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2.4 Bivariate distributions

2.4.1 Definitions

Let X and Y be discrete r.v.s defined on the same probability space (S,F ,P). Instead of
treating them separately, it is often necessary to think of them acting together as a random
vector (X,Y ) taking values in R2. The joint probability function of (X,Y ) is defined as

pX,Y (x, y) = P({E ∈ S : X(E) = x and Y (E) = y}), (2.28)

and is often written as

P(X = x, Y = y) (x = x1, x2, ...xM ; y = y1, y2, ..yN ), (2.29)

where M,N may be finite or infinite. It satisfies the two conditions

P(X = x, Y = y) ≥ 0
∑

x

∑

y

P(X = x, Y = y) = 1. (2.30)

Various other functions are related to P(X = x, Y = y).

The joint cumulative distribution function of (X,Y ) is given by

F (u, v) = P(X ≤ u, Y ≤ v), −∞ < u, v ≤ ∞,

=
∑

x≤u,y≤v

P(X = x, Y = y). (2.31)

The marginal probability (mass) function of X is given by

P(X = xi) =
∑

y

P(X = xi, Y = y), i = 1, ...M. (2.32)

The marginal probability (mass) function of Y is given by

P(Y = yj) =
∑

x

P(X = x, Y = yj), j = 1, ...N. (2.33)

The conditional probability (mass) function of X given Y = yj is given by

P(X = xi|Y = yj) =
P(X = xi, Y = yj)

P(Y = yj)
, i = 1, ...M. (2.34)

The conditional probability (mass) function of Y given X = xi is given by

P(Y = yj|X = xi) =
P(X = xi, Y = yj)

P(X = xi)
, j = 1, ...N. (2.35)

Expectation

The expected value of a function h(X,Y ) of the discrete r.v.s (X,Y ) can be found directly from
the joint probability function of (X,Y ) as follows:

E[h(X,Y )] =
∑

x

∑

y

h(x, y)P(X = x, Y = y) (2.36)

provided the double series is absolutely convergent. This is the bivariate version of the ‘law of
the unconscious statistician’ discussed earlier.
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The covariance of X and Y is defined as

Cov(X,Y ) = E[{X − E(X)}{Y − E(Y )}]
= E(XY ) − E(X)E(Y ).

(2.37)

The correlation coefficient of X and Y is defined as

ρ(X,Y ) =
Cov(X,Y )

√

Var(X).Var(Y )
. (2.38)

2.4.2 Independence

In Chapter 1 the independence of events has been defined and discussed: now this concept is
extended to random variables. The discrete random variables X and Y are independent if and
only if the pair of events {E ∈ S : X(E) = xi} and {E ∈ S : Y (E) = yj} are independent for
all xi, yj , and we write this condition as

P(X = xi, Y = yj) = P(X = xi).P(Y = yj) for all (xi, yj). (2.39)

It is easily proved that an equivalent statement is: X and Y are independent if and only if
there exist functions f(·) and g(·) such that

pX,Y (x, y) = P(X = x, Y = y) = f(x)g(y) for all x, y. (2.40)

Example 2.3

A biased coin yields ‘heads’ in a single toss with probability p. The coin is tossed a random
number of times N , where N ∼ Poisson(λ). Let X and Y denote the number of heads and tails
obtained respectively. Show that X and Y are independent Poisson random variables.

Solution Conditioning on the value of X + Y , we have

P(X = x, Y = y) = P(X = x, Y = y|X + Y = x + y)P(X + Y = x + y)
+P(X = x, Y = y|X + Y 6= x + y)P(X + Y 6= x + y).

The second conditional probability is clearly 0, so

P(X = x, Y = y) = P(X = x, Y = y|X + Y = x + y)P(X + Y = x + y)

=
(x+y

x

)

pxqy.
λx+y

(x + y)!
e−λ [using (2.201) & N = X + Y ]

=
(λp)x(λq)y

x!y!
e−λ.

But
P(X = x) =

∑

n≥x
P(X = x|N = n)P(N = n)

=
∑

n≥x

(n
x

)

pxqn−xλn

n!
e−λ =

(λp)x

x!
e−λ

∑

n≥x

(λq)n−x

(n − x)!

=
(λp)x

x!
e−λ.eλq =

(λp)x

x!
e−λp.

Similarly

P(Y = y) =
(λq)y

y!
e−λq.

