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Chapter 2

Discrete Random Variables

2.1 Definition and Distributions

We are often interested in a function of the outcome of a random experiment, rather than in
the outcome itself.

Examples

(i) Suppose two fair distinguishable dice are tossed: we might be interested in the sum of
scores. The sample space is

S = {(d1, d2); d1, d2 = 1, ..., 6}

and the sum x = d1 + d2, x = 2, ..., 12.

(ii) Suppose we are interested in whether the lifetime of a piece of equipment exceeds 100
hours. The sample space is

S = {t; 0 ≤ t < ∞}

and we could define

x =

{

1, if t > 100
0, if t ≤ 100

.

Given a probability space (S,F ,P), a discrete random variable X is defined to be a mapping
of S into the set R of real numbers (i.e. with every E ∈ S there is associated a real number
X(E)), such that

(i) S is mapped into a countable set of real numbers, D (the image of S under X);

(ii) if Ax denotes the subset of outcomes in S which are mapped into a real number x

(i.e. Ax = {E ∈ S : X(E) = x}), then

Ax ∈ F for all x ∈ D

(or, indeed, for all x ∈ R, since Ax = ∅ if x 6∈ D, and always ∅ ∈ F .

Then the probability that X takes the value x, denoted by P(X = x), is given by

P(X = x) = P(Ax). (2.1)
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It is common to speak of the event ‘X = x’, though we should always remember that we are
really referring to the event Ax in our event space F .

Let D = {x1, x2, ...} (where x1, x2, ... are assumed to be in increasing order).

The probability distribution of X is given by

P(X = xi) = pX(xi), i = 1, 2, ... (2.2)

The function pX(·) is called the probability (mass) function of X: it maps R into [0, 1].

(The suffix ‘X’ may be dropped when there is no ambiguity as to the random variable con-
cerned). We observe that pX(·) has the following properties (readily derived from those of
P):

(i) pX(x) = 0 if x 6∈ D (since then Ax = ∅); (2.3)

(ii) pX(xi) = P(Axi
) ≥ 0, i = 1, 2, ...; (2.4)

(iii)
∑

x∈D

pX(x) = P( ∪
x∈D

Ax) = P(S) = 1. (2.5)

The cumulative (probability) distribution function of X is given by

FX(y) = P(E ∈ S : X(E) ≤ y)
= P( ∪

x∈D;x≤y
Ax)

=
∑

x∈D;x≤y

P(Ax)

i.e.

FX(y) =
∑

xi≤y

pX(xi), −∞ < y < ∞ (2.6)

and we often simply write

FX(y) = P(X ≤ y), (2.7)

where again X ≤ y is ‘shorthand’ for {E ∈ S : X(E) ≤ y}).

FX(·) is a step (or staircase) function which is continuous from the right but not from the left:
the size of the ‘step’ at xi is pX(xi). Also it is easily shown that

P(a < X ≤ b) = FX(b) − FX(a) (a < b). (2.8)



page 24 110SOR201(2002)

Transformations Given a function g(X) of X, it is easily shown that Y = g(X) is
also a discrete random variable. Let xi1 , xi2 , ...be the values of X having the property

g(xij ) = yi for j = 1, 2, ...

Then
P(Y = yi) = P(X = xi1) + P(X = xi2) + .... (2.9)

(Note: In future, we shall generally adopt the abbreviation ‘r.v.’ for random variable).

2.2 Expectation

The expected value or expectation of a discrete r.v. X, denoted by E(X) or µ, is defined as

E(X) =
∑

x∈D

xP(X = x) =
∑

i

xiP(X = xi) =
∑

i

xipX(xi) (2.10)

provided this series is absolutely convergent (i.e.
∑

i |xipX(xi)| is finite, so that when D is an
infinite set, the series takes the same value irrespective of the order in which we add up the
terms). E(X) is also referred to as the population mean or the mean of the distribution or the
mean of X. It is analogous to the idea of ‘centre of gravity’ in mechanics.

The E operator has the following properties:

(i) If a and b are constants, E(a + bX) = a + bE(X). (2.11)

(ii) If L ≤ X ≤ U , then L ≤ E(X) ≤ U . (2.12)

(iii) |E(X)| ≤ E(|X|). (2.13)

(iv) If Y = g(X), it is readily proved that

E(Y ) = E[g(X)] =
∑

x∈D

g(x)P(X = x) =
∑

i

g(xi)P(X = xi), (2.14)

provided again that the series is absolutely convergent. Note that this is a result of the
original definition of E(X) and not a definition in its own right: Ross terms this the ‘law
of the unconscious statistician’ (since many people think it is a definition). The result
is very useful, since it enables us to find E[g(X)] without first finding the probability
distribution of Y = g(X) in order to determine E(Y ) =

∑

j yjpY (yj).

(v) E{g(X) + h(X)} = E{g(X)} + E{h(X)}. (2.15)

The variance of the r.v. X is defined as

σ2 = Var(X) = E[{X − E(X)}2] = E(X2) − [E(X)]2, (2.16)

and its positive square root, σ, is called the standard deviation of X ( or the population standard
deviation or standard deviation of X). It has the following properties:

(i) Var(X) ≥ 0. (2.17)

(ii) Var(a + bX) = b2Var(X). (2.18)

(iii) If Var[g(X)] = 0, then g(X) = constant. (2.19)

The rth moment about the origin is defined as E(X r); the rth moment about the mean is defined
as E[(X − µ)r], r = 1, 2, .... Usually we are interested in at most the first four moments.
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2.3 Important discrete distributions

Here we review the common discrete distributions, nearly all of which have already been studied
at Level 1.

