page 39 110SOR201(2002)

Chapter 3

Probability Generating Functions

3.1 Preamble: Generating Functions

Generating functions are widely used in mathematics, and play an important role in probability
theory. Consider a sequence {a; : i =0, 1,2, ...} of real numbers: the numbers can be ‘parcelled
up’ in several kinds of ‘generating functions’. The ‘ordinary’ generating function of the sequence
is defined as

G(s) :Z a;s’
1=0

for those values of the parameter s for which the sum converges. For a given sequence, there
exists a radius of convergence R(> 0) such that the sum converges absolutely if |s| < R and
diverges if |s| > R. G(s) may be differentiated or integrated term by term any number of times
when |s| < R.

For many well-defined sequences, G(s) can be written in closed form, and the individual numbers
in the sequence can be recovered either by series expansion or by taking derivatives.

3.2 Definitions and Properties

Consider a count r.v. X, i.e. a discrete r.v. taking non-negative values. Write
pr =P(X = k), k=0,1,2,... (3.1)

(if X takes a finite number of values, we simply attach zero probabilities to those values which
cannot occur). The probability generating function (PGF) of X is defined as

Gx(s) :i prst = B(s%). (3.2)
k=0

Note that Gx (1) = 1, so the series converges absolutely for |s| < 1. Also Gx(0) = po.
For some of the more common distributions, the PGFs are as follows:

(i) Constant r.v. — ifp.=1, pr=0, k# ¢, then

Gx(s) = E(s™) = s (3.3)
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(i)  Bernoullirv. — ifpy=p, po=1-p=gq, pr=0, k#O0orl,then

Gx(s) = E(s™) = q + ps. (3.4)
(iii)  Geometric r.v. — if pp =p¢"~', k=1,2,...; ¢=1—p, then
Gx(s) = N ﬁsqs if |s| < g7t (see HW Sheet 4.). (3.5)
(iv)  Binomialr.v. — if X ~ Bin(n,p), then
Gx(s) = (¢g+ps)", (g=1-p) (see HW Sheet 4.). (3.6)

(v)  Poissonr.v. — if X ~ Poisson(\), then

o0

1
Gx(s) = =AFe sk = AsD), (3.7)
k!
k=0
(vi)  Negative binomial r.v. — if X ~ NegBin(n,p), then
Gx(s) :i B 1) prghngh = (AY if |s|] < ¢ land p+q=1 (38)
X = \n—1 1—gs ' '

Uniqueness Theorem

If X and Y have PGFs Gx and Gy respectively, then

Gx(s) = Gy(s) for all s (a)

if P(X=k) = P(Y =k fork=0,1,. (b)

i.e. if and only if X and Y have the same probability distribution.

Proof We need only prove that (a) implies (b). The radii of convergence of Gx and Gy
are > 1, so they have unique power series expansions about the origin:

Gx(s) = i sFP(X = k)
k=0

Gy(s) = Z sFP(Y = k).
k=0

If Gx = Gy, these two power series have identical coefficients. &
ps

Ezample: If X has PGF
(1—gs)

with ¢ = 1 — p, then we can conclude that
X ~ Geometric(p).

Given a function A(s) which is known to be a PGF of a count r.v. X, we can obtain

pr = P(X = k)

either by expanding A(s) in a power series in s and setting
pi. = coefficient of sk

or by differentiating A(s) k times with respect to s and setting s = 0.
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We can extend the definition of PGF to functions of X. The PGF of Y = H(X) is
Gy (s) = Gy (s) = B (s70) =37 P(X = k)sH®). (3.9)
k

If H is fairly simple, it may be possible to express Gy (s) in terms of Gx(s).
Example: Let Y =a+ bX. Then

Gy(s) = E(SY) - E(Sa-i-bX)
= SaE[(Sb)X] — San(sb). (3.10)

3.3 Moments

Theorem

Let X be a count r.v. and Ggp(l) the rth derivative of its PGF Gx(s) at s = 1. Then

GV (1) = E[X(X —1)..(X — 7 +1)] (3.11)
Proof (informal)
s = (Ox(s)
[z

= Y pek(k—1)..(k —r+1)skT
k

T

(assuming the interchange of and Z is justified). This series is convergent for |s| < 1, so