Then P(X = x, Y = y) = P(X = x).P(Y = y) for all (x, y), and it follows that X and Y are
independent Poisson random variables (with parameters λp and λq respectively). ♦
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It can also be shown readily that if X and Y are independent, so too are the random variables
g(X) amd h(Y ), for any functions g and h: this result is used frequently in problem solving.

If X and Y are independent,

E(XY ) =
∑

x,y

xyP(X = x, Y = y) [(2.36)]

=
∑

x,y

xyP(X = x)P(Y = y) [independence, (2.39)]

=
∑

x

xP(X = x)
∑

y

yP(Y = y)

i.e., by (2.10),

E(XY ) = E(X)E(Y ) if X,Y are independent. (2.41)

The converse of this result is false i.e. E(XY ) = E(X)(E(Y ) does not imply that X and Y are
independent.

It follows immediately that

Cov(X,Y ) = ρ(X,Y ) = 0 if X,Y are independent. (2.42)

Once again, the converse is false.

A generalisation of the result for E(XY ) is: if X and Y are independent, then, for any functions
g and h,

E{g(X)h(Y )} = E{g(X)}E{h(Y )}. (2.43)

2.4.3 Conditional expectation

Referring back to the definition of the conditional probability mass function of X, it is natural
to define the conditional expectation (or conditional expected value) of X given Y = yj as

E(X|Y = yj) =
∑

i

xiP(X = xi|Y = yj)

=
∑

i

xiP(X = xi, Y = yj)/P(Y = yj)
(2.44)

provided the series is absolutely convergent. This definition holds for all values of
yj(j = 1, 2, ....), and is one value taken by the r.v. E(X|Y ). Since E(X|Y ) is a function of Y ,
we can write down its mean using (2.14): thus

E[E(X|Y )] =
∑

j

E(X|Y = yj).P(Y = yj)

=
∑

j

∑

i

xiP(X = xi|Y = yj)P(Y = yj) [(2.44)]

=
∑

j

∑

i

xi

P(X = xi, Y = yj)

P(Y = yj)
P(Y = yj) [(2.34)]

=
∑

j

∑

i

xiP(X = xi, Y = yj)

=
∑

i

xi

∑

j

P(X = xi, Y = yj)

=
∑

i

xiP(X = xi) [(2.30b)]

i.e.



page 31 110SOR201(2002)

E[E(X|Y ) = E(X). (2.45)

This result is very useful in practice: it often enables us to compute expectations easily by first
conditioning on some random variable Y and using

E(X) =
∑

j

E(X|Y = yj).P(Y = yj). (2.46)

(There are similar definitions and results for E(Y |X = xi) and the r.v. E(Y |X).)

Example 2.4 (Ross)

A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel which takes
him to safety after 2 hours of travel. The second door leads to a tunnel which returns him to
the mine after 3 hours of travel. The third door leads to a tunnel which returns him to the
mine after 5 hours. Assuming he is at all times equally likely to choose any of the doors, what
is the expected length of time until the miner reaches safety?

Solution Let

X: time to reach safety (hours)

Y : door intially chosen (1,2 or 3)

Then

E(X) = E(X|Y = 1)P(Y = 1) + E(X|Y = 2)P(Y = 2) + E(X|Y = 3)P(Y = 3)
= 1

3{E(X|Y = 1) + E(X|Y = 2) + E(X|Y = 3)}.

Now
E(X|Y = 1) = 2
E(X|Y = 2) = 3 + E(X)
E(X|Y = 3) = 5 + E(X) (why?)

So

E(X) =
1

3
{2 + 3 + E(X) + 5 + E(X)} or E(X) = 10. tu

It follows from the definitions that, if X and Y are independent r.v.s, then

E(X|Y ) = E(X)
and E(Y |X) = E(Y ) (both constants).

(2.47)

2.5 Transformations and Relations

In many situations we are interested in the probability distribution of some function of X and
Y . The usual procedure is to attempt to express the relevant probabilities in terms of the joint
probability function of (X,Y ). Two examples illustrate this.

Example 2.5 (Discrete Convolution)

Suppose X and Y are independent count random variables. Find the probability distribution
of the r.v. Z = X + Y . Hence show that the sum of two independent Poisson r.v.s is also
Poisson distributed.

