Chapter 5

Continuous Random Variables

5.1 Basic Results

5.1.1 Definitions: the c.d.f. and p.d.f.

Our previous definition of a discrete random variable was rather restrictive. A broader definition is as follows:

A random variable X defined on the probability space $(\mathcal{S}, \mathcal{F}, \mathrm{P})$ is a mapping of \mathcal{S} into the set \mathcal{R} of real numbers such that, if B_{x} denotes the subset of outcomes in \mathcal{S} which are mapped onto the set $(-\infty, x]$, then

$$
B_{x} \in \mathcal{F} \quad \text { for all } x \in \mathcal{R} .
$$

We write

$$
\mathrm{P}(X \leq x)=\mathrm{P}\left(B_{x}\right) .
$$

We note that a discrete r.v. satisfies this definition.
Discrete r.v.s are generally studied through their probability functions; r.v.s in the broader sense are studied through their cumulative distribution functions. The cumulative distribution function (c.d.f.) F_{X} of a r.v. X is the function

$$
\begin{equation*}
F_{X}(x)=\mathrm{P}(X \leq x), \quad-\infty<x<\infty . \tag{5.1}
\end{equation*}
$$

As with the probability function, the suffix ' X ' may be dropped when there is no ambiguity. The c.d.f. has the following properties:
(i) $F(x) \leq F(y)$ if $x \leq y, \quad$ i.e. $F($.$) is monotonic non-decreasing;$
(ii) $F(-\infty)=0, \quad F(+\infty)=1$;
(iii) F is continuous from the right, i.e.

$$
F(x+h) \rightarrow F(x) \quad \text { as } h \rightarrow 0^{+} ;
$$

(iv) $\mathrm{P}(a<X \leq b)=F(b)-F(a)$.

For a discrete r.v., the c.d.f. is a step-function, i.e. at certain points it is discontinuous (from the left). So it is natural to develop a theory for r.v.s with continuous c.d.f.s. However, it is sufficient for practical purposes to consider c.d.f.s which are also reasonably smooth.

A r.v. X defined on $(\mathcal{S}, \mathcal{F}, \mathrm{P})$ is said to be continuous if
(i) its c.d.f. $F(x),-\infty<x<\infty$, is a continuous function;
(ii) there exists a non-negative function $f(x)$ such that

$$
\begin{equation*}
F(x)=\int_{-\infty}^{x} f(t) d t, \quad-\infty<x<\infty \tag{5.2}
\end{equation*}
$$

An alternative form of the second condition is:
(ii*) whose derivative $\frac{d F(x)}{d x}=f(x)$ exists and is continuous except possibly at a finite number of points.

The function $f(x),-\infty<x<\infty$, is called the probability density function (p.d.f.) of the r.v. X.

Theorem If X is a continuous r.v.,

$$
\begin{equation*}
\mathrm{P}(X=x)=0 \quad \text { for all } \mathrm{x} \tag{5.3}
\end{equation*}
$$

Proof For any r.v. X with c.d.f. F,

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} F(x+h) & =F(x)=\mathrm{P}(X \leq x) ; \text { and } \\
\lim _{h \rightarrow 0^{+}} F(x-h) & =\mathrm{P}(X<x), \quad \text { for all } x
\end{aligned}
$$

If X is continuous, $F(x)$ is a continuous function of x, i.e.

$$
\lim _{h \rightarrow 0^{+}} F(x-h)=\lim _{h \rightarrow 0^{+}} F(x+h)
$$

i.e.

$$
\mathrm{P}(X<x)=\mathrm{P}(X \leq x)=\mathrm{P}(X<x)+\mathrm{P}(X=x)
$$

i.e.

$$
\mathrm{P}(X=x)=0 \quad \text { for all } x
$$

For any meaningful statement about probabilities we must consider X lying in an interval or intervals. Probability is represented as an area under the curve of the p.d.f. $f(x)$.

$$
\mathrm{P}\left(x_{0} \leq X \leq x_{0}+\delta x_{0}\right)=\int_{x_{0}}^{x_{0}+\delta x_{0}} \approx f\left(x_{0}\right) \delta x_{0} \text { when } \delta x_{0} \text { is small. }
$$

So $f(x)$ itself is not a probability, but in the above sense $f(x)$ is proportional to (or a measure of) probability.

