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Chapter 7

Continuous Time Processes

7.1 Introduction

In a continuous time stochastic process (with discrete state space), a change of state can occur
at any time instant. The associated point process consists of those instants

(t0 = 0), t1, t2, ...

at which a change of state (or transition) occurs. The intervals

gn = tn − tn−1, n ≥ 1

are called gaps or sojourn times. A point process can be specified by giving a (probabilistic)
mechanism for determining either the times t1, t2, ... or the gaps g1, g2, .... To specify the
continuous time process we must also give a mechanism for determining the transitions at
t1, t2, ...

7.2 Counting Processes

Such processes are particularly simple: the state variable is just a count which increases by 1
at each transition point ti. A stochastic process {N(t), t ≥ 0} is said to be a counting process

if N(t) represents the total number of transitions or events that have occurred in (0, t]. N(t)
must satisfy the following conditions:

(i) N(t) is a count r.v., with N(0) = 0.

(ii) If s < t, then N(s) ≤ N(t).

(iii) For s < t, N(t) − N(s) is equal to the number of events that have occurred in (s, t].

A counting process is said to possess

(i) independent increments if the number of events which occur in disjoint (i.e. non-overlapping)
time intervals are independent;

(ii) stationary or time-homogeneous increments if the probability distribution of the number
of events in the interval (u, u + t] (u ≥ 0) (i.e. N(u + t)−N(t)) depends only on t, i.e.
on the length of the time interval and not on its position on the time axis.
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Let the r.v. Tn denote the time at which the nth event after t = 0 occurs, i.e.

Tn = inf{t : N(t) = n}, n ≥ 1,

and let T0 = 0. Note that
T0 ≤ T1 ≤ T2 ≤ · · ·

and
N(t) = max{n : Tn ≤ t}

A typical realization of a counting process is shown.
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7.3 Poisson Process

7.3.1 Definition and distribution of N(t)

The counting process {N(t), t ≥ 0} is said to be a Poisson process having rate λ if

(i) the process has independent increments;

(ii) for any short time interval (t, t + δt],

P(1 event occurs in (t, t + δt]) = λδt + o(δt) (as δt → 0),

i.e.

P(N(t + δt) − N(t) = 1) = λδt + o(δt)

or, to put it another way,

P(N(t + δt) = n + 1|N(t) = n) = λδt + o(δt), n ≥ 0;

(iii) P(k events occur in (t, t + δt]) = o(δt), k ≥ 2,

or, alternatively,

P(2 or more events occur in (t + δt]) = o(δt),

each of which properties can be similarly expressed in terms of N(t).
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Theorem

If {N(t), t > 0} is a Poisson process, then, for each t > 0, the r.v. N(t) has the Poisson
distribution with parameter λt, i.e.

P(N(t) = n) =
(λt)ne−λt

n!
, n = 0, 1, 2, ... (7.1)

Proof: For convenience write pn(t) for P(N(t) = n). Since N(0) = 0, we have that

p0(0) = 1, pn(0) = 0 for n > 0. (7.2)

Now, invoking independence,

pn(t + δt) = P(n events in (0, t + δt]) =
n

∑

k=0

P(n − k events in (t, t + δt]).P(k events in (0, t]).

But since
P(0 events occur in (t, t + δt])

+ P(1 event occurs in (t, t + δt])
+ P(2 or more events occur in (t, t + δt]) = 1,

we have that
P(0 events occur in (t, t + δt]) = 1 − λδt + o(δt).

Then
pn(t + δt) = (1 − λδt + o(δt)).pn(t)

+(λδt + o(δt)).pn−1(t) + o(δt), n ≥ 1
i.e. pn(t + δt) = (1 − λδt)pn(t) + λδtpn−1(t) + o(δt), n ≥ 1.

Also
p0(t + δt) = p0(t).(1 − λδt + o(δt))

= (1 − λδt)p0(t) + o(δt).

So
pn(t + δt) − pn(t)

δt
= λpn−1(t) − λpn(t) +

o(δt)

δt
, n ≥ 1

and
p0(t + δt) − p0(t)

δt
= −λp0(t) +

o(δt)

δt
.

Now let δt → 0: we obtain

dpn(t)

dt
= λpn−1(t) − λpn(t), n ≥ 1

dp0(t)

dt
= −λp0(t).

(7.3)

Using the initial conditions (7.2), this set of difference-differential equations can be solved
successively for n = 0, 1, 2, ... to give

p0(t) = e−λt, p1(t) = λte−λt, ....

and hence by induction to give the general result (7.1) for pn(t).

Alternatively, we can use PGFs to solve (7.3). Let G(s, t) be the PGF of {pn(t), n ≥ 0}, i.e.

G(s, t) =
∞
∑

n=0

pn(t)sn (7.4)

(for fixed t ≥ 0, G(s, t) has the usual PGF properties).

Multiply (7.1) by sn and sum over n = 0, 1, 2, ... to get

dp0(t)

dt
s0+

∞
∑

n=1

dpn(t)

dt
sn = −λp0(t)s

0+
∞
∑

n=1

λ{pn−1(t) − pn(t)}sn
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i.e.
∂G(s, t)

∂t
=

∞
∑

n=0

dpn(t)

dt
sn

= −λ
∞
∑

n=0

pn(t)sn + λ
∞
∑

n=1

pn−1(t)s
n = −λG(s, t) + λsG(s, t).