Solution The event ‘Z = z’ can be decomposed into the union of mutually exclusive events:

(Z = z) = (X = 0, Y = z) ∪ (X = 1, Y = z − 1) ∪ · · · ∪ (X = z, Y = 0) for z = 0, 1, 2, ...

Then we have P(Z = z) =
z

∑

x=0

P(X = x, Y = z − x) or, invoking independence [(2.39)],
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P(Z = z) =
z

∑

x=0

P(X = x).P(Y = z − x). (2.48)

This summation is known as the (discrete) convolution of the distributions pX(x) and pY (y).

Now let the independent r.v.s X and Y be such that X ∼ Poisson(λ1); Y ∼ Poisson(λ2)
i.e.

P(X = x) =
λ1

xe−λ1

x!
, x > 0; P(Y = y) =

λ2
xe−λ2

y!
, y > 0.

Then, for Z = X + Y ,

P(Z = z) =
z

∑

x=0

λ1
xe−λ1

x!
.
λ2

z−xe−λ2

(z − x)!

=
z

∑

x=0

z!

x!(z − x)!
λ1

xλ2
z−x.

e−(λ1+λ2)

z!

=
(λ1 + λ2)

z

z!
e−(λ1+λ2), z = 0, 1, 2, ...

i.e.
Z ∼ Poisson(λ1 + λ2). tu

Example 2.6

Given count r.v.s (X,Y ), obtain an expression for P(X < Y ).

Solution Again, we decompose the event of interest into the union of mutually exclusive
events:

(X < Y ) = (X = 0, Y = 1) ∪ (X = 0, Y = 2) ∪ · · ·
∪(X = 1, Y = 2) ∪ (X = 1, Y = 3) ∪ · · ·
∪(X = 2, Y = 3) ∪ (X = 2, Y = 4) ∪ · · ·
· · · · · ·

= ∪
x=0,...,∞;y=x+1,...,∞

(X = x, Y = y)

So

P(X < Y ) =
∞
∑

x=0

∞
∑

y=x+1

P(X = x, Y = y). tu
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2.6 Multivariate distributions

2.6.1 Definitions

The basic definitions for the multivariate situation – where we consider a p-vector of r.v.s
(X1, X2, ..., Xp) – are obvious generalisations of those for the bivariate case. Thus the joint
probability function is

P(X1 = x1, X2 = x2, ..., Xp = xp) =
P({E ∈ S : X1(E) = x1 and X2(E) = x2 and ... and Xp(E) = xp})

(2.49)

and has the properties

P(X1 = x1, ..., Xp = xp) ≥ 0 for all (x1, ..., xp)

and
∑

x1

· · ·
∑

xp

P(X1 = x1, ..., Xp = xp) = 1. (2.50)

The marginal probability function of Xi is given by

P(Xi = xi) =
∑

x1

· · ·
∑

xi−1

∑

xi+1

∑

xp

P(X1 = x1, ..., Xp = xp) for all xi. (2.51)

The probability function of any subset of (X1, ..., Xp) is found in a similar way.

Conditional probability functions can be defined by analogy with the bivariate case, and
expected values of functions of (X1, ..., Xp) are found as for bivariate functions.

2.6.2 Multinomial distribution

This is the most important discrete multivariate distribution, and is deduced by arguments
familiar from the case of the binomial distribution. Consider n repeated independent trials,
where each trial results in one of the outcomes E1, ..., Ek with

P(Ei occurs in a trial) = pi,
k

∑

i=1

pi = 1.

Let Xi = number of times the outcome Ei occurs in the n trials.

Then the joint probability function of (X1, ..., Xk) is given by

P(X1 = x1, ..., Xk = xk) =
n!

x1!x2!...xk!
p1

x1 ...pk
xk , (2.52a)

where the x1, ..., xk are counts between 0 and n such that

k
∑

i=1

xi = n. (2.52b)

For consider the event

E1....E1 E2....E2 ......... Ek....Ek

x1 x2 xk times

It has probability

p1
x1p2

x2 ....pk
xk ,

∑

i

xi = n,
∑

i

pi = 1.
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Any event with x1 outcomes E1, x2 outcomes E2,..... and xk outcomes Ek in a given order also
has this probability. There are n!

x1!...xk! different arrangements of such a set of outcomes and
these are mutually exclusive: the event (X1 = x1, ..., Xk = xk) is the union of these mutually
exclusive arrangements. Hence the above result.