To summarise: the p.g.f. $f(x)$ has the following properties:
(i) $f(x) \geq 0, \quad-\infty<x<\infty, \quad$ and $\int_{-\infty}^{\infty} f(x) d x=1$.
(ii) $f(x)$ is not a probability: $f(x) \delta x \approx \mathrm{P}(x<X \leq x+\delta x)$.
(iii) Since $\mathrm{P}(X=x)=0$ for all x,

$$
\begin{aligned}
\mathrm{P}(a<X<b) & =\mathrm{P}(a \leq X<b)=\mathrm{P}(a<X \leq b)=\mathrm{P}(a \leq X \leq b) \\
& =F(b)-F(a) \\
& =\int_{a}^{b} f(t) d t .
\end{aligned}
$$

5.1.2 Restricted Range

Suppose that

$$
f(x)= \begin{cases}>0 & \text { for } A<x<B, \text { a subset of }(-\infty, \infty) \\ =0 & \text { otherwise }\end{cases}
$$

Then probability (and other) calculations may be based on the interval (A, B) rather than on $(-\infty, \infty)$: e.g.

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} f(x) d x \\
\mathrm{P}(X \leq y) & =\int_{-\infty}^{A} f(x) d x+\int_{A}^{B} f(x) d x+\int_{B}^{\infty} f(x) d x=\int_{A}^{B} f(x) d x ; \\
\mathrm{P}(X>z) & =\int_{z}^{\infty} f(x) d x \\
\mathrm{P} & =\int_{z}^{B} f(x) d x, \quad y \geq A ;
\end{aligned}
$$

5.1.3 Expectation

The expected value or expectation of a continuous r.v. X with p.d.f. $f(x)$ is denoted by $\mathrm{E}(X)$ and is defined as

$$
\begin{equation*}
\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) d x \tag{5.4}
\end{equation*}
$$

provided that the integral is absolutely convergent (i.e. $\int_{-\infty}^{\infty}|x| f(x) d x$ is finite). As in the discrete case, $\mathrm{E}(X)$ is often termed the expected value or mean of X.

The continuous analogue of the 'law of the unconscious statistician' states that

$$
\begin{equation*}
\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x \tag{5.5}
\end{equation*}
$$

provided the integral is absolutely convergent: once again, this is a result and not a definition. An immediate application is to the variance of X, denoted by $\operatorname{Var}(X)$ and defined as

$$
\begin{equation*}
\operatorname{Var}(X)=\mathrm{E}\left([X-\mathrm{E}(X)]^{2}\right) . \tag{5.6}
\end{equation*}
$$

Writing $\mu=\mathrm{E}(X)$, we have

$$
\begin{aligned}
\operatorname{Var}(X) & =\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-2 \mu \int_{-\infty}^{\infty} x f(x) d x+\mu^{2} \int_{-\infty}^{\infty} f(x) d x \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \tag{5.7}
\end{equation*}
$$

just as in the discrete case. Other properties of the E and Var operators carry over in the same way - in the proofs we simply replace \sum and probability function by \int and p.d.f.

In modelling a set of data (see later), we are often interested in the shape of $f(x)$: this can be summarised by a measure of asymmetry called the coefficient of skewness, defined as

$$
\begin{equation*}
\gamma_{1}=\frac{\mu_{3}}{\sigma^{3}} \tag{5.8}
\end{equation*}
$$

$\gamma_{1}>0$

$$
\gamma_{1}=0
$$

For symmetrical p.d.f.s, a measure of peakedness is the coefficient of kurtosis, defined as

$$
\begin{equation*}
\gamma_{2}=\frac{\mu_{4}}{\sigma^{4}}-3 \tag{5.9}
\end{equation*}
$$

Comparison is with the normal distribution, for which $\gamma_{2}=0$ (see $\S 5.4 .1$).

