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Chapter 4

Markov Chains

4.1 Introduction and Definitions

Consider a sequence of consecutive times ( or trials or stages): n = 0, 1, 2, ... Suppose that at
each time a probabilistic experiment is performed, the outcome of which determines the state
of the system at that time. For convenience, denote (or label) the states of the system by
{0, 1, 2, ...}, a discrete (finite or countably infinite) state space: at each time these states are
mutually exclusive and exhaustive.

Denote the event ‘the system is in state k at time n’ by Xn = k. For a given value of n, Xn is
a random variable and has a probability distribution

{P(Xn = k) : k = 0, 1, 2, ...}

– termed the absolute probability distribution at time n. We refer to the sequence {Xn} as a
discrete-time stochastic process.

Example Consider a sequence of independent Bernoulli trials, each with the same
probability of success. Let Xn be the number of successes obtained after n trials (n = 1, 2, ...).
We might find

Trial n 1 2 3 4 5 6 7 8 ...
Outcome S S S F S S F F ...
Xn 1 2 3 3 4 5 5 5 ...

(Here we ignore n = 0 or define X0 = 0). This is a particular realization of the stochastic
process {Xn}. We know that P(Xn = k) is binomial.

The distinguishing features of a stochastic process {Xn} are the relationships between X0, X1, X2, ...
Suppose we have observed the system at times 0, 1, ..., n− 1 and we wish to make a probability
statement about the state of the system at time n.

State

Time 0 1 2 · · · n − 1 n

i0 i1 i2 · · · in−1 ?

known

The most general model has the state of the system at time n being dependent on the entire
past history of the system. We would then be interested in conditional probabilities

P(Xn = in|X0 = i0, X1 = i1, ..., Xn−1 = in−1).
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The simplest model assumes that the states at different times are independent events, so that

P(Xn = in|X0 = i0, X1 = i1, ..., Xn−1 = in−1) = P(Xn = in), n = 0, 1, 2, ... : i0 = 0, 1, 2, ..., etc.

The next simplest (Markov) model introduces the simplest form of dependence.

Definition A sequence of r.v.s X0, X1, X2, ... is said to be a (discrete) Markov chain if

P(Xn = j|X0 = i0, X1 = i1, ..., Xn−1 = i) = P(Xn = j|Xn−1 = i)
for all possible n, i, j, i0, ..., in−2.

(4.1)

Hence in a Markov chain we do not require knowledge of what happened at times 0, 1, ..., (n−2)
but only what happened at time (n − 1) in order to make a conditional probability statement
about the state of the system at time n. We describe the system as making a transition from
state i to state j at time n if Xn−1 = i and Xn = j with (one-step) transition probability
P(Xn = j|Xn−1 = i).

We shall only consider systems for which the transition probabilities are independent of time,
so that

P(Xn = j|Xn−1 = i) = pij for n ≥ 1 and all i, j. (4.2)

This is the stationarity assumption and {Xn : n = 0, 1, ...} is then termed a (time)-homogeneous
Markov chain.

The transition probabilities {pij} form the transition probability matrix P :

P =















p00 p01 p02 .....
p10 p11 p12 .....
p20 p21 p22 .....
... ... ... .....
... ... ... .....















.

The {pij} have the properties

pij ≥ 0, all i, j

and
∑

all j

pij = 1, all i (4.3)

(note that i → i transitions are possible). Such a matrix is termed a stochastic matrix.

It is often convenient to show P on a state (or transition) diagram: each vertex (or node) in
the diagram corresponds to a state and each arrow to a non-zero pij. For example,

P =





0.2 0.3 0.5
0 0.4 0.6

0.5 0.1 0.4





is represented by

0 1 2

0.3 0.6

0.1

0.5

0.4

0.2 0.4

0.4
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Knowledge of P and the initial distribution {P(X0 = k), k = 0, 1, 2, ...} enables us, at least in
theory, to calculate all probabilities of interest, e.g. absolute probabilities at time n,

P(Xn = k), k = 0, 1, 2, ...

and conditional probabilities (or m-step transition probabilities)

P(Xm+n = j|Xn = i), m ≥ 2.

