2.4 Bivariate distributions

2.4.1 Definitions

Let X and Y be discrete r.v.s defined on the same probability space $(\mathcal{S}, \mathcal{F}, \mathrm{P})$. Instead of treating them separately, it is often necessary to think of them acting together as a random vector (X, Y) taking values in \mathcal{R}^{2}. The joint probability function of (X, Y) is defined as

$$
\begin{equation*}
p_{X, Y}(x, y)=\mathrm{P}(\{E \in \mathcal{S}: X(E)=x \text { and } Y(E)=y\}) \tag{2.28}
\end{equation*}
$$

and is often written as

$$
\begin{equation*}
\mathrm{P}(X=x, Y=y) \quad\left(x=x_{1}, x_{2}, \ldots x_{M} ; y=y_{1}, y_{2}, . . y_{N}\right) \tag{2.29}
\end{equation*}
$$

where M, N may be finite or infinite. It satisfies the two conditions

$$
\begin{align*}
\mathrm{P}(X=x, Y=y) & \geq 0 \\
\sum_{x} \sum_{y} \mathrm{P}(X=x, Y=y) & =1 \tag{2.30}
\end{align*}
$$

Various other functions are related to $\mathrm{P}(X=x, Y=y)$.
The joint cumulative distribution function of (X, Y) is given by

$$
\begin{align*}
F(u, v) & =\mathrm{P}(X \leq u, Y \leq v), \quad-\infty<u, v \leq \infty \\
& =\sum_{x \leq u, y \leq v} \mathrm{P}(X=x, Y=y) \tag{2.31}
\end{align*}
$$

The marginal probability (mass) function of X is given by

$$
\begin{equation*}
\mathrm{P}\left(X=x_{i}\right)=\sum_{y} \mathrm{P}\left(X=x_{i}, Y=y\right), \quad i=1, \ldots M \tag{2.32}
\end{equation*}
$$

The marginal probability (mass) function of Y is given by

$$
\begin{equation*}
\mathrm{P}\left(Y=y_{j}\right)=\sum_{x} \mathrm{P}\left(X=x, Y=y_{j}\right), \quad j=1, \ldots N \tag{2.33}
\end{equation*}
$$

The conditional probability (mass) function of X given $Y=y_{j}$ is given by

$$
\begin{equation*}
\mathrm{P}\left(X=x_{i} \mid Y=y_{j}\right)=\frac{\mathrm{P}\left(X=x_{i}, Y=y_{j}\right)}{\mathrm{P}\left(Y=y_{j}\right)}, \quad i=1, \ldots M \tag{2.34}
\end{equation*}
$$

The conditional probability (mass) function of Y given $X=x_{i}$ is given by

$$
\begin{equation*}
\mathrm{P}\left(Y=y_{j} \mid X=x_{i}\right)=\frac{\mathrm{P}\left(X=x_{i}, Y=y_{j}\right)}{\mathrm{P}\left(X=x_{i}\right)}, \quad j=1, \ldots N \tag{2.35}
\end{equation*}
$$

Expectation

The expected value of a function $h(X, Y)$ of the discrete r.v.s (X, Y) can be found directly from the joint probability function of (X, Y) as follows:

$$
\begin{equation*}
\mathrm{E}[h(X, Y)]=\sum_{x} \sum_{y} h(x, y) \mathrm{P}(X=x, Y=y) \tag{2.36}
\end{equation*}
$$

provided the double series is absolutely convergent. This is the bivariate version of the 'law of the unconscious statistician' discussed earlier.

The covariance of X and Y is defined as

$$
\begin{align*}
\operatorname{Cov}(X, Y) & =\mathrm{E}[\{X-\mathrm{E}(X)\}\{Y-\mathrm{E}(Y)\}] \tag{2.37}\\
& =\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y) .
\end{align*}
$$

The correlation coefficient of X and Y is defined as

$$
\begin{equation*}
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}} \tag{2.38}
\end{equation*}
$$