57"

k
GV =EX(X —1)..(X —r+1), r>L 0
In particular:
GY (1) (or Gx(1)) = B(X) (3.12)
and
GR(1) (or G%(1) = BIX(X —1)]
= E(X?) - E(X)
= Var(X) + [E(X)]2 — E(X)

2
Var(X) =GR (1) - [6¥ )]+ 6P ). (3.13)
Ezample:  If X ~ Poisson(\), then

Gx(s) = eob);
Ggp(s) = AeMs—D

s0 B(X) =GP (1) = Ae® = A,
Gg?)(s) —  A2eAs-D)

S0 Var(X) = A2 = A2+ A=\
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3.4 Sums of independent random variables

Theorem

Let X and Y be independent count r.v.s with PGFs Gx(s) and Gy (s) respectively, and let
Z =X+Y. Then

Gz(s) = Gx+y(8) = Gx(S)Gy(S). (3.14)
Proof
Gz(s) = E(s7) =E(s*)
= E(s¥)E(sY) (independence)
= Gx(S)Gy(S)
¢
Corollary

If Xy,...,X,, are independent count r.v.s with PGFs Gx, (s), ..., Gx, (s) respectively (and n is a
known integer), then

GX1+___+X"(S) = GXI(S)-mGXn(S)- (3.15)

Example 3.1
Find the distribution of the sum of n independent r.v.s X;, i =1,...n, where X; ~ Poisson(}\;).

Solution
G, (s) = MOV,

So .
GX14Xot1X,(8) = H ehi(s=1)
T A (5-1).

This is the PGF of a Poisson r.v., i.e.

n

Zn: X; ~ Poisson(>_ A;). (3.16)

i=1 i=1

Example 3.2

In a sequence of n independent Bernoulli trials. Let

I 1, if the ith trial yields a success (probability p)
* 10, if the ith trial yields a failure (probability ¢ = 1 — p).

n
Let X :Z I; = number of successes in n trials. What is the probability distribution of X?
i=1

Solution Since the trials are independent, the r.v.s I1,...I, are independent. So
Gx(s) = GllGlg---Gln(5)~

But Gy,(s) =q¢+ps, i=1,..n.So

Gt =t =3 (1) e

=0
Then
P(X =x) = coefficient of s* in Gx(s)
= ("M)p "7, x=0,..,n

T

ie. X ~ Bin(n,p). &
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3.5 Sum of a random number of independent r.v.s

Theorem

Let N, X1, X, ... be independent count r.v.s. If the {X;} are identically distributed, each with
PGF Gx, then

Svn=X1+---+Xn (317&)
has PGF

GSN = GN (Gx(s)) . (3.17())

(Note: We adopt the convention that X; +---+ Xy = 0 for N = 0.) This is an example of the
process known as compounding with respect to a parameter.

Proof We have

Gsy(s) = E (SSN)
= i E (SSN|N = n) P(N =n) (conditioning on V)

n=0
= Y E(s%)P(N =n)
n=0

= D Gxy4ix, (8)P(N =1n)
n=0
= Z [Gx(s)]"P(N =n) (using Corollary in previous section)

n=0

= Gn(Gx(s)) by definition of G .

¢
Corollaries
1. E(Sy) = E(N).E(X). (3.18)
Proof p p
T Gsx()] = = [GN(Gx(9))
dGn(u) du B
0 ds where u = Gx(s).
Setting s = 1, (so that u = Gx (1) = 1), we get
B(Sy) = |GV (D] . [¢P ()] = B(V).EX). 0
Similarly it can be deduced that
2. Var(Sy) = E(N)Var(X) + Var(N) [E(X)]?. (3.19)

(prove!).
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Example 3.3 The Poisson Hen

A hen lays N eggs, where N ~ Poisson()). Each egg hatches with probability p, independently
of the other eggs. Find the probability distribution of the number of chicks, Z.

Solution We have
Z =X+ -+ Xn,

where X1, ... are independent Bernoulli r.v.s with parameter p. Then
Gn(s) =7V, Gx(s) = q+ps.