Notes:

(i) Some systems may be more appropriately defined for n = 1, 2, ... and/or a state space
which is a subset of {0, 1, 2, ...}: the above discussion is readily modified to take account
of such variations.

(ii) If the system is known to be in state l at time 0, the initial distribution is

P(X0 = l) = 1
P(X0 = k) = 0, for k 6= l.

4.2 Some simple examples

Example 4.1 An occupancy problem.

Balls are distributed, one after the other, at random among 4 cells. Let Xn be the number of
empty cells remaining after the nth ball has been distributed.

The stages are : n = 1, 2, 3, ...

The state space is: {0, 1, 2, 3}.

The possible transitions are:

Transition Conditional
Xn−1 → Xn Probability

0 0 1

1 0 1
4

1 3
4

2 1 2
4

2 2
4

3 2 3
4

3 1
4

Other transitions are impossible (i.e. have zero probabilities).
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The probability distribution over states at stage n can be found from a knowledge of the state
at stage (n − 1), the information from earlier stages not being required. Hence {Xn} is a
Markov chain. Furthermore, the transition probabilities are not functions of n, so the chain is
homogeneous. The transition probability matrix is

P =









1 0 0 0
1
4

3
4 0 0

0 2
4

2
4 0

0 0 3
4

1
4









and the transition diagram is

0 1 2 3
1

4

1

2

3

4

1
1

4

1

2

1

4

♦

Example 4.2 Random walk with absorbing barriers.

A random walk is the path traced out by the motion of a particle which takes repeatedly a step
of one unit in some direction, the direction being randomly chosen.

Consider a one-dimensional random walk on the x-axis, where there are absorbing barriers at
x = 0 and x = M (a positive integer), with

P(particle moves one unit to the right) = p
P(particle moves one unit to the left) = 1 − p = q,

– except that if the particle is at x = 0 or x = M it stays there.

The steps or times are: n = 0, 1, 2, ...

Let Xn = position of particle after step (or at time) n.

The state space is: {0, 1, 2, ...,M}.

The transition probabilities are homogeneous and given by:

pi,i+1 = p, pi,i−1 = q; i = 1, 2, ...,M − 1
p00 = 1, pM,M = 1,

all other pij being zero.

{Xn} is a homogeneous Markov chain with

P =



























1 0 0 . . . . . 0
q 0 p . . . . . 0
0 q 0 p . . . . 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 . . . 0 q 0 p
0 . . . 0 0 0 1
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and the transition diagram is

0 1 2 M-1 M

q

p

q

p

q

p

q

p

1 1

♦

Example 4.3 Discrete-time queue

Customers arrive for service and take their place in a waiting line. During each time period
a single customer is served, provided there is at least one customer waiting. During a service
period new customers may arrive: the number of customers arriving in a time period is denoted
by Y , with probability distribution

P(Y = k) = ak, k = 0, 1, 2, ...

We assume that the numbers of arrivals in different periods are independent.

Here the times (each marking the end of its respective period) are: 0,1,2,...

Let Xn = number of customers waiting at time n.

The state space is: {0, 1, 2, ...}

The situation at time n can be pictured as follows:

Xn−1 = i ≥ 1

or Xn−1 = 0

n− 1

Xn = i− 1 + k = j

Xn = k

n

time

k arrivals in (n− 1, n],
prob. ak : k = 0, 1, ...

Xn is a homogeneous Markov chain (why?) with

P =























a0 a1 a2 a3 . . . .
a0 a1 a2 a3 . . . .
0 a0 a1 a2 . . . .
0 0 a0 a1 . . . .
. . . .
. . . .
. . . .























.

♦
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4.3 Calculation of probabilities

The absolute probabilities at time n can be calculated from those at time (n − 1) by invoking
the law of total probability. Conditioning on the state at time n − 1, we have:

P(Xn = j) =
∑

i

P(Xn = j|Xn−1 = i)P(Xn−1 = i)

=
∑

i

pijP(Xn−1 = i)

(since {Xn−1 = i : i = 0, 1, 2, ...} are mutually exclusive and exhaustive events).