2.4.2 Independence

In Chapter 1 the independence of events has been defined and discussed: now this concept is extended to random variables. The discrete random variables X and Y are independent if and only if the pair of events $\left\{E \in \mathcal{S}: X(E)=x_{i}\right\}$ and $\left\{E \in \mathcal{S}: Y(E)=y_{j}\right\}$ are independent for all x_{i}, y_{j}, and we write this condition as

$$
\begin{equation*}
\mathrm{P}\left(X=x_{i}, Y=y_{j}\right)=\mathrm{P}\left(X=x_{i}\right) \cdot \mathrm{P}\left(Y=y_{j}\right) \text { for all }\left(x_{i}, y_{j}\right) . \tag{2.39}
\end{equation*}
$$

It is easily proved that an equivalent statement is: X and Y are independent if and only if there exist functions $f(\cdot)$ and $g(\cdot)$ such that

$$
\begin{equation*}
p_{X, Y}(x, y)=\mathrm{P}(X=x, Y=y)=f(x) g(y) \text { for all } x, y \tag{2.40}
\end{equation*}
$$

Example 2.3

A biased coin yields 'heads' in a single toss with probability p. The coin is tossed a random number of times N, where $N \sim \operatorname{Poisson}(\lambda)$. Let X and Y denote the number of heads and tails obtained respectively. Show that X and Y are independent Poisson random variables.
Solution Conditioning on the value of $X+Y$, we have

$$
\begin{aligned}
\mathrm{P}(X=x, Y=y)= & \mathrm{P}(X=x, Y=y \mid X+Y=x+y) \mathrm{P}(X+Y=x+y) \\
& +\mathrm{P}(X=x, Y=y \mid X+Y \neq x+y) \mathrm{P}(X+Y \neq x+y) .
\end{aligned}
$$

The second conditional probability is clearly 0 , so

$$
\begin{aligned}
\mathrm{P}(X=x, Y=y) & =\mathrm{P}(X=x, Y=y \mid X+Y=x+y) \mathrm{P}(X+Y=x+y) \\
& =\binom{x+y}{x} p^{x} q^{y} \cdot \frac{\lambda^{x+y}}{(x+y)!} e^{-\lambda} \quad[\text { using }(2.201) \& N=X+Y] \\
& =\frac{(\lambda p)^{x}(\lambda q)^{y}}{x!y!} e^{-\lambda} .
\end{aligned}
$$

But

$$
\begin{aligned}
\mathrm{P}(X=x) & =\sum_{n \geq x} \mathrm{P}(X=x \mid N=n) \mathrm{P}(N=n) \\
& =\sum_{n \geq x}\binom{n}{x} p^{x} q^{n-x} \frac{\lambda^{n}}{n!} e^{-\lambda}=\frac{(\lambda p)^{x}}{x!} e^{-\lambda} \sum_{n \geq x} \frac{(\lambda q)^{n-x}}{(n-x)!} \\
& =\frac{(\lambda p)^{x}}{x!} e^{-\lambda} \cdot e^{\lambda q}=\frac{(\lambda p)^{x}}{x!} e^{-\lambda p} .
\end{aligned}
$$

Similarly

$$
\mathrm{P}(Y=y)=\frac{(\lambda q)^{y}}{y!} e^{-\lambda q}
$$

Then $\mathrm{P}(X=x, Y=y)=\mathrm{P}(X=x) \cdot \mathrm{P}(Y=y)$ for all (x, y), and it follows that X and Y are independent Poisson random variables (with parameters λp and λq respectively).

It can also be shown readily that if X and Y are independent, so too are the random variables $g(X)$ amd $h(Y)$, for any functions g and h : this result is used frequently in problem solving.

If X and Y are independent,

$$
\begin{align*}
\mathrm{E}(X Y) & =\sum_{x, y} x y \mathrm{P}(X=x, Y=y) \quad[(2.36)] \tag{2.36}\\
& =\sum_{x, y} x y \mathrm{P}(X=x) \mathrm{P}(Y=y) \quad[\text { independence, (2.39) }] \\
& =\sum_{x} x \mathrm{P}(X=x) \sum_{y} y \mathrm{P}(Y=y)
\end{align*}
$$

i.e., by (2.10),

$$
\begin{equation*}
\mathrm{E}(X Y)=\mathrm{E}(X) \mathrm{E}(Y) \quad \text { if } X, Y \text { are independent. } \tag{2.41}
\end{equation*}
$$

The converse of this result is false i.e. $\mathrm{E}(X Y)=\mathrm{E}(X)(\mathrm{E}(Y)$ does not imply that X and Y are independent.

