Chapter 2

Discrete Random Variables

2.1 Definition and Distributions

We are often interested in a function of the outcome of a random experiment, rather than in the outcome itself.

Examples
(i) Suppose two fair distinguishable dice are tossed: we might be interested in the sum of scores. The sample space is

$$
\mathcal{S}=\left\{\left(d_{1}, d_{2}\right) ; \quad d_{1}, d_{2}=1, \ldots, 6\right\}
$$

and the sum $x=d_{1}+d_{2}, \quad x=2, \ldots, 12$.
(ii) Suppose we are interested in whether the lifetime of a piece of equipment exceeds 100 hours. The sample space is

$$
\mathcal{S}=\{t ; \quad 0 \leq t<\infty\}
$$

and we could define

$$
x=\left\{\begin{array}{ll}
1, & \text { if } t>100 \\
0, & \text { if } t \leq 100
\end{array} .\right.
$$

Given a probability space $(\mathcal{S}, \mathcal{F}, \mathrm{P})$, a discrete random variable X is defined to be a mapping of \mathcal{S} into the set R of real numbers (i.e. with every $E \in \mathcal{S}$ there is associated a real number $X(E)$), such that
(i) \mathcal{S} is mapped into a countable set of real numbers, D (the image of \mathcal{S} under X);
(ii) if A_{x} denotes the subset of outcomes in \mathcal{S} which are mapped into a real number x (i.e. $A_{x}=\{E \in \mathcal{S}: X(E)=x\}$), then

$$
A_{x} \in \mathcal{F} \quad \text { for all } x \in D
$$

(or, indeed, for all $x \in \mathcal{R}$, since $A_{x}=\emptyset$ if $x \notin D$, and always $\emptyset \in \mathcal{F}$.
Then the probability that X takes the value x, denoted by $\mathrm{P}(X=x)$, is given by

$$
\begin{equation*}
\mathrm{P}(X=x)=\mathrm{P}\left(A_{x}\right) . \tag{2.1}
\end{equation*}
$$

It is common to speak of the event ' $X=x$ ', though we should always remember that we are really referring to the event A_{x} in our event space \mathcal{F}.

Let $D=\left\{x_{1}, x_{2}, \ldots\right\}$ (where x_{1}, x_{2}, \ldots are assumed to be in increasing order).
The probability distribution of X is given by

$$
\begin{equation*}
\mathrm{P}\left(X=x_{i}\right)=p_{X}\left(x_{i}\right), \quad i=1,2, \ldots \tag{2.2}
\end{equation*}
$$

The function $p_{X}(\cdot)$ is called the probability (mass) function of X : it maps \mathcal{R} into $[0,1]$.
(The suffix ' X ' may be dropped when there is no ambiguity as to the random variable concerned). We observe that $p_{X}(\cdot)$ has the following properties (readily derived from those of P):
(i) $p_{X}(x)=0$ if $x \notin D$ (since then $\left.A_{x}=\emptyset\right)$;
(ii) $p_{X}\left(x_{i}\right)=\mathrm{P}\left(A_{x_{i}}\right) \geq 0, \quad i=1,2, \ldots$;
(iii) $\sum_{x \in D} p_{X}(x)=\mathrm{P}\left(\underset{x \in D}{\cup} A_{x}\right)=\mathrm{P}(\mathcal{S})=1$.

The cumulative (probability) distribution function of X is given by

$$
\begin{aligned}
F_{X}(y) & =\mathrm{P}(E \in \mathcal{S}: X(E) \leq y) \\
& =\mathrm{P}\left(\cup \cup \cup A_{x}\right) \\
& =\sum_{x \in D ; x \leq y} \mathrm{P}\left(A_{x}\right)
\end{aligned}
$$

i.e.