The marginal probability distribution of Xi is Binomial with parameters n and pi, and hence

E(Xi) = npi

Var(Xi) = npi(1 − pi).
(2.53)

Also, we shall prove later that

Cov(Xi, Xj) = −npipj, i 6= j. (2.54)

2.6.3 Independence

For convenience, write I = {1, ..., p} so that we are considering the r.v.s {Xi : i ∈ I}. These
r.v.s are called independent if the events {Xi = xi}, i ∈ I are independent for all possible choices
of the set {xi : i ∈ I} of values of the r.v.s. In other words, the r.v.s are independent if and
only if

P(Xi = xi for all i ∈ J) =
∏

i∈J

P(Xi = xi) (2.55)

for all subsets J of I and all sets {xi : i ∈ I}.

Note that a set of r.v.s which are pairwise independent are not necessarily independent.

2.6.4 Linear combinations

Linear combinations of random variables occur frequently in probability analysis. The principal
results are as follows:

E

[

n
∑

i=1

aiXi

]

=
n

∑

i=1

aiE(Xi) (2.56)

(whether or nor the r.v.s are independent);

Var

[

n
∑

i=1

aiXi

]

=
n

∑

i=1

a2
i Var(Xi) + 2

∑

i<j

aiajCov(Xi, Xj)

=
n

∑

i=1

a2
i Var(Xi) if the r.v.s are independent;

(2.57)

Cov





n
∑

i=1

aiXi,
m

∑

j=1

bjXj



 =
n

∑

i=1

m
∑

j=1

aibjCov(Xi, Xj) (2.58)

where Cov(Xi, Xi) = Var(Xi) by definition.
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2.7 Indicator random variables

Some probability problems can be solved more easily by using indicator random variables, along
with the above results concerning linear combinations.

An indicator random variable X for an event A takes the value 1 if A occurs and the value 0 if
A does not occur. Thus we have:

P(X = 1) = P(A)
P(X = 0) = P(A) = 1 − P(A)
E(X) = 1.P(X = 1) + 0.P(X = 0) = P(A)
E(X2) = 12.P(X = 1) + 02.P(X = 0) = P(A)
Var(X) = P(A) − [P(A)]2.

(2.59)

Clearly 1 − X is the indicator r.v. for the event A.

Let Y be the indicator r.v. for the event B. Then the various combinations involving A and B
have indicator r.v.s as follows:

Event Indicator r.v.

A ∩ B XY
A ∩ B (1 − X)(1 − Y )
A ∪ B 1 − (1 − X)(1 − Y )

A ∪ B (A,B mutually exclusive) X + Y

EXAMPLES

Example 2.6

Derive the generalised addition law (1.16) for events A1, A2, ...An using indicator r.v.s.

Solution Let Xi be the indicator r.v. for Ai. Then we deduce the following indicator r.v.s:

1 − Xi for Ai;
(1 − X1)....(1 − Xn) for A1 ∩ .... ∩ An = A1 ∪ .... ∪ An

1 − (1 − X1)....(1 − Xn) for A1 ∪ .... ∪ An.

Hence

P(A1 ∪ ....An) = E[1 − {1 − (1 − X1)....(1 − Xn)}]

= E[
∑

i

Xi−
∑

i<j

XiXj+
∑

i<j<k

XiXjXk − .... + (−1)n+1X1....Xn]

=
∑

i

E(Xi)−
∑

i<j

E(XiXj) + .... + (−1)n+1E(X1....Xn)

=
∑

i

P(Ai)−
∑

i<j

P(Ai ∩ Aj) + .... + (−1)n+1P(A1 ∩ .... ∩ An).

The last line follows because, for example,

E(XiXj) = 1.1.P(Xi = 1, Xj = 1) + 0 = P(Ai ∩ Aj) tu
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Example 2.7 (Lift problem)

Use indicator r.v.s to solve the lift problem with 3 people and floors (Ex. 1.8).

Solution Let

X =

{

1, if exactly one person gets off at each floor
0, otherwise

and

Yi =

{

1, if no-one gets off at floor i
0, otherwise.