It follows immediately that

$$
\begin{equation*}
\operatorname{Cov}(X, Y)=\rho(X, Y)=0 \quad \text { if } X, Y \text { are independent. } \tag{2.42}
\end{equation*}
$$

Once again, the converse is false.
A generalisation of the result for $\mathrm{E}(X Y)$ is: if X and Y are independent, then, for any functions g and h,

$$
\begin{equation*}
\mathrm{E}\{g(X) h(Y)\}=\mathrm{E}\{g(X)\} \mathrm{E}\{h(Y)\} \tag{2.43}
\end{equation*}
$$

2.4.3 Conditional expectation

Referring back to the definition of the conditional probability mass function of X, it is natural to define the conditional expectation (or conditional expected value) of X given $Y=y_{j}$ as

$$
\begin{align*}
\mathrm{E}\left(X \mid Y=y_{j}\right) & =\sum_{i} x_{i} \mathrm{P}\left(X=x_{i} \mid Y=y_{j}\right) \\
& =\sum_{i} x_{i} \mathrm{P}\left(X=x_{i}, Y=y_{j}\right) / \mathrm{P}\left(Y=y_{j}\right) \tag{2.44}
\end{align*}
$$

provided the series is absolutely convergent. This definition holds for all values of $y_{j}(j=1,2, \ldots$.$) , and is one value taken by the r.v. \mathrm{E}(X \mid Y)$. Since $\mathrm{E}(X \mid Y)$ is a function of Y, we can write down its mean using (2.14): thus

$$
\begin{align*}
\mathrm{E}[\mathrm{E}(X \mid Y)] & =\sum_{j} \mathrm{E}\left(X \mid Y=y_{j}\right) \cdot \mathrm{P}\left(Y=y_{j}\right) \\
& =\sum_{j} \sum_{i} x_{i} \mathrm{P}\left(X=x_{i} \mid Y=y_{j}\right) \mathrm{P}\left(Y=y_{j}\right) \tag{2.44}\\
& =\sum_{j} \sum_{i} x_{i} \frac{\mathrm{P}\left(X=x_{i}, Y=y_{j}\right)}{\mathrm{P}\left(Y=y_{j}\right)} \mathrm{P}\left(Y=y_{j}\right) \tag{2.34}\\
& =\sum_{j} \sum_{i} x_{i} \mathrm{P}\left(X=x_{i}, Y=y_{j}\right) \\
& =\sum_{i} x_{i} \sum_{j} \mathrm{P}\left(X=x_{i}, Y=y_{j}\right) \\
& =\sum_{i} x_{i} \mathrm{P}\left(X=x_{i}\right) \quad[(2.30 b)]
\end{align*}
$$

i.e.

$$
\begin{equation*}
\mathrm{E}[\mathrm{E}(X \mid Y)=\mathrm{E}(X) . \tag{2.45}
\end{equation*}
$$

This result is very useful in practice: it often enables us to compute expectations easily by first conditioning on some random variable Y and using

$$
\begin{equation*}
\mathrm{E}(X)=\sum_{j} \mathrm{E}\left(X \mid Y=y_{j}\right) \cdot \mathrm{P}\left(Y=y_{j}\right) \tag{2.46}
\end{equation*}
$$

(There are similar definitions and results for $\mathrm{E}\left(Y \mid X=x_{i}\right)$ and the r.v. $\mathrm{E}(Y \mid X)$.)
Example 2.4 (Ross)
A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel which takes him to safety after 2 hours of travel. The second door leads to a tunnel which returns him to the mine after 3 hours of travel. The third door leads to a tunnel which returns him to the mine after 5 hours. Assuming he is at all times equally likely to choose any of the doors, what is the expected length of time until the miner reaches safety?

