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1.7 Conditional Probabiliity

1.7.1 Definition

Let the event B ∈ F be such that P(B) > 0. For any event A ∈ F the conditional probability
of A given that B has occurred, denoted by P(A|B), is defined as

P(A|B) =
P(A ∩ B)

P(B)
, (P(B) > 0) (1.24)

(note that P(B|B) = 1 as it should).

We read P(A|B) as ‘the probability of A given B’ or ‘the probability of A conditioned on B’.

Theorem

If B ∈ F has P(B) > 0, and Q(A) = P(A|B), then (S,F ,Q) is a probability space.

Proof We have that

(i) Q(A) ≥ 0 for all A ∈ F (from (1.24) and probability axiom (a)).

(ii) Q(S) = P(S ∩ B)/P(B) = P(B)/P(B) = 1.

(iii) If A1, A2, ... are mutually exclusive events in F , so are A1 ∩ B,A2 ∩ B, .. : then

Q(
⋃

i
Ai) =

1

P(B)
P((

⋃

i
Ai)

⋂

B) by definition of Q

=
1

P(B)
P(

⋃

i
(Ai

⋂

B)) using distributive law (1.6)

=
1

P(B)

∑

i

P(Ai ∩ B) by probability axiom (1.10)

=
∑

i

Q(Ai).

Thus Q satisfies the three probability axioms and (S,F ,Q) is a probability space. ♦

It follows that all the results for P(A) carry over to P(A|B): e.g.

P(A ∪ B|C) = P(A|C) + P(B|C) − P(A ∩ B|C).

We often think of the conditioning event C as a reduced sample space.

1.7.2 Multiplication Rule

It follows from the definition (1.24) that, provided all stated conditioning events have positive
probability,

P(A ∩ B) = P(A|B).P(B) = P(B|A).P(A) (1.25)

and more generally, by repeated application of this result, that

P(A1 ∩ A2 ∩ ... ∩ An) = P(A1).P(A2|A1).P(A3|A1 ∩ A2)...P(An|A1 ∩ A2 ∩ ... ∩ An−1). (1.26)

(In fact, since A1 ⊇ A1 ∩ A2 ⊇ ... ⊇ A1 ∩ A2 ∩ ... ∩ An−1, it is sufficient, in view of (1.13), to
require that this last event have positive probability.)
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1.7.3 Law of Total Probability and Bayes’ Theorem

Let H1,H2, ...,Hn ∈ F be a set of mutually exclusive and exhaustive events (i.e. a partition of

the sample space S): thus
n
∪

j=1
Hj = S and Hi ∩Hj = ∅, i 6= j. Suppose also that they are all

possible events, i.e. P(Hj) > 0 for j = 1, ..., n. Then for any event A ∈ F

P(A) = P(A ∩ S) = P

(

A ∩

(

n
∪

j=1
Hj

))

= P

(

n
∪

j=1
(A ∩ Hj)

)

by (1.6),{A ∩ Hj} m.e.

=
n

∑

j=1

P(A ∩ Hj) by (1.10).

Invoking (1.25), this becomes

P(A) =
n

∑

j=1

P(A|Hj)P(Hj). (1.27)

This is the law of total probability (also known as the completeness theorem or partition rule): it
is of great importance in providing the basis for the solution of many problems by conditioning.

Furthermore, for any event A with P(A) > 0, we have (using (1.24), (1.25) and (1.27))

P(Hk|A) =
P(Hk ∩ A)

P(A)
=

P(A|Hk)P(Hk)
n

∑

j=1

P(A|Hj)P(Hj)

. (1.28)

This is the famous Bayes’ Rule.

1.7.4 Independence

Two events A,B ∈ F are said to be independent if and only if

P(A ∩ B) = P(A).P(B). (1.29)

Theorem

If A and B(∈ F) are independent events, then

P(A|B) = P(A) if P(B) > 0,
P(B|A) = P(B) if P(A) > 0;
A and B are independent events,
A and B are independent events,
A and B are independent events.

Proof To prove the first result:

P(A|B) =
P(A ∩ B)

P(B)
if P(B) > 0 [(1.24)]

=
P(A).P(B)

P(B)
since A,B are independent [by (1.29)]

= P(A).

The second result is proved similarly.
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To prove the third result, we observe that

A = (A ∩ B) ∪ (A ∩ B)

— the union of two mutually exclusive events. So

P(A) = P(A ∩ B) + P(A ∩ B)
= P(A).P(B) + P(A ∩ B) by (1.29)

Hence P(A ∩ B) = P(A) − P(A).P(B) = P(A).P(B) by (1.12).