Then X = (1 − Y1)(1 − Y2)(1 − Y3) and

P(one person gets off at each floor) = P(X = 1)
= E(X)
= E[1 − {Y1 + Y2 + Y3} + {Y1Y2 + Y1Y3 + Y2Y3} − Y1Y2Y3]
= 1 − p1 − p2 − p3 + p12 + p13 + p23 − p123

where

pi = P(Yi = 1) =
(

2
3

)3
, i = 1, 2, 3

pij = P(Yi = 1, Yj = 1) =
(

1
3

)3
, i 6= j

p123 = P(Y1 = 1, Y2 = 1, Y3 = 1) = 0

So the required probability is

1 − 3

(

2

3

)3

+ 3

(

1

3

)3

=
2

9
. tu

Example 2.8

Consider the generalisation of the tokens-in-cereal collecting problem (Ex. 1.2) to N different
card types.
(a) Find the expected number of different types of cards that are contained in a collection of n
cards.
(b) Find the expected number of cards a family needs to collect before obtaining a complete
set of at least one of each type.
(c)Find the expected number of cards of a particular type which a family will have by the time
a complete set has been collected.

Solution

(a) Let
X = number of different types in a collection of n cards

and let

Ii =

{

1, if at least one type i card in collection
0, otherwise.

i = 1, ..., n.

Then
X = I1 + .... + IN .

Now
E(Ii) = P(Ii = 1) = 1 − P(no type i cards in collection of n)

= 1 −

(

N − 1

N

)n

, i = 1, ..., N.

So

E(X) =
N

∑

i=1

E(Ii) = N

[

1 −

(

N − 1

N

)n]

.
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(b) Let
X = number of cards collected

before a complete set is obtained,

and
Yi = number of additional cards that need to be obtained

after i distinct cards have been collected, in order
to obtain another distinct type (i = 0, ..., N − 1).

When i distinct cards have already been collected, a new card obtained will be of a distinct

type with probability (N − i)/N . So Yi is a geometric r.v. with parameter
(N − i)

N
, i.e.

P(Yi = k) =

(

N − i

N

) (

i

N

)k−1

, k ≥ 1,

Hence from (2.21b)

E(Yi) =
N

N − i
.

Now
X = Y0 + Y1 + · · · + YN−1.

So

E(X) =
N−1
∑

i=0

E(Yi) = 1 +
N

N − 1
+

N

N − 2
+ · · · +

N

1

= N

(

1 + · · · +
1

N − 1
+

1

N

)

.

(c) Let
Xi = number of cards of type i acquired.

Then

E(X) = E

[

N
∑

i=1

Xi

]

=
N

∑

i=1

E(Xi).

By symmetry, E(Xi) will be the same for all i, so

E(Xi) =
E(X)

N
=

(

1 + · · · +
1

N − 1
+

1

N

)

from part (b). ♦
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Example 2.9

Suppose that (X1, ..., Xp) has the multinomial distribution

P(X1 = x1, ..., Xk = xk) =
n!

x1!x2!...xk!
p1

x1 ...pk
xk ,

where
k

∑

i=1

xi = n,
k

∑

i=1

pi = 1. Show that

Cov(Xi, Xj) = −npipj, i 6= j.

Solution Consider the rth trial: let

Iri =

{

1, if rth trial has outcome Ei

0, otherwise.

Then
Cov(Iri, Irj) = E(Iri.Irj) − E(Iri).E(Irj).

Now
E(Iri.Irj) = 0.0P(Iri = 0, Irj = 0)

+0.1P(Iri = 0, Irj = 1)
+1.0P(Iri = 1, Irj = 0)
+1.1P(Iri = 1, Irj = 1)

= 0, i 6= j (since P(Iri = 1, Irj = 1) = 0 when i 6= j).

So
Cov(Iri, Irj) = −E(Iri).E(Irj) = −pipj, i 6= j.

Also, from the independence of the trials,

Cov(Iri, Isj) = 0 when r 6= s.

Now the number of times that Ei occurs in the n trials is

Xi = I1i + I2i + · · · + Ini.

So

Cov(Xi, Xj) = Cov(
n
∑

r=1
Iri,

n
∑

s=1
Isj)

=
n
∑

r=1

n
∑

s=1
Cov(Iri, Isj)

=
n
∑

r=1
Cov(Iri, Irj)

=
n
∑

r=1
(−pipj)

= −npipj, i 6= j.

(This negative correlation is not unexpected, for we anticipate that, when Xi is large, Xj will
tend to be small). ♦