Solution Let
X : time to reach safety (hours)
Y : door intially chosen (1,2 or 3)
Then

$$
\begin{aligned}
\mathrm{E}(X) & =\mathrm{E}(X \mid Y=1) \mathrm{P}(Y=1)+\mathrm{E}(X \mid Y=2) \mathrm{P}(Y=2)+\mathrm{E}(X \mid Y=3) \mathrm{P}(Y=3) \\
& =\frac{1}{3}\{\mathrm{E}(X \mid Y=1)+\mathrm{E}(X \mid Y=2)+\mathrm{E}(X \mid Y=3)\} .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \mathrm{E}(X \mid Y=1)=2 \\
& \mathrm{E}(X \mid Y=2)=3+\mathrm{E}(X) \\
& \mathrm{E}(X \mid Y=3)=5+\mathrm{E}(X) \quad \text { (why?) }
\end{aligned}
$$

So

$$
\mathrm{E}(X)=\frac{1}{3}\{2+3+\mathrm{E}(X)+5+\mathrm{E}(X)\} \quad \text { or } \mathrm{E}(X)=10
$$

It follows from the definitions that, if X and Y are independent r.v.s, then

$$
\begin{align*}
\mathrm{E}(X \mid Y) & =\mathrm{E}(X) \\
\text { and } \mathrm{E}(Y \mid X) & =\mathrm{E}(Y) \quad \text { (both constants). } \tag{2.47}
\end{align*}
$$

2.5 Transformations and Relations

In many situations we are interested in the probability distribution of some function of X and Y. The usual procedure is to attempt to express the relevant probabilities in terms of the joint probability function of (X, Y). Two examples illustrate this.

Example 2.5 (Discrete Convolution)

Suppose X and Y are independent count random variables. Find the probability distribution of the r.v. $Z=X+Y$. Hence show that the sum of two independent Poisson r.v.s is also Poisson distributed.

Solution The event ' $Z=z$ ' can be decomposed into the union of mutually exclusive events:

$$
(Z=z)=(X=0, Y=z) \cup(X=1, Y=z-1) \cup \cdots \cup(X=z, Y=0) \quad \text { for } z=0,1,2, \ldots
$$

Then we have $\mathrm{P}(Z=z)=\sum_{x=0}^{z} \mathrm{P}(X=x, Y=z-x)$ or, invoking independence [(2.39)],

$$
\begin{equation*}
\mathrm{P}(Z=z)=\sum_{x=0}^{z} \mathrm{P}(X=x) \cdot \mathrm{P}(Y=z-x) \tag{2.48}
\end{equation*}
$$

This summation is known as the (discrete) convolution of the distributions $p_{X}(x)$ and $p_{Y}(y)$.
Now let the independent r.v.s X and Y be such that $X \sim \operatorname{Poisson}\left(\lambda_{1}\right) ; \quad Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$ i.e.

$$
\mathrm{P}(X=x)=\frac{\lambda_{1}^{x} e^{-\lambda_{1}}}{x!}, \quad x>0 ; \quad \mathrm{P}(Y=y)=\frac{\lambda_{2}^{x} e^{-\lambda_{2}}}{y!}, \quad y>0
$$

Then, for $Z=X+Y$,

$$
\begin{aligned}
\mathrm{P}(Z=z) & =\sum_{x=0}^{z} \frac{\lambda_{1}^{x} e^{-\lambda_{1}}}{x!} \cdot \frac{\lambda_{2}{ }^{z-x} e^{-\lambda_{2}}}{(z-x)!} \\
& =\sum_{x=0}^{z} \frac{z!}{x!(z-x)!} \lambda_{1}{ }^{x} \lambda_{2}{ }^{z-x} \cdot \frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{z!} \\
& =\frac{\left(\lambda_{1}+\lambda_{2}\right)^{z}}{z!} e^{-\left(\lambda_{1}+\lambda_{2}\right)}, \quad z=0,1,2, \ldots
\end{aligned}
$$

i.e.

$$
Z \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)
$$

Example 2.6

Given count r.v.s (X, Y), obtain an expression for $\mathrm{P}(X<Y)$.
Solution Again, we decompose the event of interest into the union of mutually exclusive events:

$$
\begin{aligned}
(X<Y)= & (X=0, Y=1) \cup(X=0, Y=2) \cup \cdots \\
& \cup(X=1, Y=2) \cup(X=1, Y=3) \cup \cdots \\
& \cup(X=2, Y=3) \cup(X=2, Y=4) \cup \cdots \\
& \cdots \cdots
\end{aligned}
$$

So

$$
\mathrm{P}(X<Y)=\sum_{x=0}^{\infty} \sum_{y=x+1}^{\infty} \mathrm{P}(X=x, Y=y)
$$