$$
\begin{equation*}
F_{X}(y)=\sum_{x_{i} \leq y} p_{X}\left(x_{i}\right), \quad-\infty<y<\infty \tag{2.6}
\end{equation*}
$$

and we often simply write

$$
\begin{equation*}
F_{X}(y)=\mathrm{P}(X \leq y) \tag{2.7}
\end{equation*}
$$

where again $X \leq y$ is 'shorthand' for $\{E \in \mathcal{S}: X(E) \leq y\}$).
$F_{X}(\cdot)$ is a step (or staircase) function which is continuous from the right but not from the left: the size of the 'step' at x_{i} is $p_{X}\left(x_{i}\right)$. Also it is easily shown that

$$
\begin{equation*}
\mathrm{P}(a<X \leq b)=F_{X}(b)-F_{X}(a) \quad(a<b) \tag{2.8}
\end{equation*}
$$

Transformations
Given a function $g(X)$ of X, it is easily shown that $Y=g(X)$ is also a discrete random variable. Let $x_{i_{1}}, x_{i_{2}}$, ...be the values of X having the property

$$
g\left(x_{i_{j}}\right)=y_{i} \text { for } j=1,2, \ldots
$$

Then

$$
\begin{equation*}
\mathrm{P}\left(Y=y_{i}\right)=\mathrm{P}\left(X=x_{i_{1}}\right)+\mathrm{P}\left(X=x_{i_{2}}\right)+\ldots \tag{2.9}
\end{equation*}
$$

(Note: In future, we shall generally adopt the abbreviation 'r.v.' for random variable).

2.2 Expectation

The expected value or expectation of a discrete r.v. X , denoted by $\mathrm{E}(X)$ or μ, is defined as

$$
\begin{equation*}
\mathrm{E}(X)=\sum_{x \in D} x \mathrm{P}(X=x)=\sum_{i} x_{i} \mathrm{P}\left(X=x_{i}\right)=\sum_{i} x_{i} p_{X}\left(x_{i}\right) \tag{2.10}
\end{equation*}
$$

provided this series is absolutely convergent (i.e. $\sum_{i}\left|x_{i} p_{X}\left(x_{i}\right)\right|$ is finite, so that when D is an infinite set, the series takes the same value irrespective of the order in which we add up the terms). $\mathrm{E}(X)$ is also referred to as the population mean or the mean of the distribution or the mean of X. It is analogous to the idea of 'centre of gravity' in mechanics.

The E operator has the following properties:
(i) If a and b are constants, $\mathrm{E}(a+b X)=a+b \mathrm{E}(X)$.
(ii) If $L \leq X \leq U$, then $L \leq \mathrm{E}(X) \leq U$.
(iii) $|\mathrm{E}(X)| \leq \mathrm{E}(|X|)$.
(iv) If $Y=g(X)$, it is readily proved that

$$
\begin{equation*}
\mathrm{E}(Y)=\mathrm{E}[g(X)]=\sum_{x \in D} g(x) \mathrm{P}(X=x)=\sum_{i} g\left(x_{i}\right) \mathrm{P}\left(X=x_{i}\right) \tag{2.14}
\end{equation*}
$$

provided again that the series is absolutely convergent. Note that this is a result of the original definition of $\mathrm{E}(X)$ and not a definition in its own right: Ross terms this the 'law of the unconscious statistician' (since many people think it is a definition). The result is very useful, since it enables us to find $\mathrm{E}[g(X)]$ without first finding the probability distribution of $Y=g(X)$ in order to determine $\mathrm{E}(Y)=\sum_{j} y_{j} p_{Y}\left(y_{j}\right)$.
(v) $\mathrm{E}\{g(X)+h(X)\}=\mathrm{E}\{g(X)\}+\mathrm{E}\{h(X)\}$.

The variance of the r.v. X is defined as

$$
\begin{equation*}
\sigma^{2}=\operatorname{Var}(X)=\mathrm{E}\left[\{X-\mathrm{E}(X)\}^{2}\right]=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \tag{2.16}
\end{equation*}
$$

and its positive square root, σ, is called the standard deviation of X (or the population standard deviation or standard deviation of X). It has the following properties:
(i) $\operatorname{Var}(X) \geq 0$.
(ii) $\operatorname{Var}(a+b X)=b^{2} \operatorname{Var}(X)$.
(iii) If $\operatorname{Var}[g(X)]=0$, then $g(X)=$ constant.