So A and B are independent events.
The fourth and fifth results are proved similarly.

More generally, the events A1, A2, ..., An are said to be mutually independent or completely
independent if and only if

P(Ai ∩ Aj) = P(Ai).P(Aj), i 6= j,
P(Ai ∩ Aj ∩ Ak) = P(Ai).P(Aj).P(Ak), i 6= j 6= k,

................................
P(A1 ∩ A2 ∩ ... ∩ An) = P(A1).P(A2)...P(An).

(1.30)

Hence pairwise independence does not imply complete independence.

1.8 Examples

Many probability examples involving events occurring at specified times or trials can be solved
by means of the multiplication rule for conditional or independent events, defining Ai to be the
relevant event at time or trial i.

Example 1.6 Polya’s urn scheme.
[The following model was proposed for the description of contagious phenomena where the
occurrence of an event increases its probability of occurrence in the future.]
An urn initially contains r red balls and b black balls. A ball is drawn at random and replaced
together with c balls of its own colour. This procedure is repeated many times. What is the
probability that a red ball is obtained on the ith draw?

Solution Introduce the events

Ri: red ball obtained on the ith draw.
Bi: black ball obtained on ith draw.

The tree diagram below shows the possibilities on the first few draws.

(r) + (b)

(r + c) + (b)
R1

(r + 2c) + (b)R2

(r + c) + (b + c)B2

(r) + (b + c)

B1

(r + c) + (b + c)R2

(r) + (b + 2c)B2

etc.

DRAW 1 2 3
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On the first draw,

P(R1) =
r

r + b
, P(B1) =

b

r + b
.

On the second draw:

P(R2) = P((R1 ∩ R2) ∪ (B1 ∩ R2))
= P(R1 ∩ R2) + P(B1 ∩ R2) (m.e.)
= P(R2|R1)P(R1) + P(R2|B1)P(B1)

=
r + c

r + c + b
.

r

r + b
+

r

r + c + b
.

b

r + b
=

r

r + b
.

Hence

P(B2) =
b

r + b
.

On the third draw, we have:

P(R3) = P(R1 ∩ R2 ∩ R3) + P(R1 ∩ B2 ∩ R3)
+P(B1 ∩ R2 ∩ R3) + P(B1 ∩ B2 ∩ R3)

= P(R3|R1 ∩ R2)P(R1 ∩ R2) + P(R3|R1 ∩ B2)P(R1 ∩ B2)
+P(R3|B1 ∩ R2)P(B1 ∩ R2) + P(R3|B1 ∩ B2)P(B1 ∩ B2)

Now

P(R3|R1 ∩ R2) =
r + 2c

r + 2c + b
, etc.

and

P(R1 ∩ R2) = P(R2|R1)P(R1) =
r + c

r + c + b
.

r

r + b
, etc.

from which we deduce that
P(R3) =

r

r + b

and hence that

P(B3) =
b

r + b
.

This naturally leads us to the conjecture:

P(Ri) =
r

r + b
for i = 1, 2, 3, .... ?

This can be proved by induction, as follows. It has already been shown to be true for i = 1, 2, 3.
Suppose it is true for i = n. Then

P(Rn+1) = P(Rn+1|R1)P(R1) + P(Rn+1|B1)P(B1).

Now clearly Rn+1 given R1 is equivalent to starting with (r + c) red balls and b black balls and
obtaining a red on the nth draw, and from the above supposition it follows that

P(Rn+1|R1) =
r + c

r + c + b
.

Similarly

P(Rn+1|B1) =
r

r + c + b
.

So

P(Rn+1) =
r + c

r + c + b
.

r

r + b
+

r

r + c + b
.

b

r + b
=

r

r + b
.

Hence, by induction, the conjecture is proved. ♦
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Notes:

(i) Probabilities such as P(R1 ∩R2),P(R2|R1),P(R1 ∩R2 ∩R3),P(R3|R2) etc. can be calcu-
lated using the standard results and by enumerating the outcomes at draws 1, 2, 3 etc.

(ii) This approach cannot be used for the calculation of other probabilities after n draws,
when n is not small. One approach is to use recurrence relations – an approach which is
taken up in the next section.

Example 1.7 The Lift Problem

A simple form of this problem is as follows:

A lift has three occupants A, B and C, and there are three possible floors (1, 2 and 3) at which
they can get out. Assuming that each person acts independently of the others and that each
person is equally likely to get out at each floor, calculate the probability that exactly one person
will get out at each floor.

Solution We use a sequential approach. Let

Fi: one person gets off at floor i.