2.6 Multivariate distributions

2.6.1 Definitions

The basic definitions for the multivariate situation - where we consider a p-vector of r.v.s $\left(X_{1}, X_{2}, \ldots, X_{p}\right)$ - are obvious generalisations of those for the bivariate case. Thus the joint probability function is

$$
\begin{align*}
& \mathrm{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{p}=x_{p}\right)= \tag{2.49}\\
& \mathrm{P}\left(\left\{E \in \mathcal{S}: X_{1}(E)=x_{1} \text { and } X_{2}(E)=x_{2} \text { and } \ldots \text { and } X_{p}(E)=x_{p}\right\}\right)
\end{align*}
$$

and has the properties

$$
\begin{align*}
\mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{p}=x_{p}\right) & \geq 0 \quad \text { for all }\left(x_{1}, \ldots, x_{p}\right) \\
\text { and } \sum_{x_{1}} \cdots \sum_{x_{p}} \mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{p}=x_{p}\right) & =1 . \tag{2.50}
\end{align*}
$$

The marginal probability function of X_{i} is given by

$$
\begin{equation*}
\mathrm{P}\left(X_{i}=x_{i}\right)=\sum_{x_{1}} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \sum_{x_{p}} \mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{p}=x_{p}\right) \quad \text { for all } x_{i} . \tag{2.51}
\end{equation*}
$$

The probability function of any subset of $\left(X_{1}, \ldots, X_{p}\right)$ is found in a similar way.
Conditional probability functions can be defined by analogy with the bivariate case, and expected values of functions of $\left(X_{1}, \ldots, X_{p}\right)$ are found as for bivariate functions.

2.6.2 Multinomial distribution

This is the most important discrete multivariate distribution, and is deduced by arguments familiar from the case of the binomial distribution. Consider n repeated independent trials, where each trial results in one of the outcomes E_{1}, \ldots, E_{k} with

$$
\mathrm{P}\left(E_{i} \text { occurs in a trial }\right)=p_{i}, \quad \sum_{i=1}^{k} p_{i}=1 .
$$

Let $X_{i}=$ number of times the outcome E_{i} occurs in the n trials.
Then the joint probability function of $\left(X_{1}, \ldots, X_{k}\right)$ is given by

$$
\begin{equation*}
\mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\frac{n!}{x_{1}!x_{2}!\ldots x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}} \tag{2.52a}
\end{equation*}
$$

where the x_{1}, \ldots, x_{k} are counts between 0 and n such that

$$
\begin{equation*}
\sum_{i=1}^{k} x_{i}=n \tag{2.52b}
\end{equation*}
$$

For consider the event

$$
\begin{array}{ccccc}
E_{1} \ldots . E_{1} & E_{2} \ldots . E_{2} & \ldots \ldots \ldots & E_{k} \ldots . E_{k} & \\
x_{1} & x_{2} & & x_{k} & \text { times }
\end{array}
$$

It has probability

$$
p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k}^{x_{k}}, \quad \sum_{i} x_{i}=n, \quad \sum_{i} p_{i}=1
$$

Any event with x_{1} outcomes E_{1}, x_{2} outcomes E_{2}, \ldots. and x_{k} outcomes E_{k} in a given order also has this probability. There are $\frac{n!}{x_{1}!\ldots x_{k}!}$ different arrangements of such a set of outcomes and these are mutually exclusive: the event $\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)$ is the union of these mutually exclusive arrangements. Hence the above result.

The marginal probability distribution of X_{i} is Binomial with parameters n and p_{i}, and hence

$$
\begin{align*}
\mathrm{E}\left(X_{i}\right) & =n p_{i} \tag{2.53}\\
\operatorname{Var}\left(X_{i}\right) & =n p_{i}\left(1-p_{i}\right)
\end{align*}
$$

Also, we shall prove later that

$$
\begin{equation*}
\operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}, \quad i \neq j \tag{2.54}
\end{equation*}
$$

2.6.3 Independence

For convenience, write $I=\{1, \ldots, p\}$ so that we are considering the r.v.s $\left\{X_{i}: i \in I\right\}$. These r.v.s are called independent if the events $\left\{X_{i}=x_{i}\right\}, i \in I$ are independent for all possible choices of the set $\left\{x_{i}: i \in I\right\}$ of values of the r.v.s. In other words, the r.v.s are independent if and only if

$$
\begin{equation*}
\mathrm{P}\left(X_{i}=x_{i} \text { for all } i \in J\right)=\prod_{i \in J} \mathrm{P}\left(X_{i}=x_{i}\right) \tag{2.55}
\end{equation*}
$$

for all subsets J of I and all sets $\left\{x_{i}: i \in I\right\}$.
Note that a set of r.v.s which are pairwise independent are not necessarily independent.