In matrix notation:

p(n) = p(n−1)P , n ≥ 1 (4.4)

where
p(n) = (P(Xn = 0),P(Xn = 1), ...)

(row vector). Repeated application of (4.4) gives

p(n) = p(r)P n−r, 0 ≤ r ≤ n − 1 (4.5)

and in particular

p(n) = p(0)P n (4.6)

i.e.

P(Xn = j) =
∑

i

p
(n)
ij P(X0 = i) (4.7)

where p
(n)
ij denotes the (i, j) element of P n.

To obtain the conditional probabilities (or n-step transition probabilities), we condition on the
initial state:

P(Xn = j) =
∑

i

P(Xn = j|X0 = i)P(X0 = i). (4.8)

Then, comparing with (4.7), we deduce that

P(Xn = j|X0 = i) = p
(n)
ij . (4.9)

Also, because the Markov chain is homogeneous,

P(Xr+n = j|Xr = i) = p
(n)
ij .

So
P(Xt = j|Xs = i) = p

(t−s)
ij , t > s. (4.10)

The main labour in actual calculations is the evaluation of P n. If the elements of P are
numerical, P n may be computed by a suitable numerical method when the number of states is
finite: if they are algebraic, there are special methods for some forms of P .
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4.4 Classification of States

[Note: this is an extensive subject, and only a limited account is given here.]

Suppose the system is in state k at time n = 0. Let

fkk = P(Xn = k for some n ≥ 1|X0 = k), (4.11)

i.e. fkk is the probability that the system returns at some time to the state k.

The state k is called persistent or recurrent if fkk = 1, i.e. a return to k is certain. Otherwise
(fkk < 1) the state k is called transient (there is a positive probability that k is never re-entered).

If pkk = 1, state k is termed an absorbing state.

The state k is periodic with period tk > 1 if

p
(n)
kk > 0 when n is a multiple of tk

and p
(n)
kk = 0 otherwise.

Thus tk = gcd{n : p
(n)
kk > 0}: e.g. if p

(n)
kk > 0 only for n = 4, 8, 12, .. , then tk = 4.

State k is termed aperiodic if no such tk > 1 exists.

State j is accessible (or reachable) from state i (i → j) if p
(n)
ij > 0 for some n > 0.

If i → j and j → i, then states i and j are said to communicate (i ↔ j).

It can be shown that if i ↔ j then states i and j

(i) are both transient or both recurrent;

(ii) have the same period.

A set C of states is called irreducible if i ↔ j for all i, j ∈ C, so all the states in an irreducible
set have the same period and are either all transient or all recurrent.

A set C of states is said to be closed if no state outside C is accessible from any state in C, i.e.

pij = 0 for all i ∈ C, j 6∈ C.

(Thus, an absorbing state is a closed set with just one state.)

It can be shown that the entire state space can be uniquely partitioned as follows:

T ∪ C1 ∪ C2 ∪ · · · (4.12)

where T is the set of transient states and C1, C2, ... are irreducible closed sets of recurrent states
(some of the Ci may be absorbing states).

Quite often, the entire state space is irreducible, so the terms irreducible, aperiodic etc. can be
applied to the Markov chain as a whole. An irreducible chain contains at most one closed set of
states. In a finite chain, it is impossible for all states to be transient: if the chain is irreducible,
the states are recurrent.
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Let’s consider some examples.

Example 4.4 (i) State space S = {0, 1, 2}, with

P =





0 1
2

1
2

1
2 0 1

2
1
2

1
2 0



 .

The possible direct transitions are: 0 → 1, 2; 1 → 0, 2; 2 → 0, 1. So i ↔ j for all i, j ∈ S.
S is the only closed set, and the Markov chain is irreducible, which in turn implies that all 3
states are recurrent.

0

1

0

2

2

0

1

. . . . .

Also p00 = 0, p
(2)
00 > 0, p

(3)
00 > 0, ...., p

(n)
00 > 0.

So state 0 is aperiodic, which implies that all states are aperiodic.