Percentiles The $100 q^{\text {th }}$ percentile point is the value $x_{[100 q]}$ such that

$$
\begin{equation*}
\mathrm{P}\left(X \leq x_{[100 q]}\right)=F\left(x_{[100 q]}\right)=q, \quad 0<q<1 \tag{5.10}
\end{equation*}
$$

In particular, the median m is $x_{[50]}$ and

$$
\begin{equation*}
F(m)=0.5 \tag{5.11}
\end{equation*}
$$

5.2 Transformations

5.2.1 Simpler Cases

Given a transformation $Y=g(X)$, where X is a continuous r.v. with known p.d.f $f_{X}(x)$, how can we determine the distribution of the r.v. Y ? There are two straightforward cases:
(i) If $Y=g(X)$ where Y is a discrete r.v. and $Y=y_{i}$ corresponds to the interval $a_{i}<X<b_{i}$ (or a set of intervals), then

$$
\mathrm{P}\left(Y=y_{i}\right)=\int_{a_{i}}^{b_{i}} f(x) d x
$$

(ii) Suppose $Y=g(X)$ where g is one-to-one and differentiable. Then Y is a continuous r.v. with p.d.f.

$$
\begin{equation*}
f_{Y}(y)=f_{X}\left\{g^{-1}(y)\right\}\left|\frac{d x}{d y}\right|, \quad g(-\infty)<y<g(+\infty) \tag{5.12}
\end{equation*}
$$

(You may find it helpful to remind yourself of the proof of this result given in SOR101).

5.2.2 The Many-to-One Case

Now suppose that the transformation is no longer one-to-one, but many-to-one. There are two possible procedures, which we shall illustrate by considering the transformation

$$
Y=X^{2}
$$

where the range of X is $(-\infty, \infty)$ - a two-to-one transformation.
Method 1 Proceed through the c.d.f. (compare the proof of the result for a one-to-one transformation): thus

$$
\begin{aligned}
F_{Y}(y) & =\mathrm{P}(Y \leq y) \\
& =\mathrm{P}\left(X^{2} \leq y\right) \\
& =\mathrm{P}(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}), \quad y \geq 0
\end{aligned}
$$

Then differentiating we get

$$
\begin{aligned}
f_{Y}(y) & =\frac{d F_{Y}(y)}{d y} \\
& =\frac{d}{d y}\left\{F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})\right\} \\
& =f_{X}(\sqrt{y})\left(\frac{1}{2 \sqrt{y}}\right)-f_{X}(-\sqrt{y})\left(-\frac{1}{2 \sqrt{y}}\right) \\
& =\frac{1}{2 \sqrt{y}}\left\{f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right\}, \quad 0 \leq y<\infty
\end{aligned}
$$

Method 2 Express the transformation in terms of separate one-to-one transformations (so that the result for the one-to one case can be invoked). Here

$$
X= \begin{cases}+\sqrt{Y}, & \text { for } 0 \leq X<\infty \\ -\sqrt{Y}, & \text { for }-\infty<X<0\end{cases}
$$

Let

$$
f_{X}(x)=f_{X}^{+}(x)+f_{X}^{-}(x)
$$

where

$$
f_{X}^{+}(x)= \begin{cases}f_{X}(x), & 0 \leq x<\infty \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
f_{X}^{-}(x)= \begin{cases}f_{X}(x), & x<0 \\ 0, & \text { otherwise }\end{cases}
$$

We now use the formula for the separate one-to-one transformations:

$$
\begin{aligned}
& f_{Y}^{+}(y)=f_{X}^{+}(+\sqrt{y})\left|\frac{1}{2 \sqrt{y}}\right|, \quad 0 \leq y<\infty \\
& f_{Y}^{-}(y)=f_{X}^{-}(-\sqrt{y}) \quad\left|-\frac{1}{2 \sqrt{y}}\right|, \quad 0 \leq y<\infty
\end{aligned}
$$

Hence

$$
\begin{aligned}
f_{Y}(y) & =f_{Y}^{+}(y)+f_{Y}^{-}(y) \\
& =\frac{1}{2 \sqrt{y}}\left\{f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right\}, \quad 0 \leq y<\infty
\end{aligned}
$$

- as obtained by Method 1.