2.6.4 Linear combinations

Linear combinations of random variables occur frequently in probability analysis. The principal results are as follows:

$$
\begin{equation*}
\mathrm{E}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} \mathrm{E}\left(X_{i}\right) \tag{2.56}
\end{equation*}
$$

(whether or nor the r.v.s are independent);

$$
\begin{align*}
& \operatorname{Var}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \tag{2.57}\\
&=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right) \quad \text { if the r.v.s are independent } \\
& \operatorname{Cov}\left[\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{m} b_{j} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \tag{2.58}
\end{align*}
$$

where $\operatorname{Cov}\left(X_{i}, X_{i}\right)=\operatorname{Var}\left(X_{i}\right)$ by definition.

2.7 Indicator random variables

Some probability problems can be solved more easily by using indicator random variables, along with the above results concerning linear combinations.

An indicator random variable X for an event A takes the value 1 if A occurs and the value 0 if A does not occur. Thus we have:

$$
\begin{align*}
& \mathrm{P}(X=1)=\mathrm{P}(A) \\
& \mathrm{P}(X=0)=\mathrm{P}(\bar{A})=1-\mathrm{P}(A) \\
& \mathrm{E}(X)=1 \cdot \mathrm{P}(X=1)+0 \cdot \mathrm{P}(X=0)=\mathrm{P}(A) \tag{2.59}\\
& \mathrm{E}\left(X^{2}\right)=1^{2} \cdot \mathrm{P}(X=1)+0^{2} \cdot \mathrm{P}(X=0)=\mathrm{P}(A) \\
& \operatorname{Var}(X)=\mathrm{P}(A)-[\mathrm{P}(A)]^{2} .
\end{align*}
$$

Clearly $1-X$ is the indicator r.v. for the event \bar{A}.
Let Y be the indicator r.v. for the event B. Then the various combinations involving A and B have indicator r.v.s as follows:

Event	Indicator r.v.
$A \cap B$	$X Y$
$\bar{A} \cap \bar{B}$	$(1-X)(1-Y)$
$A \cup B$	$1-(1-X)(1-Y)$
$A \cup B(A, B$ mutually exclusive $)$	$X+Y$

EXAMPLES

Example 2.6

Derive the generalised addition law (1.16) for events $A_{1}, A_{2}, \ldots A_{n}$ using indicator r.v.s.
Solution Let X_{i} be the indicator r.v. for A_{i}. Then we deduce the following indicator r.v.s:

$$
\begin{aligned}
& 1-X_{i} \text { for } \\
& \bar{A}_{i} ; \\
&\left(1-X_{1}\right) \ldots\left(1-X_{n}\right) \text { for } \\
& \bar{A}_{1} \cap \ldots \cap \bar{A}_{n}=\overline{A_{1} \cup \ldots \cup A_{n}} \\
& 1-\left(1-X_{1}\right) \ldots\left(1-X_{n}\right) \text { for } \\
& A_{1} \cup \ldots \cup A_{n} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathrm{P}\left(A_{1} \cup \ldots . A_{n}\right) & =\mathrm{E}\left[1-\left\{1-\left(1-X_{1}\right) \ldots\left(1-X_{n}\right)\right\}\right] \\
& =\mathrm{E}\left[\sum_{i} X_{i}-\sum_{i<j} X_{i} X_{j}+\sum_{i<j<k} X_{i} X_{j} X_{k}-\ldots+(-1)^{n+1} X_{1} \ldots X_{n}\right] \\
& =\sum_{i} \mathrm{E}\left(X_{i}\right)-\sum_{i<j} \mathrm{E}\left(X_{i} X_{j}\right)+\ldots .+(-1)^{n+1} \mathrm{E}\left(X_{1} \ldots X_{n}\right) \\
& =\sum_{i} \mathrm{P}\left(A_{i}\right)-\sum_{i<j} \mathrm{P}\left(A_{i} \cap A_{j}\right)+\ldots .+(-1)^{n+1} \mathrm{P}\left(A_{1} \cap \ldots \cap A_{n}\right) .
\end{aligned}
$$