The r th moment about the origin is defined as $\mathrm{E}\left(X^{r}\right)$; the r th moment about the mean is defined as $\mathrm{E}\left[(X-\mu)^{r}\right], \quad r=1,2, \ldots$. Usually we are interested in at most the first four moments.

2.3 Important discrete distributions

Here we review the common discrete distributions, nearly all of which have already been studied at Level 1.

Consider a sequence of repeated independent trials where there are only two possible outcomes for each trial, 'success' and 'failure', and the probabilities of success and failure, p and $q=$ $1-p$, remain the same throughout the trials (Bernoulli sequence). Then the following discrete distributions are defined on such an experiment:

Binomial distribution

Let X be the number of successes in n trials, where n is fixed. Then

$$
\begin{equation*}
\mathrm{P}(X=x)=\binom{n}{x} p^{x} q^{n-x}, \quad x=0, \ldots, n \tag{2.20a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}(X)=n p, \quad \operatorname{Var}(X)=n p q . \tag{2.20b}
\end{equation*}
$$

Geometric distribution

Let X be the number of trials required to obtain the first success. Then

$$
\begin{equation*}
\mathrm{P}(X=x)=p q^{x-1}, \quad x=1,2, \ldots \tag{2.21a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}(X)=\frac{1}{p}, \quad \operatorname{Var}(X)=\frac{q}{p^{2}} . \tag{2.21b}
\end{equation*}
$$

If on the other hand we define X to be the number of failures obtained before the first success is obtained, X has the modified geometric distribution

$$
\begin{equation*}
\mathrm{P}(X=x)=p q^{x}, \quad x=0,1, \ldots \tag{2.22a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}(X)=\frac{1}{p}-1=\frac{q}{p}, \tag{2.22b}
\end{equation*}
$$

the variance being unchanged.

Negative binomial distribution

Let X be the number of trials required to obtain r successes, where r is fixed. Then

$$
\begin{equation*}
\mathrm{P}(X=x)=\binom{x-1}{r-1} p^{r} q^{x-r}, \quad x=r, r+1, \ldots \tag{2.23a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}(X)=\frac{r}{p}, \quad \operatorname{Var}(X)=\frac{r q}{p^{2}} . \tag{2.23b}
\end{equation*}
$$

Example 2.1 The Banach Match Problem

A pipe-smoking mathematician carries two match-boxes, one in his left-hand pocket and the other in his right-hand pocket: initially each box contains N matches. Each time the mathematician requires a match he is equally likely to take it from either box. We ask: at the moment when he first discovers one of the boxes to be empty, what is the probability that there are exactly k matches in the other box, $k=0,1, \ldots, N$?
Solution Let A denote the event that the mathematician first discovers that the right-hand box is empty and there are k matches in the left-hand box at that moment. Think of choosing the right-hand pocket as a 'success' $\left(p=\frac{1}{2}\right)$. Then A will occur if and only if exactly $N-k$ 'failures' precede the $(N+1)$ th 'success', i.e. the $(N+1)$ th 'success' occurs at trial number $(2 N-k+1)$. Using (2.23a) with $p=\frac{1}{2}, r=N+1, x=2 N-k+1$, we deduce that

$$
\mathrm{P}(A)=\binom{2 N-k}{N}\left(\frac{1}{2}\right)^{2 N-k+1}
$$

Since there is an equal probability that it is the left-hand box that is first discovered to be empty and there are k matches in the right-hand box at that moment, the required probability is

$$
2 \mathrm{P}(A)=\binom{2 N-k}{N}\left(\frac{1}{2}\right)^{2 N-k} .
$$

Other common discrete distributions include:

Poisson distribution

A Poisson r.v. has

$$
\begin{equation*}
\mathrm{P}(X=x)=\frac{\lambda^{x}}{x!} e^{-\lambda}, \quad x=0,1, \ldots ; \quad \lambda>0 \tag{2.24a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}(X)=\operatorname{Var}(X)=\lambda \tag{2.24b}
\end{equation*}
$$

The Poisson distribution with $\lambda=n p$ provides a useful approximation to the binomial distribution when n is large and p is small such that $n p \leq 5$.