5.2.3 Truncation

Suppose that the continuous r.v. X has p.d.f. $f_{X}(x),-\infty<x<\infty$ and the r.v. Y has similar properties to X in the interval (A, B) and is defined to be 0 elsewhere, i.e.

$$
Y= \begin{cases}X, & A \leq X \leq B \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\begin{aligned}
F_{Y}(y) & =\mathrm{P}(Y \leq y)=\mathrm{P}(X \leq y \mid A \leq X \leq B) \\
& =\frac{\mathrm{P}(X \leq y \text { and } A \leq X \leq B)}{\mathrm{P}(A \leq X \leq B)} \\
& =\frac{\mathrm{P}(A \leq X \leq y \leq B)}{\mathrm{P}(A \leq X \leq B)}=\frac{F_{X}(y)-F_{X}(A)}{F_{X}(B)-F_{X}(A)}, \quad A \leq y \leq B
\end{aligned}
$$

Hence

$$
f_{Y}(y)=\left\{\begin{array}{ll}
\frac{f_{X}(y)}{\int_{A}^{B} f_{X}(x) d x}, & A \leq y \leq B \\
0 & \text { otherwise }
\end{array} .\right.
$$

An alternative argument is as follows. Suppose that the p.d.f. of Y has a similar form to the p.d.f. of X in the interval (A, B) and is zero otherwise. Thus

$$
f_{Y}(y)= \begin{cases}K f_{X}(y), & A \leq y \leq B \\ 0, & \text { otherwise }\end{cases}
$$

The normalisation requirement $\int_{-\infty}^{\infty} f_{Y}(y) d y=1$ yields

$$
K=\left[\int_{A}^{B} f_{X}(y) d y\right]^{-1}
$$

- the same result as above.

5.3 Modelling

Many discrete probability distributions are considered as suitable models for certain standard situations for which a probabilistic analysis is possible, e.g. binomial, geometric, Poisson, hypergeometic.

On the other hand, a continuous distribution is often chosen as a model because of its shape, particularly if a large sample of observations is available: if we construct a relative frequency histogram, the piecewise linear construction joining the mid-points of the tops of adjacent bars should approximate the curve of a suitable p.d.f.

Real data, which must lie within a finite interval, may be modelled by a p.d.f. defined over an infinite or semi-infinite range, since the infinite tail(s) of many p.d.f.s contain very little probability. For example, if $X \sim N\left(\mu, \sigma^{2}\right), \mathrm{P}(X \geq \mu+4 \sigma) \approx 0.000032$. Thus, positive data may be modelled by a continuous r.v. which theoretically can take negative values.

5.4 Important Continuous Distributions

5.4.1 Normal distribution

Also known as the Gaussian distribution, this has two parameters $\left(\mu, \sigma^{2}\right)$: it is the most important distribution in statistics. If $X \sim N\left(\mu, \sigma^{2}\right)$, its p.d.f. is

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\}, \quad-\infty<x<\infty \tag{5.13}
\end{equation*}
$$

The r.v. $W=a+b X$ is distributed $N\left(a+b \mu, b^{2} \sigma^{2}\right)-$ an example of a one-to-one transformation. In particular, the r.v. $Z=(X-\mu) / \sigma$ is distributed $N(0,1)$ (the standard normal distribution), with p.d.f.

$$
\begin{equation*}
f_{Z}(z)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} z^{2}}, \quad-\infty<z<\infty . \tag{5.14}
\end{equation*}
$$

Many properties of X (probabilities, moments, etc.) are readily derived from those of Z.

$$
\begin{aligned}
\mathrm{E}(Z) & =\int_{-\infty}^{\infty} z \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} d z \\
& =\int_{0}^{\infty} \cdots+\int_{-\infty}^{0} \cdots \quad(\text { set } y=-z \text { in 2nd integral) } \\
& =\int_{0}^{\infty} \cdots+\int_{\infty}^{0}(-y) \frac{1}{\sqrt{\pi}} e^{-\frac{1}{2} y^{2}}(-d y) \\
& =\int_{0}^{\infty} z \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} d z-\int_{0}^{\infty} y \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} d y=0 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\mathrm{E}\left[\frac{X-\mu}{\sigma}\right]=0, \quad \text { giving } \mathrm{E}(X)=\mu \tag{5.15}
\end{equation*}
$$

This result can also be deduced from the observation that $f_{X}(x)$ is symmetrical about $x=\mu$. Since $\mathrm{P}(X \leq \mu)=\frac{1}{2}=\mathrm{P}(X \geq \mu), \mu$ is also the median (it is also the mode).