The last line follows because, for example,

$$
\mathrm{E}\left(X_{i} X_{j}\right)=1.1 . \mathrm{P}\left(X_{i}=1, X_{j}=1\right)+0=\mathrm{P}\left(A_{i} \cap A_{j}\right)
$$

Example 2.7 (Lift problem)

Use indicator r.v.s to solve the lift problem with 3 people and floors (Ex. 1.8).
Solution Let

$$
X= \begin{cases}1, & \text { if exactly one person gets off at each floor } \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
Y_{i}= \begin{cases}1, & \text { if no-one gets off at floor } i \\ 0, & \text { otherwise }\end{cases}
$$

Then $X=\left(1-Y_{1}\right)\left(1-Y_{2}\right)\left(1-Y_{3}\right) \quad$ and
P (one person gets off at each floor) $=\mathrm{P}(X=1)$

$$
\begin{aligned}
& =\mathrm{E}(X) \\
& =\mathrm{E}\left[1-\left\{Y_{1}+Y_{2}+Y_{3}\right\}+\left\{Y_{1} Y_{2}+Y_{1} Y_{3}+Y_{2} Y_{3}\right\}-Y_{1} Y_{2} Y_{3}\right] \\
& =1-p_{1}-p_{2}-p_{3}+p_{12}+p_{13}+p_{23}-p_{123}
\end{aligned}
$$

where

$$
\begin{aligned}
p_{i} & =\mathrm{P}\left(Y_{i}=1\right) & =\left(\frac{2}{3}\right)^{3}, & i=1,2,3 \\
p_{i j} & =\mathrm{P}\left(Y_{i}=1, Y_{j}=1\right) & & =\left(\frac{1}{3}\right)^{3},
\end{aligned} \quad i \neq j,
$$

So the required probability is

$$
1-3\left(\frac{2}{3}\right)^{3}+3\left(\frac{1}{3}\right)^{3}=\frac{2}{9}
$$

Example 2.8

Consider the generalisation of the tokens-in-cereal collecting problem (Ex. 1.2) to N different card types.
(a) Find the expected number of different types of cards that are contained in a collection of n cards.
(b) Find the expected number of cards a family needs to collect before obtaining a complete set of at least one of each type.
(c)Find the expected number of cards of a particular type which a family will have by the time a complete set has been collected.

Solution

(a) Let

$$
X=\text { number of different types in a collection of } n \text { cards }
$$

and let

$$
I_{i}=\left\{\begin{array}{ll}
1, & \text { if at least one type } i \text { card in collection } \\
0, & \text { otherwise. }
\end{array} \quad i=1, \ldots, n .\right.
$$

Then

$$
X=I_{1}+\ldots .+I_{N} .
$$

Now

$$
\begin{aligned}
\mathrm{E}\left(I_{i}\right) & =\mathrm{P}\left(I_{i}=1\right)=1-\mathrm{P}(\text { no type } i \text { cards in collection of } n) \\
& =1-\left(\frac{N-1}{N}\right)^{n}, \quad i=1, \ldots, N .
\end{aligned}
$$

So

$$
\mathrm{E}(X)=\sum_{i=1}^{N} \mathrm{E}\left(I_{i}\right)=N\left[1-\left(\frac{N-1}{N}\right)^{n}\right] .
$$

(b) Let

$$
X=\begin{aligned}
\text { number of cards collected } \\
\text { before a complete set is obtained, }
\end{aligned}
$$

and

$$
\begin{aligned}
Y_{i}= & \text { number of additional cards that need to be obtained } \\
& \text { after } i \text { distinct cards have been collected, in order } \\
& \text { to obtain another distinct type }(i=0, \ldots, N-1) .
\end{aligned}
$$

When i distinct cards have already been collected, a new card obtained will be of a distinct type with probability $(N-i) / N$. So Y_{i} is a geometric r.v. with parameter $\frac{(N-i)}{N}$, i.e.