Hypergeometric distribution

Suppose a population of N items consisting of N_{1} type 1 items and $N_{2}=N-N_{1}$ type 2 items is randomly sampled n times without replacement. Let X be the number of type 1 items in the sample. Then

$$
\mathrm{P}(X=x)=\frac{\binom{N_{1}}{x}\binom{N_{2}}{n-x}}{\binom{N}{n}},
$$

where $\quad 0 \leq x \leq N_{1}, 0 \leq n-x \leq N_{2}, 0 \leq n \leq N \quad$ i.e. $x=\max \left(0, n-N_{2}\right), \ldots, \min \left(n, N_{1}\right)$.
In practice, however, n is usually smaller than N_{1}, N_{2}, so that $x=0, \ldots, n$. Also
$\mathrm{E}(X)=\frac{n N_{1}}{N}, \quad \operatorname{Var}(X)=\frac{n N_{1} N_{2}(N-n)}{N^{2}(N-1)}$.

When n is small compared with N_{1}, N_{2}, the hypergeometric distribution can (as expected) be approximated by the binomial distribution with parameters n and $p=\frac{N_{1}}{N}, q=\frac{N_{2}}{N}$.

Example 2.2 Estimating the Size of an Animal Population

The number of animals inhabiting a certain region (N, say) is unknown. To estimate N, an ecologist catches m animals, marks them and then releases them. After giving the marked animals time to disperse through the region, a second catch of n animals is carried out. Stating any assumptions made, give the probability distribution of X, the number of marked animals in the second catch. If in fact $X=k$, find the corresponding maximum likelihood estimate of N, i.e. the value of N which maximises $\mathrm{P}(X=k)$.

Solution We assume that
(i) the number of animals in the region remains unchanged between the times of the first and second catches;
(ii) each time an animal is caught, it is equally likely to be any one of the remaining uncaught animals.

Then X is a hypergeometric r.v. with

$$
\mathrm{P}(X=i)=\frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{n}}, \quad i=0,1, \ldots, n
$$

It is convenient to write $\mathrm{P}(X=i) \equiv p_{i}(N)$. To find the (integer) value of N which maximises $p_{k}(N)$, we observe that

$$
\frac{p_{k}(N)}{p_{k}(N-1)}=\frac{(N-m)(N-n)}{N(N-m-n+k)}
$$

which is ≥ 1 iff $N \leq \frac{m n}{k}$. So the maximum likelihood estimate of N is $\left\lfloor\frac{m n}{k}\right\rfloor$.
(The same result is obtained if we suppose that the proportion of marked animals in the second catch is approximately the same as the proportion in the region as a whole.)

Uniform distribution

Here X takes any one of a finite set of values with equal probability, e.g.

$$
\begin{equation*}
\mathrm{P}(X=x)=\frac{1}{N} \quad \text { for } x=1,2, \ldots, N \tag{2.26a}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{E}(X)=\frac{1}{2}(N+1), \quad \operatorname{Var}(X)=\frac{1}{12}\left(N^{2}-1\right) \tag{2.26b}
\end{equation*}
$$

Zeta (or Zipf) distribution

In this case

$$
\begin{equation*}
\mathrm{P}(X=x)=\frac{C}{x^{\alpha+1}}, \quad x=1,2, \ldots, \alpha>0 \tag{2.27a}
\end{equation*}
$$

with

$$
\begin{equation*}
C=\left[\sum_{x=1}^{\infty}\left(\frac{1}{x}\right)^{\alpha+1}\right]^{-1}=\zeta(\alpha+1) \tag{2.27b}
\end{equation*}
$$

where $\zeta(s)$ is the Riemann zeta function.