(ii) State space S = {0, 1, 2, 3}, with

P =









0 0 1
2

1
2

1 0 0 0
0 1 0 0
0 1 0 0









.

The possible direct transitions are: 0 → 2, 3 : 1 → 0 : 2 → 1 : 3 → 1, so again i ↔ j
for all i, j ∈ S. S is the only closed set, the Markov chain is irreducible, and all 4 states are
recurrent.

0

2

3

1 0 . . . . .

Also p00 = 0, p
(2)
00 = 0, p

(3)
00 = 1 > 0....

Thus state 0 is periodic with period t0 = 3, and so all states have period 3.

(iii) State space S = {0, 1, 2, 3, 4}, with

P =















1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2

1
2 0

0 0 1
2

1
2 0

1
4

1
4 0 0 1

2















.

The possible direct transitions are: 0 → 0, 1; 1 → 0, 1; 2 → 2, 3; 3 → 2, 3; 4 → 0, 1, 4.
We conclude that {0, 1} is a closed set, irreducible and aperiodic, and its states are recurrent;
similarly for {2, 3}: state 4 is transient and aperiodic. Thus S = T ∪ C1 ∪ C2, where

T = {4}, C1 = {0, 1}, C2 = {2, 3}.

♦
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4.5 The Limiting Distribution

Markov’s Theorem

Consider a finite, aperiodic, irreducible Markov chain with states 0, 1, ...,M . Then

p
(n)
ij → πj as n → ∞, for all i, j; (4.13a)

or

P n →









π0 π1 .. .. .. πM

π0 π1 .. .. .. πM

.. .. .. .. .. ..
π0 π1 .. .. .. πM









as n → ∞. (4.13b)

The limiting probabilities {πj : j = 0, ...,M} are the unique solution of the equations

πj =
M
∑

i=0

πipij , j = 0, ...,M (4.14a)

satisfying the normalisation condition

M
∑

i=0

πi = 1. (4.14b)

The equations (4.14a) may be written compactly as

π = πP , (4.15)

where
π = (π0, π1, ..., πM ).

Also
p(n) = p(0)P n → π as n → ∞. (4.16)

Example 4.5

Consider the Markov chain (i) in Example 4.4 above. Since it is finite, aperiodic and irreducible,
there is a unique limiting distribution π which satisfies π = πP , i.e.

π0 = π0p00 + π1p10 + π2p20, i.e. π0 = 1
2π1 + 1

2π2

π1 = π0p01 + π1p11 + π2p21, i.e. π1 = 1
2π0 + 1

2π2

π2 = π0p02 + π1p12 + π2p22, i.e. π2 = 1
2π0 + 1

2π1

together with the normalisation condition

π0 + π1 + π2 = 1

The best general approach to solving such equations is to set one πi = 1, deduce the other
values and then normalise at the end: note that one of the equations in (4.14a) is redundant
and can be used as a check at the end. So here, set π0 = 1: then the first two equations in
(4.14a) yield π1 = π2 = 1. Since

∑

i πi = 3, normalisation yields

π0 = π1 = π2 =
1

3
.

♦
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4.6 Absorption in a finite Markov chain

Consider a finite Markov chain consisting of a set T of transient states and a set A of absorbing
states (termed an absorbing Markov chain). Let Ak denote the event of absorption in state k
and fik the probability of Ak when starting from the transient state i.

T

A

�

i

j

� k

pik

pij

�

fjk

Conditioning on the first transition (first step analysis) as indicated on the diagram, and using
the law of total probability, we have

P(Ak|X0 = i) =
∑

j∈A∪T

P(Ak|X0 = i,X1 = j)P(X1 = j|X0 = i)

= 1.P(X1 = k|X0 = i)+
∑

j∈T

P(Ak|X1 = j)P(X1 = j|X0 = i),

i.e.

fik = pik+
∑

j∈T

pijfjk. (4.17)

Also, let TA denote the time to absorption (in any k ∈ A), and let µi be the mean time to
absorption starting from state i. Then, again conditioning on the first transition, we obtain

µi = E(TA|X0 = i) =
∑

j∈A∪T

E(TA|X0 = i,X1 = j)P(X1 = j|X0 = i)

=
∑

j∈A

1.pij+
∑

j∈T

E(TA|X1 = j)pij

=
∑

j∈A

pij+
∑

j∈T

{1 + E(TA|X0 = j)}pij ,

i.e.