$$
\mathrm{P}\left(Y_{i}=k\right)=\left(\frac{N-i}{N}\right)\left(\frac{i}{N}\right)^{k-1}, \quad k \geq 1
$$

Hence from (2.21b)

$$
\mathrm{E}\left(Y_{i}\right)=\frac{N}{N-i}
$$

Now

$$
X=Y_{0}+Y_{1}+\cdots+Y_{N-1}
$$

So

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{i=0}^{N-1} \mathrm{E}\left(Y_{i}\right)=1+\frac{N}{N-1}+\frac{N}{N-2}+\cdots+\frac{N}{1} \\
& =N\left(1+\cdots+\frac{1}{N-1}+\frac{1}{N}\right)
\end{aligned}
$$

(c) Let

$$
X_{i}=\text { number of cards of type } i \text { acquired. }
$$

Then

$$
\mathrm{E}(X)=\mathrm{E}\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{i=1}^{N} \mathrm{E}\left(X_{i}\right)
$$

By symmetry, $\mathrm{E}\left(X_{i}\right)$ will be the same for all i, so

$$
\mathrm{E}\left(X_{i}\right)=\frac{\mathrm{E}(X)}{N}=\left(1+\cdots+\frac{1}{N-1}+\frac{1}{N}\right)
$$

from part (b).

Example 2.9

Suppose that $\left(X_{1}, \ldots, X_{p}\right)$ has the multinomial distribution

$$
\mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\frac{n!}{x_{1}!x_{2}!\ldots x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}
$$

where $\sum_{i=1}^{k} x_{i}=n, \quad \sum_{i=1}^{k} p_{i}=1$. Show that

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}, \quad i \neq j
$$

Solution Consider the r th trial: let

$$
I_{r i}= \begin{cases}1, & \text { if } r \text { th trial has outcome } E_{i} \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\operatorname{Cov}\left(I_{r i}, I_{r j}\right)=\mathrm{E}\left(I_{r i} \cdot I_{r j}\right)-\mathrm{E}\left(I_{r i}\right) \cdot \mathrm{E}\left(I_{r j}\right)
$$

Now

$$
\begin{aligned}
\mathrm{E}\left(I_{r i} \cdot I_{r j}\right)= & 0.0 \mathrm{P}\left(I_{r i}=0, I_{r j}=0\right) \\
& +0.1 \mathrm{P}\left(I_{r i}=0, I_{r j}=1\right) \\
& +1.0 \mathrm{P}\left(I_{r i}=1, I_{r j}=0\right) \\
& +1.1 \mathrm{P}\left(I_{r i}=1, I_{r j}=1\right) \\
= & 0, \quad i \neq j \quad\left(\text { since } \mathrm{P}\left(I_{r i}=1, I_{r j}=1\right)=0 \text { when } i \neq j\right)
\end{aligned}
$$

So

$$
\operatorname{Cov}\left(I_{r i}, I_{r j}\right)=-\mathrm{E}\left(I_{r i}\right) \cdot \mathrm{E}\left(I_{r j}\right)=-p_{i} p_{j}, \quad i \neq j
$$

Also, from the independence of the trials,

$$
\operatorname{Cov}\left(I_{r i}, I_{s j}\right)=0 \quad \text { when } r \neq s
$$

Now the number of times that E_{i} occurs in the n trials is

$$
X_{i}=I_{1 i}+I_{2 i}+\cdots+I_{n i}
$$

So

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, X_{j}\right) & =\operatorname{Cov}\left(\sum_{r=1}^{n} I_{r i}, \sum_{s=1}^{n} I_{s j}\right) \\
& =\sum_{r=1}^{n} \sum_{s=1}^{n} \operatorname{Cov}\left(I_{r i}, I_{s j}\right) \\
& =\sum_{r=1}^{n} \operatorname{Cov}\left(I_{r i}, I_{r j}\right) \\
& =\sum_{r=1}^{n}\left(-p_{i} p_{j}\right) \\
& =-n p_{i} p_{j}, \quad i \neq j .
\end{aligned}
$$

(This negative correlation is not unexpected, for we anticipate that, when X_{i} is large, X_{j} will tend to be small).