Ai: A gets off at floor i (events Bi and Ci are defined similarly).

Then the required probability is

P(F1 ∩ F2 ∩ F3) = P(F1)P(F2|F1)P(F3|F1 ∩ F2) by (1.26).

Now
P(F1) = P((A1 ∩ B1 ∩ C1) ∪ (A1 ∩ B1 ∩ C1) ∪ (A1 ∩ B1 ∩ C1))

= 3.(1
3
)(2

3
)2 = 4

9
(invoking independence and (1.30))

P(F2|F1) = 2.(1
2
)(1

2
) = 1

2
(by similar argument)

P(F3|F1 ∩ F2) = 1

So the required probability is 4
9
.1
2
.1 = 2

9
. ♦

Let’s consider the generalisation of this problem to n persons and n floors. Let pn denote the
probability that exactly one person gets off at each floor. We have

pn = P(F1 ∩ F2 ∩ · · · ∩ Fn)
= P(F2 ∩ F3 ∩ · · · ∩ Fn|F1)P(F1) by (1.25)

= pn−1

{

n.

(

1

n

)

.

(

n − 1

n

)n−1
}

=

(

n − 1

n

)n−1

pn−1, n > 1.

(The crucial step here is the recognition that, in view of the independence assumption, the
conditional probability is identical to pn−1). We note that p1 = 1. The recurrence formula is
easily solved:

pn =

(

n − 1

n

)n−1

pn−1

=

(

n − 1

n

)n−1 (

n − 2

n − 1

)n−2

pn−2

= .........................

=

(

n − 1

n

)n−1 (

n − 2

n − 1

)n−2

...

(

1

2

)1

p1

=
(n − 1)!

nn−1
=

n!

nn
, n ≥ 1.

In particular p3 = 3!

33 = 2
9

in agreement with our more restricted discussion at the start.
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1.9 Conditioning and Recurrence Relations

The argument at the end of Example 1.6 involved conditioning on the result of the first draw,
and then recognising the relationship between the conditional probabilities involved and the
probability under discussion. Here is another example of this kind of argument.

Example 1.8

A random experiment has three outcomes, A,B and C, with probabilities pA, pB and pC

respectively, where pC = 1 − pA − pB . What is the probability that, in independent per-
formances of the experiment, A will occur before B?

Solution 1 (by decomposition into the union of m.e. events). The event

D : A occurs before B

can occur in any of the following mutually exclusive ways: A,CA,CCA,CCCA, ...... So its
probability is

P(D) = pA + pC .pA + p2
C .pA + ... = pA(1 + pC + p2

C + ....)
= pA/(1 − pC)

=
pA

pA + pB
.

Solution 2 (by conditioning). Condition on the result of the first trial (A1, B1 or C1). Thus

P(D) = P(D|A1)P(A1) + P(D|B1)P(B1) + P(D|C1)P(C1)
= P(D|A1)pA + P(D|B1)pB + P(D|C1)pC

Now
P(D|A1) = 1; P(D|B1) = 0 (obviously)

while
P(D|C1) = P(D),

since in this case the problem after the first trial is exactly as at the start (in view of the
independence of the trials). So we have

P(D) = pA + pC .P(D)

which solves to give

P(D) =
pA

1 − pC
=

pA

pA + pB

as before. ♦

[There is a simple third method of solving the problem. Consider the critical trial at which the
sequence of trials ends with either A or B. Then

P(A|A ∪ B) =
P(A ∩ (A ∪ B))

P(A ∪ B)
=

pA

pA + pB

as before.]

Now we extend this idea to situations where the desired probability has an associated parameter,
and conditioning leads to a recurrence formula.
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Example 1.9

In a series of independent games, a player has probabilities 1

3
, 5

12
and 1

4
of scoring 0, 1 and 2

points respectively in each game. The scores are added; the series terminates when the player
scores 0 in a game. Obtain a recurrence relation for pn, the probability that the player obtains
a final score of n points.

Solution We have here a discrete but infinite sample space: an outcome is a sequence of 1’s
and/or 2’s ending with a 0, or just 0 on the first game. Clearly

p0 = 1

3

p1 = 5
12

· 1
3

= 5
36

.

Conditioning on the result of the first game, we have (for n ≥ 2)

pn = P(n points in total)
= P(n points in total|1 on first game)P(1 on first game)

+P(n points in total|2 on first game)P(2 on first game)
= 5

12
pn−1 + 1

4
pn−2, n ≥ 2.

(Again, the independence assumption is essential when we come to re-interpret the conditional
probabilities in terms of pn−1 and pn−2.)