µi = 1+
∑

j∈T

pijµj . (4.18)

(Note that in both (4.17) and (4.18) the summation
∑

j∈T includes j = i.)
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4.6.1 Absorbing random walk and Gambler’s Ruin

Consider the random walk with absorbing barriers (at 0,M) introduced in Example 4.2 above.
The states {1, ...,M − 1} are transient. Then

fiM = piM+
∑

j∈T

pijfjM , i = 1, ...,M − 1

i.e.

f1M = pf2M

fiM = pi,i−1fi−1,M + pi,i+1fi+1,M = qfi−1,M + pfi+1,M , i = 2, ...,M − 2
fM−1,M = p + qfM−2,M

For convenience, define f0M = 0, fMM = 1. Then

fiM = qfi−1,M + pfi+1,M , i = 1, ...,M − 1. (4.19)

If we define
diM = fiM − fi−1,M , i = 1, ...,M (4.20)

these difference equations can be written as simple 1-step recursions:

pdi+1,M = qdiM , i = 1, ...,M − 1. (4.21)

It follows that
diM = (q/p)i−1d1M , i = 1, ...,M. (4.22)

Now
i
∑

j=1

djM = (f1M − f0M ) + (f2M − f1M ) + · · · + (fiM − fi−1,M )

= fiM − f0M

= fiM .

so

fiM =
i
∑

j=1

(q/p)j−1d1M

= {1 + (q/p) + (q/p)2 + · · · + (q/p)i−1}f1M

=











1 − (q/p)i

1 − (q/p)
f1M , if p 6= 1

2

if1M , if p = 1
2

.

Using the fact that fMM = 1, we deduce that

f1M =















1 − (q/p)

1 − (q/p)M
, if p 6= 1

2

1

M
, if p = 1

2

,

and so

fiM =















1 − (q/p)i

1 − (q/p)M
, if p 6= 1

2

i

M
, if p = 1

2

. (4.23)

By a similar argument (or appealing to symmetry):

fi0 =















1 − (p/q)M−i

1 − (p/q)M
, if q 6= 1

2

M − i

M
, if q = 1

2

. (4.24)
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We deduce that
fi0 + fiM = 1

i.e. absorption at either 0 or M is certain to occur sooner or later.

Note that, as M → ∞,

fiM →

{

1 − (q/p)i, if p > 1
2

0, if p ≤ 1
2

:

fi0 →

{

(q/p)i, if p > 1
2

1, if p ≤ 1
2

.

(4.25)

Similarly we have
µi = 1 + pµi+1 + qµi−1, 1 ≤ i ≤ M − 1 (4.26)

with µ0 = µM = 0.

The solution is

µi =











1

p − q

(

M
1 − (q/p)i

1 − (q/p)M
− i

)

if p 6= 1
2

i(M − i) if p = 1
2

. (4.27)

We have in fact solved the famous Gambler’s Ruin problem. Two players, A and B, start with
£a and £(M − a) respectively (so that their total capital is £M . A coin is flipped repeatedly,
giving heads with probability p and tails with probability q = 1 − p. Each time ‘heads’ occurs,
B gives £1 to A, otherwise A gives £1 to B. The game continues until one or other player runs
out of money. After each flip the state of the system is A’s current capital, and it is clear that
this executes a random walk precisely as discussed above. Then

(i) faM (fa0) is the probability that A (B) wins:

(ii) µa is the expected number of flips of the coin before one of the players becomes bankrupt
and the game ends.

From the result (4.25) above, we see that if a gambler is playing against an infinitely rich
adversary, then if p > 1

2 there is a positive probability that the gambler’s fortune will increase
indefinitely, while if p ≤ 1

2 the gambler is certain to go broke sooner or later.