To find $\operatorname{Var}(X)$, we first consider $\operatorname{Var}(Z)=\mathrm{E}\left(Z^{2}\right)$.

$$
\begin{aligned}
\mathrm{E}\left(Z^{2}\right) & =\int_{-\infty}^{\infty} z^{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} d z \\
& =\int_{0}^{\infty} \cdots+\int_{-\infty}^{0} \cdots \quad \text { (set } y=-z \text { in 2nd integral) } \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} z^{2} e^{-\frac{1}{2} z^{2}} d z
\end{aligned}
$$

For integrals over $(0, \infty)$ with an integrand consisting of a power term and an exponential term, one should try transforming into a Gamma function, defined as

$$
\begin{equation*}
\Gamma(p)=\int_{0}^{\infty} t^{p-1} e^{-t} d t, \quad p>0 \tag{5.16}
\end{equation*}
$$

Given $p, \Gamma(p)$ can be found from tables or by means of a computer program. Some useful properties of the Gamma function are:

$$
\begin{align*}
\Gamma(p+1) & =p \Gamma(p) \\
\Gamma(n+1) & =n!\quad \text { for non-negative integer } n \tag{5.17}\\
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi} .
\end{align*}
$$

So, setting $t=\frac{1}{2} z^{2}, d t=z d z=\sqrt{2 t} d z$, we get

$$
\begin{aligned}
\mathrm{E}\left(Z^{2}\right) & =\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} 2 t e^{-t} \frac{1}{\sqrt{2 t}} d t \\
& =\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} t^{\frac{1}{2}} e^{-t} d t \\
& =\frac{2}{\sqrt{\pi}} \Gamma\left(\frac{3}{2}\right) \\
& =\frac{2}{\sqrt{\pi}} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{2}{\sqrt{\pi}} \cdot \frac{1}{2} \sqrt{\pi}=1
\end{aligned}
$$

So $\operatorname{Var}(Z)=1$ and

$$
\begin{equation*}
\operatorname{Var}(X)=\operatorname{Var}(\mu+\sigma Z)=\sigma^{2} \operatorname{Var}(Z)=\sigma^{2} . \tag{5.18}
\end{equation*}
$$

By a similar argument to that used for $\mathrm{E}(Z)$, we find that

$$
\mathrm{E}\left(Z^{3}\right)=0
$$

So

$$
\mu_{3}=\mathrm{E}\left[(X-\mu)^{3}\right]=0
$$

and the coefficient of skewness is

$$
\begin{equation*}
\gamma_{1}=0 \tag{5.19}
\end{equation*}
$$

More generally,

$$
\mathrm{E}\left(Z^{2 r+1}\right)=0 \text { and } \mu_{2 r+1}=0, \quad r \geq 1
$$

Also, by a similar analysis to that for $\mathrm{E}\left(Z^{2}\right)$, it can be shown that $\mathrm{E}\left(Z^{4}\right)=3$, so

$$
\mu_{4}=\mathrm{E}\left[(X-\mu)^{4}\right]=3 \sigma^{4}
$$

and the coefficient of kurtosis is

$$
\begin{equation*}
\gamma_{2}=0 \tag{5.20}
\end{equation*}
$$

5.4.2 (Negative) Exponential distribution

This important distribution has 1 parameter (λ) : its p.d.f. and c.d.f. are

$$
\begin{align*}
& f(x)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0, \lambda>0, \\
0, & x<0 .\end{cases} \\
& F(y)= \begin{cases}1-e^{-\lambda y}, & y \geq 0, \\
0, & y<0 .\end{cases} \tag{5.21}
\end{align*}
$$

while the mean and variance are

$$
\begin{equation*}
\mathrm{E}(X)=1 / \lambda, \quad \operatorname{Var}(X)=1 / \lambda^{2} . \tag{5.22}
\end{equation*}
$$

(See fig. on p. 71 for shapes). We write $X \sim \operatorname{Exp}(\lambda)$. This is the only continuous distribution with the 'no memory' property (see HW Examples 6).

In a Poisson process, with parameter (rate) λ, the time to the first event (and the time between successive events) is distributed $\operatorname{Exp}(\lambda) \quad$ (see final chapter).

