in the longitudinal direction (z) and
Maxwellian distribution in the transversal direction (?).

TABLE I. Characteristics of the vibrational modes of CH3Cl.

Mode Symmetry g� !�
a (meV) d� (a.u.) !�d

2
� (a.u.)

�1 a1 1 363 0.0191 4:87 10�6

�2 a1 1 168 0.0176 1:91 10�6

�3 a1 1 91 0.0442 6:52 10�6

�4 e 2 373 0.0099 1:34 10�6

�5 e 2 180 0.0162 1:74 10�6

�6 e 2 126 0.0111 5:66 10�7

aMode energies !� and dipole amplitudes d� from Ref. [29].
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The corresponding probability density of the total positron
energy, "? � "z, is

 f	�"?; "z� �
1

kBT?
������������
2��2
p exp

�
�

"?
kBT?

�
�"z � 	�2

2�2

�
;

where kB is the Boltzmann constant, T? is an effective
transversal temperature of the beam, 	 is the mean longi-
tudinal energy of the positrons, as measured by the retard-
ing potential analyzer, and � � �z=

����������
8 ln2
p

, �z being the
full width at half maximum. The values of kBT? and �z are
taken from experiment to be 25 meV.

The averaging, �Z�res�
eff �	� �

R
Z�res�

eff f	�"?; "z�d"?d"z,
can be done analytically, since the widths of the reso-
nances, �� � �e� � �a�, are small compared to the energy
spread of the positron beam. Indeed, values from the last
column of Table I show that the elastic widths of the VFR
are less than 0.1 meV. Typical annihilation widths are even
smaller. For example, for a binding energy of 10 meV (� �
0:027 a:u:), Eqs. (3) and (8) yield �a� � 3 10�9 a:u: �
0:1 
eV. These estimates also show that �� � �e�, i.e., that
the total width of the resonance is dominated by its elastic
width.

Hence, to integrate over "? and "z we replace the Breit-
Wigner profiles in Eq. (4) by � functions and obtain

 

�Z �res�
eff �	� � 2�2�ep

X
�

g��e�
k���

��	� "��; (9)

where "� � k2
�=2 � !� � "0 is the resonance energy, and

 

��E� �
1

kBT?
exp

�
�2

2�kBT?�2

�
exp

�
E

kBT?

�



�
1��

�
�

1���
2
p

�
E
�
�

�
kBT?

���
; (10)

with ��x� being the standard error function.
The function ��E� is a convolution of the � function

with the positron energy distribution. It describes the ap-
pearance of a narrow resonance when measured with the
trap-based positron beam and is shown in Fig. 1. Because
of the transversal energy component, its maximum is
downshifted by 12 meV from the true resonance position.
The shape of ��E� is also markedly asymmetric, with an
extended low-energy tail. It agrees well with those of the
observed C-H peaks [21,22]. Note that the positron energy
distribution was taken into account in experiment by as-
suming a 16 meV difference between the positron total and
longitudinal energies [22].

In Fig. 2 we compare the theoretical Zeff obtained as a
sum of the beam-energy-averaged Z�dir�

eff and �Z�res�
eff from

Eq. (9), with measured Zeff for methyl halides [1,22].
Theoretical curves have been obtained using the binding
energy of j"0j � 0:3, 25, and 40 meV, for CH3F, CH3Cl,
and CH3Br, respectively.

Given the complexity of the problem and the fact that "0

is the only free parameter in the calculation, the agreement
between theory and experiment in Fig. 2 is remarkable. In

accord with Eq. (9), every vibrational mode gives rise to a
VFR, whose relative magnitude is determined by the factor
g�=k� (since �e�=�� � 1). On the positron longitudinal
energy scale, the resonances are downshifted from the
mode energies by the positron binding energy and a further
12 meV due to the positron energy distribution.

Besides determining the resonance positions, the bind-
ing energy also affects the overall magnitude of Z�res�

eff via
�ep / j"0j

1=2 [Eq. (8)]. Hence, the smallness of Zeff in
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FIG. 1. Comparison of the resonance shape function ��E�, for
kBT? � �z � 25 meV (curve) with the measured C-H peak in
propane (circles) [21,22]. For comparison, experimental Zeff has
been scaled vertically and shifted horizontally.
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FIG. 2 (color online). Comparison between experimental Zeff

(�, Ref. [1]) and theoretical Zeff (solid curves) for the positron
binding energies of j"0j � 0:3 meV (CH3F), 25 meV (CH3Cl),
and 40 meV (CH3Br). Dashed curves show Z�dir�

eff . Vertical bars
show the energies of molecular fundamentals.

PRL 97, 193201 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 NOVEMBER 2006

193201-3



CH3F in comparison with those of CH3Cl and CH3Br is
related to the weakness of its binding. This is in turn related
to the smaller dipole polarizability and higher ionization
potential of fluoromethane, which make it less attractive
for the positron.

Note that the infrared absorption strengths of the modes
and the corresponding elastic widths, �e� �!�d

2
�, may

vary considerably from mode to mode. On the other
hand, the contribution of different modes to Zeff are simi-
lar, apart from energy shift and g�=k� factor. As a result,
the energy dependence of Zeff has little resemblance to the
molecular infrared absorption spectra [1]. The relation
�� � �e� also means that the contributions of the VFR
are not sensitive to the exact values of the elastic widths.
Therefore, our use of the ‘‘Born-dipole’’ approximation in
the derivation of Eq. (7) is not expected to lead to sizeable
errors in Z�res�

eff .
In conclusion, we have presented a theory of positron

annihilation by capture into vibrational resonances of
infrared-active modes. It agrees well with measured Zeff

for methyl halides and yields estimates of the positron
binding energies for these molecules.

This theory can also be used to investigate the contribu-
tion of infrared-active-mode VFRs to Zeff in other small
polyatomics that can bind positrons. Such calculations will
likely underestimate the Zeff because the resonances asso-
ciated with other (nondipole) modes may contribute just as
much, as long as their elastic widths are greater than the
annihilation width.

In molecules where multiquantum vibrations are
coupled by anharmonicity, the number of VFRs populated
by positron capture will be greatly increased, leading to
much higher Zeff . However, the same coupling will also
allow the VFR to decay by positron emission to vibration-
ally excited states of the molecule. This will increase the
total resonance widths, thereby reducing their individual
contributions. Calculation of Zeff for molecules with IVR is
the next big challenge for the theory.
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