So
Gz(s) = GN(GX(S)) _ 6)\p(371)

— the PGF of a Poisson r.v., i.e.  Z ~ Poisson(\p). %

3.6 *Using GFs to solve recurrence relations

[NOTE: Not required for examination purposes.|

Instead of appealing to the theory of difference relations when attempting to solve the recurrence
relations which arise in the course of solving problems by conditioning, one can often convert
the recurrence relation into a linear differential equation for a generating function, to be solved
subject to appropriate boundary conditions.

Example 3.4  The Matching Problem (yet again).

At the end of Chapter 1 [Example (1.10)], the recurrence relation

n—1 1
Pn—1+ Epnf% n>3

DPn =
n

was derived for the probability p,, that no matches occur in an n-card matching problem. Solve
this using an appropriate generating function.
Solution  Multiply through by ns”~! and sum over all suitable values of n to obtain

[e.9]

00 00
Z nsn_lpn =S Z (n— 1)3n_2pn—1 +s Z 3n_2pn—2-
n=3 n=3 n=3

Introducing the GF
G(s) :Z Pns”
n=1

(N.B.: this is not a PGF, since {p,, : n > 1} is not a probability distribution), we can rewrite

this as
G'(s) =p1 —2p2s = s[G'(s) — p1] + sG(s)
ie. (1—2s)G'(s) = sG(s)+s (since p1 = 0,p2 = 3).

This first order differential equation now has to be solved subject to the boundary condition
G(0) =0.
The result is
G(s)=(1—s)te® 1.

Now expand G(s) as a power series in s, and extract the coefficient of s™: this yields

—1 -t (=)
pn:1+(1!)+---((n_)1)!+(n!) ,  n>1

— the result obtained previously. &
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3.7 Branching Processes

3.7.1 Definitions

Consider a hypothetical organism which lives for exactly one time unit and then dies in the
process of giving birth to a family of similar organisms. We assume that:

(i) the family sizes are independent r.v.s, each taking the values 0,1,2,...;

(ii) the family sizes are identically distributed r.v.s, the number of ‘children’ in a family, C,
having the distribution

P(C=k)=pp, k=0,1,2, .. (3.20)

The evolution of the total population as time proceeds is termed a branching process: this
provides a simple model for bacterial growth, spread of family names, etc.

Let
X, = number of organisms born at time n

(i.e., the size of the nth generation). (3.21)

The evolution of the population is described by the sequence of r.v.s Xg, X1, Xo, ... (an example
of a stochastic process — of which more later). We assume that Xy = 1, i.e. we start with
precisely one organism.

A typical example can be shown as a family tree:

0 Xo=1

1 Xi1=3
Generation

2 Xo=6

3 X3=9

We can use PGF's to investigate this process.

3.7.2 Evolution of the population

Let G(s) be the PGF of C:

G(s) :i P(C = k)s", (3.22)
k=0
and Gy, (s) the PGF of X,,:
Gn(s) :Z P(X, = z)s". (3.23)
=0

Now Go(s) = s, since P(Xp =1) = 1;P(Xo =) =0 for x # 1, and G1(s) = G(s). Also

Xn = Cl + CQ +---+ CXn,p (324)

where C; is the size of the family produced by the ith member of the (n — 1)th generation.
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So, since X, is the sum of a random number of independent and identically distributed (i.i.d.)
r.v.s, we have

Gn(s) = Gn-1(G(9)) forn =2,3, ... (3.25)

and this is also true for n = 1. Iterating this result, we have

Gn(s) = Gn-1(G(9))
= Gn72(G(G(S)))

= G(G(G(....(8)....))), n=0,1,2,..

i.e., G, is the nth iterate of G.