5.4.3 Gamma distribution

This distribution has 2 parameters (α, λ), and its p.d.f. is

$$
f(x)= \begin{cases}\frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)}, & x \geq 0 ; \quad \alpha, \lambda>0 \tag{5.23}\\ 0, & x<0,\end{cases}
$$

where $\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t,(\alpha>0)$ is the Gamma function already introduced in (5.16), with properties (5.17). Here α is an index or shape parameter, λ a scale parameter. We write $X \sim \operatorname{Gamma}(\alpha, \lambda)$.
For integer α this distribution is often termed the Erlang distribution: this case is of considerable importance because X can then be written as the sum of α i.i.d. exponential r.v.s. Note that in particular

$$
\begin{equation*}
\operatorname{Gamma}(\alpha=1, \lambda) \equiv \operatorname{Exp}(\lambda) . \tag{5.24}
\end{equation*}
$$

The Gamma distribution is very useful for modelling data over the range $(0, \infty)$: by selecting various values of α, quite a range of different shapes of p.d.f. can be obtained (see fig.).

The mean is

$$
\begin{align*}
\mathrm{E}(X) & =\int_{0}^{\infty} x \cdot \frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} d x \quad(\text { set } t=\lambda x, d t=\lambda d x) \\
& =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha} e^{-t} \frac{1}{\lambda} d t \\
& =\frac{1}{\Gamma(\alpha) \lambda} \Gamma(\alpha+1)=\frac{\alpha}{\lambda} . \tag{5.25}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\mathrm{E}\left(X^{2}\right)=\frac{\alpha(\alpha+1)}{\lambda^{2}}, \quad \text { so } \quad \operatorname{Var}(X)=\frac{\alpha}{\lambda^{2}} \tag{5.26}
\end{equation*}
$$

In a Poisson process with parameter (rate) λ, the time to the $r^{\text {th }}$ event (and the time between the $m^{\text {th }}$ and $(m+r)^{\text {th }}$ events) is distributed $\operatorname{Gamma}(r, \lambda)$ (see final chapter).

The shapes of some common distributions

Exponential

Gamma

Beta

$$
a<1, b<1 \quad(a=b)
$$

Weibull

5.4.4 Beta distribution

This distribution has 2 parameters (a, b), and the p.d.f is

$$
f(x)= \begin{cases}\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}, & 0 \leq x \leq 1 ; \quad a, b>0 \tag{5.27}\\ 0, & \text { otherwise },\end{cases}
$$

where

$$
\begin{equation*}
B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}, \quad(a, b>0) \tag{5.28}
\end{equation*}
$$

is the Beta function. Also

$$
\begin{aligned}
\mathrm{E}(X) & =\int_{0}^{1} x \cdot \frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} d x \\
& =\frac{1}{B(a, b)} \int_{0}^{1} x^{a}(1-x)^{b-1} d x \\
& =\frac{B(a+1, b)}{B(a, b)}=\frac{\Gamma(a+1) \Gamma(b)}{\Gamma(a+b+1)} \cdot \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\mathrm{E}(X)=\frac{a}{a+b} . \tag{5.29}
\end{equation*}
$$

Similarly we can show that

$$
\begin{equation*}
\operatorname{Var}(X)=\frac{a b}{(a+b)^{2}(a+b+1)} . \tag{5.30}
\end{equation*}
$$

Again selection of values of a and b gives different shapes for the p.d.f. (see figures on p.71). Note that these shapes may be reversed by interchanging the values of a and b, since, if $X \sim$ $\operatorname{Beta}(a, b)$, then $1-X \sim \operatorname{Beta}(b, a)$.

This family of distributions is useful for modelling data over a finite range: the standard p.d.f. (given above) is defined over $[0,1]$, but it may also be defined over $[A, B]$ where A and B are both finite. Thus, if we write $Z=A+(B-A) X$, i.e. $A \leq Z \leq B$, then

$$
\begin{equation*}
f_{Z}(z)=\frac{1}{B(a, b)} \cdot \frac{(z-A)^{a-1}(B-z)^{b-1}}{(B-A)^{a+b-1}}, \quad A \leq z \leq B . \tag{5.31}
\end{equation*}
$$

5.4.5 Uniform (or Rectangular) distribution

This simple distribution has 2 parameters (a, b) : the p.d.f. and c.d.f. are

$$
f(x)= \begin{cases}\frac{1}{b-a}, & a \leq x \leq b, \tag{5.32}\\ 0, & \text { otherwise }\end{cases}
$$

and

$$
F(x)= \begin{cases}0, & \text { if } x \leq a \tag{5.33}\\ (x-a) /(b-a), & \text { if } a<x \leq b, \\ 1, & \text { if } x>b\end{cases}
$$

Also,

$$
\begin{equation*}
\mathrm{E}(X)=\frac{1}{2}(a+b), \quad \operatorname{Var}(X)=\frac{1}{12}(b-a)^{2} . \tag{5.33}
\end{equation*}
$$

The case $a=0, b=1$ is particularly important (e.g. for random number generation in simulation).