Consider a sequence of repeated independent trials where there are only two possible outcomes
for each trial, ‘success’ and ‘failure’, and the probabilities of success and failure, p and q =
1− p, remain the same throughout the trials (Bernoulli sequence). Then the following discrete
distributions are defined on such an experiment:

Binomial distribution

Let X be the number of successes in n trials, where n is fixed. Then

P(X = x) =

(

n

x

)

pxqn−x, x = 0, ..., n (2.20a)

and
E(X) = np, Var(X) = npq. (2.20b)

Geometric distribution

Let X be the number of trials required to obtain the first success. Then

P(X = x) = pqx−1, x = 1, 2, ... (2.21a)

and

E(X) =
1

p
, Var(X) =

q

p2
. (2.21b)

If on the other hand we define X to be the number of failures obtained before the first success
is obtained, X has the modified geometric distribution

P(X = x) = pqx, x = 0, 1, ... (2.22a)

and

E(X) =
1

p
− 1 =

q

p
, (2.22b)

the variance being unchanged.

Negative binomial distribution

Let X be the number of trials required to obtain r successes, where r is fixed. Then

P(X = x) =

(

x − 1

r − 1

)

prqx−r, x = r, r + 1, ... (2.23a)

and
E(X) =

r

p
, Var(X) =

rq

p2
. (2.23b)
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Example 2.1 The Banach Match Problem

A pipe-smoking mathematician carries two match-boxes, one in his left-hand pocket and the
other in his right-hand pocket: initially each box contains N matches. Each time the mathe-
matician requires a match he is equally likely to take it from either box. We ask: at the moment
when he first discovers one of the boxes to be empty, what is the probability that there are
exactly k matches in the other box, k = 0, 1, ..., N?

Solution Let A denote the event that the mathematician first discovers that the right-hand
box is empty and there are k matches in the left-hand box at that moment. Think of choosing
the right-hand pocket as a ‘success’ (p = 1

2
). Then A will occur if and only if exactly N − k

‘failures’ precede the (N + 1)th ‘success’, i.e. the (N + 1)th ‘success’ occurs at trial number
(2N − k + 1). Using (2.23a) with p = 1

2
, r = N + 1, x = 2N − k + 1, we deduce that

P(A) =

(

2N − k

N

)

(

1

2

)2N−k+1

.

Since there is an equal probability that it is the left-hand box that is first discovered to be
empty and there are k matches in the right-hand box at that moment, the required probability
is

2P(A) =

(

2N − k

N

)

(

1

2

)2N−k

. tu

Other common discrete distributions include:

Poisson distribution

A Poisson r.v. has

P(X = x) =
λx

x!
e−λ, x = 0, 1, ...; λ > 0, (2.24a)

and
E(X) = Var(X) = λ. (2.24b)

The Poisson distribution with λ = np provides a useful approximation to the binomial distri-
bution when n is large and p is small such that np ≤ 5.

Hypergeometric distribution

Suppose a population of N items consisting of N1 type 1 items and N2 = N −N1 type 2 items
is randomly sampled n times without replacement. Let X be the number of type 1 items in the
sample. Then

P(X = x) =

(N1

x

)( N2

n−x

)

(N
n

)
, (2.25a)

where 0 ≤ x ≤ N1, 0 ≤ n−x ≤ N2, 0 ≤ n ≤ N i.e. x = max(0, n−N2), ...,min(n,N1).
In practice, however, n is usually smaller than N1, N2, so that x = 0, ..., n. Also

E(X) =
nN1

N
, Var(X) =

nN1N2(N − n)

N2(N − 1)
. (2.25b)

When n is small compared with N1, N2, the hypergeometric distribution can (as expected) be

approximated by the binomial distribution with parameters n and p =
N1

N
, q =

N2

N
.
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Example 2.2 Estimating the Size of an Animal Population

The number of animals inhabiting a certain region (N , say) is unknown. To estimate N , an
ecologist catches m animals, marks them and then releases them. After giving the marked
animals time to disperse through the region, a second catch of n animals is carried out. Stating
any assumptions made, give the probability distribution of X, the number of marked animals
in the second catch. If in fact X = k, find the corresponding maximum likelihood estimate of
N , i.e. the value of N which maximises P(X = k).

Solution We assume that

(i) the number of animals in the region remains unchanged between the times of the first and
second catches;

(ii) each time an animal is caught, it is equally likely to be any one of the remaining uncaught
animals.

Then X is a hypergeometric r.v. with

P(X = i) =

(m
i

)(N−m
n−i

)

(N
n

)
, i = 0, 1, ..., n.

It is convenient to write P(X = i) ≡ pi(N). To find the (integer) value of N which maximises
pk(N), we observe that

pk(N)

pk(N − 1)
=

(N − m)(N − n)

N(N − m − n + k)

which is ≥ 1 iff N ≤
mn

k
. So the maximum likelihood estimate of N is

⌊

mn

k

⌋

.

(The same result is obtained if we suppose that the proportion of marked animals in the second
catch is approximately the same as the proportion in the region as a whole.) ♦

Uniform distribution

Here X takes any one of a finite set of values with equal probability, e.g.

P(X = x) =
1

N
for x = 1, 2, ..., N (2.26a)

with

E(X) =
1

2
(N + 1), Var(X) =

1

12
(N2 − 1). (2.26b)

Zeta (or Zipf) distribution

In this case

P(X = x) =
C

xα+1
, x = 1, 2, ..., α > 0 (2.27a)

with

C =

[

∞
∑

x=1

(

1

x

)α+1
]−1

= ζ(α + 1), (2.27b)

where ζ(s) is the Riemann zeta function.