- B(X.) = G()
= G,1(G)GE'(1)
= G, (HG'(1) [since G(1) = 1]
E(X,) = E(Xn_1)u (3.26)

where p = E(C) is the mean family size. Hence

E(Xn) = pEX,-1)

= [PE(X,-2)
— E(X) = pn
It follows that
0, ifpu<l
E(X,) — <1, if u=1 (critical value) (3.27)
oo, if p>1.
It can be shown similarly that
no?, ifu=1
n
Var(X,,) = UQM,HM —117 i £ 1 (3.28)
ow—

Example 3.5

Investigate a branching process in which C has the modified geometric distribution

i = pq~, k=0,1,2,..; 0<p=1—¢q<1,with p# q [N.B]
Solution The PGF of C' is
- p
GS: kSk:— if8<71.
(s) gzopq T |s| <q

We now need to solve the functional equations G, (s) = G,_1(G(s)).
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First, if |s| <1,

p (¢ —p)
Grls) = CGls) = 1Z o5 (@ —p) —qsa—p)

(remember we have assumed that p # ¢). Then

Ga(s) = G(G(s)) = — L
11— qs
p(1 —gs)
1—qp—gs
» (qu— pg) —gqs(qg—p)
(¢* —p®) —gs(¢* = p?)

We therefore conjecture that

(qn _ pn) _ qs(qnfl _ pnfl)
(¢! —p"th) — gs(q” — p)

Gn(s) = forn=1,2,... and |s| <1,

and this result can be proved by induction on n.

We could derive the entire probability distribution of X,, by expanding the r.h.s. as a power
series in s, but the result is rather complicated. In particular, however,

q" —p"
P(Xn, =0)=GR(0) = PW
N il
- MnJrl -1’

where 1 = ¢/p is the mean family size. It follows that ultimate extinction is certain if pu < 1

and less than certain if ;4 > 1. Separate consideration of the case p = ¢ = % (see homework)

shows that ultimate extinction is also certain when p = 1. &

We now proceed to show that these conclusions are valid for all family size distributions.

3.7.3 The Probability of Extinction

The probability that the process is extinct by the nth generation is

en = P(X, = 0). (3.29)

Now e, < 1, and e, < e,41 (since X,, = 0 implies that X, ;1 = 0) - i.e. {e,} is a bounded
monotonic sequence. So

e=lim e, (3.30)

n—oo

exists and is called the probability of ultimate extinction.
Theorem 1
e is the smallest non-negative root of the equation x = G(z).

Proof Note that e, = P(X,, =0) = G,,(0). Now

Gn(s) = Gn-1(G(3))

I
Q
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Set s = 0. Then
en = Gp(0) = G(en-1), n=12..

with boundary condition eg = 0. In the limit n — co we have
e =G(e).

Now let  be any non-negative root of the equation z = G(z). G is non-decreasing on the
interval [0, 1] (since it has non-negative coefficients), and so

e = Gleo) =G(0) < Gn) =5

es = G(e1) <G(n)=n [using previous line]
and by induction
en <1, n=12,
So
e=lim e, <n.
n—oo
It follows that e is the smallest non-negative root. &

Theorem 2
e =1if and only if u < 1.
[Note: we rule out the special case p; = 1;p, = 0 for k # 1, when g = 1 but e = 0]
Proof We can suppose that pg > 0 (since otherwise e = 0 and g > 1). Now on the interval
[0,1], G is
(i) continuous (since radius of convergence > 1);

(ii) non-decreasing (since G'(z) =3 kppz*~! > 0);
k

(iii) convex (since G”(z) =X k(k — 1)prpzk=2 > 0).
k

It follows that in [0, 1] the line y = z has either 1 or 2 intersections with the curve y = G(x),as
shown below:

A
y A y
1 . R S .
i ) ;
Y=t i |
y=G(2) i Y=z i
€ F-=-= : :
€ 1 x 1 x
(a) (b)

The curve y = G(x) and the line y = z, in the two cases when
(a) G'(1)>1 and (b) G'(1) < 1.

Since G'(1) = p, it follows that

e=1 ifand only if p <1. O
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Example 3.6

Find the probability of ultimate extinction when C' has the modified geometric distribution
e = pq*, k=0,1,2,.; 0<p=1—¢g<1

(the case p = ¢ is now permitted - cf. Example 3.5).

Solution The PGF of C is

p —

and e is the smallest non-negative root of

G(z) LE——

1o qx
The roots are
1+£(2p—1)
2(1-p)
So . Lo )
ifp<s (e p=g/p>1), e=p/e(=p"");
ifp>1 (Le. p<1), e=1.
— in agreement with our earlier discussion in Example 3.5. &

[Note: in the above discussion, the continuity of probability measures (see Notes below eqn.
(1.10)) has been invoked more than once without comment.]