To get an expression for pn, this has to be solved subject to the conditions

p0 =
1

3
, p1 =

5

36
.

The result (either from the theory of difference equations or by induction) is

pn =
3

13

(

3

4

)n

+
4

39

(

−
1

3

)n

, n ≥ 0.

A diagram such as that given below is often helpful in writing down the recurrence formula
required. ♦

1

2

total of n

5/12

1/4

pn−2

pn−1

First game Subsequent games
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Finally, we return to a problem considered earlier, and solve it by means of a recurrence formula.

Example 1.10 The Matching Problem (Revisited)

For a description of the problem, see §1.5.1 above. Let

B : no matches occur.
A1 : there is a match in position 1

Let pn denote the probability of no matches occurring when n numbered cards are randomly
distributed over n similarly numbered positions. Then conditioning on what happens in the
first position, we have

pn = P(B) = P(B|A1)P(A1) + P(B|A1)P(A1).

Now clearly P(B|A1) = 0, so

pn = P(B|A1).
n − 1

n

The probability P(B|A1) is the probability that no matches occur when (n−1) cards (numbered
2 to n but with k, say, missing and replaced by 1) are randomly distributed over positions 2 to
n. This can happen in two mutually exclusive ways:

(i) card 1 falls on a position other than k, and none of the other cards make a match;

(ii) card 1 falls on position k, and none of the other cards make a match.

We deduce that

P(B|A1) = pn−1 +
1

n − 1
pn−2

(the first term being derived by temporarily regarding position k as being the ‘matching position’
for card 1). Hence we obtain the recurrence relation

pn =
n − 1

n
pn−1 +

1

n
pn−2

i.e.

pn − pn−1 = −
1

n
(pn−1 − pn−2).

Now it is readily seen that

p1 = 0; p2 =
1

2
,

so by repeated application of the recurrence relation we get

p3 − p2 = −
(p2 − p1)

3
= −

1

3!
or p2 =

1

2!
−

1

3!

p4 − p3 =
(p3 − p2)

4
=

1

4!
or p3 =

1

2!
−

1

3!
+

1

4!

and more generally

pn =
1

2!
−

1

3!
+

1

4!
− · · · +

(−1)n

n!

– the result obtained previously. ♦
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1.10 Further Examples

Example 1.11 The ‘Monty Hall’ Problem

A game show contestant is shown 3 doors, one of which conceals a valuable prize, while the
other 2 are empty. The contestant is allowed to choose one door (note that, regardless of the
choice made, at least one of the remaining doors is empty). The show host (who knows where
the prize is) opens one of the remaining doors to show it empty (it is assumed that if the host
has a choice of doors, he selects at random). The contestant is now given the opportunity to
switch doors. Should the contestant switch?

Solution Number the contestant’s chosen door ‘1’, and the other doors ‘2’ and ‘3’. Let

Ai : the prize is behind door i(i = 1, 2, 3)
D : door 2 opened by host.

We assume P(A1) = P(A2) = P(A3) = 1
3
. Then

P(D|A1) =
1

2
, P(D|A2) = 0, P(D|A3) = 1.

Then by Bayes’ Rule (1.28):

P(A3|D) =
1

3
· 1

1
3
· 1

2
+ 1

3
· 0 + 1

3
· 1

=
2

3
.

So the contestant should switch and will gain the prize with probability 2
3
. ♦

(Comment: This problem is called after the host in a US quiz show, and has given rise to
considerable debate. The point which is often overlooked is that the host sometimes has the
choice of two doors and sometimes one.)

Example 1.12 Successive Heads

A biased coin is such that the probability of getting a head in a single toss is p. Let vn be
the probability that two successive heads are not obtained in n tosses of the coin. Obtain a
recurrence formula for vn and verify that, in the case where p = 2

3
,

vn = 2

(

2

3

)n+1

+

(

−
1

3

)n+1

.

Solution Conditioning on the result of the first toss, we have (in an obvious notation)

vn = P(no pairs in n tosses)
= P(no pairs in n tosses|H1)P(H1) + P(no pairs in n tosses|T1)P(T1)
= pP(tail followed by no pairs (in n − 2 tosses)) + (1 − p)P(no pairs in n − 1 tosses)
= p(1 − p)vn−2 + (1 − p)vn−1 n ≥ 2

We note that v0 = v1 = 1.

When p = 2
3

: vn = 2
9
vn−2 + 1

3
vn−1, n ≥ 2. The given result may be proved by induction

(or obtained directly from the theory of difference equations). ♦