5.4.6 Weibull distribution

This distribution (particularly associated with lifetime and reliability studies) has, in its most general form, 3 parameters (a, b, c) : the p.d.f., c.d.f. and mean are

$$
\begin{align*}
f(x) & = \begin{cases}\frac{c(x-a)^{c-1}}{b^{c}} \exp \left\{-\left(\frac{x-a}{b}\right)^{c}\right\}, & x \geq a \\
0, & x<a \\
F(y) & = \begin{cases}1-\exp \left\{-\left(\frac{y-a}{b}\right)^{c}\right\}, & y \geq 0 \\
0, & y<0\end{cases} \\
\mathrm{E}(X) & =a+b \Gamma(1+1 / c)\end{cases}
\end{align*}
$$

Selection of c determines the shape of the p.d.f. (see fig. for examples); b is a scale parameter and a a location parameter. This distribution has properties similar to the Gamma distribution. Note that $\quad \operatorname{Weibull}(a=0, b, c=1) \equiv \operatorname{Exp}(1 / b)$.

5.4.7 Chi-squared distribution

Several other distributions arise frequently in statistical inference. Here we mention only the chi-squared (χ^{2}) distribution with n degrees of freedom, sometimes written χ_{n}^{2} or $\chi^{2}(n)$, which has p.d.f.

$$
f(x)= \begin{cases}\frac{1}{2 \Gamma\left(\frac{1}{2} n\right)}\left(\frac{1}{2} x\right)^{\frac{1}{2} n-1} e^{-\frac{1}{2} x}, & x>0 \tag{5.36}\\ 0, & x<0\end{cases}
$$

and mean

$$
\begin{equation*}
\mathrm{E}(X)=n \tag{5.37}
\end{equation*}
$$

We observe that in fact

$$
\begin{equation*}
\chi_{n}^{2} \equiv \operatorname{Gamma}\left(\alpha=n / 2, n \text { a positive integer, } \lambda=\frac{1}{2}\right) \tag{5.38}
\end{equation*}
$$

5.5 Reliability

Let the continuous r.v. X, with c.d.f. $F(x)$ and p.d.f. $f(x), x \geq 0$ denote the lifetime of some device or component: the device is said to fail at time X. There are a number of functions used in reliability studies:

$$
\begin{array}{ll}
\text { Survival function } & \bar{F}(x)=1-F(x)=\mathrm{P}(X>x), \quad x \geq 0 \\
\text { Hazard function } & H(x)=-\log (1-F(x)), \quad x \geq 0(5.39) \\
\text { Hazard rate function } & r(x)=\frac{f(x)}{\bar{F}(x)}=\frac{d H(x)}{d x}, \quad x \geq 0 . \\
\hline
\end{array}
$$

The significance of $r(x)$ may be derived as follows. The probability that the device fails during $(x, x+h)$ given that it has not failed by time x is

$$
\mathrm{P}(x \leq X \leq x+h \mid X>x)=\{F(x+h)-F(x)\} / \bar{F}(x)
$$

Then

$$
\begin{aligned}
\lim _{h \rightarrow 0}\left\{\frac{\text { above prob. }}{h}\right\} & =\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h \bar{F}(x)} \\
& =\frac{1}{\bar{F}(x)} \frac{d F(x)}{d x}=\frac{f(x)}{\bar{F}(x)}=r(x)
\end{aligned}
$$

i.e., $r(x)$ may be regarded as an instantaneous failure rate or intensity of the probability that a device aged x will fail. If $r(x)$ is an increasing function of x, this implies that the device is 'wearing out', while if it is a decreasing function of x, this implies that the device is 'bedding in', i.e. improving with age.

If $X \sim \operatorname{Exp}(\lambda)$, then $r(x)=\lambda, x \geq 0$: this constant hazard rate is consistent with the 'lack-of memory' property of this distribution - the device cannot 'remember' how old it is.