Thus
1

G
.
∂G

∂t
= λ(s − 1)

i.e.
∂

∂t
{loge G(s, t)} = λ(s − 1)

i.e. log G(s, t) = λ(s − 1)t + C(s)

where C(s) is constant with respect to t. The initial conditions (7.2) give G(s, 0) = 1, so
0 = 0 + C(s), i.e. C(s) = 0. It follows that

G(s, t) = exp{λt(s − 1)}, (7.5)

which is the PGF of the Poisson distribution with parameter λt – hence the result. tu

Corollary

P[N(u + t) − N(u) = n] =
(λt)ne−λt

n!
, n ≥ 0, for u ≥ 0, t > 0 (7.6)

i.e., the Poisson process has stationary increments (as we would expect from conditions (ii) and
(iii)).

The proof proceeds along the same lines (let pn(u, t) be the above probability).

7.3.2 Other associated distributions

The interarrival (or inter-event) times in a Poisson process are the r.v.s X1, X2, ... given by

Xn = Tn − Tn−1, n ≥ 1. (7.7)

Then
P(X1 > x) = P(N(x) = 0) = e−λx, x ≥ 0

so the c.d.f. of X1 is 1 − e−λx, i.e.
X1 ∼ exp(λ).

Also
P(X2 > x|X1 = x1) = P(no arrival in (x1, x1 + x]|X1 = x1).

In this conditional probability, the first event concerns arrivals in (x1, x1 + x] and the second
(conditioning) event concerns arrivals in [0, x1], so the events are independent. Hence

P(X2 > x|X1 = x1) = P(no arrival in (x1, x1 + x]) = e−λx

(using the Corollary); i.e., X2 is independent of X1 and has the same distribution. Similarly

P(Xn+1 > x|X1 = x1, ..., XN = xn) = P(no arrival in (t, t + x])

where t = x1 + x2 + · · · + xn. It follows by induction on n that X1, X2, X3, ... are independent
exponential r.v.s, each with parameter λ.
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The waiting time for the rth event is the r.v.

Wr = X1 + X2 + · · · + Xr, (7.8)

and so

Wr ∼ Gamma(r, λ). (7.8)

An alternative derivation of this result is as follows.

Wr ≤ w ⇐⇒ N(w) ≥ r.

So
FWr

(w) = P(Wr ≤ w)

= P(N(w) ≥ r) =
∞
∑

j=r

(λw)je−λw

j!
.

Differentiating to get the p.d.f., we again find that Wr ∼ Gamma(r, λ).

More generally, this is also the distribution of time between the mth and (m + r)th events.

7.4 Markov Processes

A discrete-state continuous-time stochastic process {X(t), t ≥ 0} is said to be a Markov process

if

P(X(tn) = j|X(t0) = i0, X(t1) = i1, ..., X(tn−1) = i) = P(X(tn) = j|X(tn−1) = i) (7.9)

for all t0 < t1 < · · · < tn and all relevant values of i, j, i0, i1, ...

A Markov process is said to be time-homogeneous or stationary if

P(X(u + t) = j|X(u) = i) = P(X(t) = j|X(0) = i) = pij(t) (7.10)

for all i, j and u > 0, t > 0.

A stationary Markov process is completely described by its transition probability functions

{pij(t)} and its initial probability distribution.

In modelling Markov processes it is generally assumed that

pij(δt) =

{

λijδt + o(δt) i 6= j
1 + λiiδt + o(δt), i = j,

(7.11)

where the constants λij are called transition rates and satisfy

λij ≥ 0, i 6= j,
λii < 0, all i,

and
∑

j
λij = 0 (since

∑

j
pij(δt) = 1).

(7.12)

Example The Poisson process with rate λ is a simple example of a Markov process, with
transition rates

λn,n+1 = λ, λn,n = −λ, λn,m = 0, m 6= n, n + 1.

We do not pursue the theory of general Markov processes in this module: instead we study a
particular Markov process from first principles.
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7.5 Birth-and-Death Process

Here X(t) may be thought of as the size of a ‘population’ at time t (with possible values
0, 1, 2, ...), with ‘births’ and ‘deaths’ occurring from time to time in such a way that

pij(δt) =















αiδt + o(δt) i ≥ 0, j = i + 1
βiδt + o(δt) i ≥ 1, j = i − 1
1 − (αi + βi)δt + o(δt) i ≥ 0, j = i
o(δt) otherwise.

(7.13)

The process is conveniently represented on a transition rate diagram, as shown.

0 1 2 n n+1

α0

β1

α1

β2

αn

βn+1

α2

β3

αn−1

βn

αn+1

βn+2

(The nodes represent possible states X(t) and the arrows possible transitions to other states.
Note that the transition rates are in general state-dependent).

For convenience, we again write pn(t) = P(X(t) = n), n = 0, 1, 2, ...

Then

P(X(t + δt) = n) =
∞
∑

i=0

P(X(t + δt) = n|X(t) = i).P(X(t) = i)

i.e.

pn(t + δt) =
∞
∑

i=0

pin(δt)pi(t).

Inserting (7.13)) gives

pn(t + δt) = (1 − αnδt − βnδt)pn(t)
+(αn−1δt)pn−1(t)
+(βn+1δt)pn+1(t) + o(δt), n ≥ 1

and p0(t + δt) = (1 − α0δt)p0(t) + (β1δt)p1(t) + o(δt).

Then

dpn(t)

dt
= lim

δt→0

pn(t + δt) − pn(t)

δt
= −(αn + βn)pn(t) + αn−1pn−1(t) + βn+1pn+1(t), n ≥ 1

and
dp0(t)

dt
= −α0p0(t) + β1p1(t).

(7.14)

We shall solve this set of difference-differential equations in a special case, again using the PGF.
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Example Linear birth-and-death process

Suppose that

αn = nα, n ≥ 0
βn = nβ, n ≥ 1.

(7.15)

(Note: since α0 = 0, X(t) = 0 is absorbing.)

Suppose that initially
X(0) = a (> 0)

i.e.
pa(0) = 1
pm(0) = 0, m 6= a.

The PGF of X(t) is

G(s, t) =
∞
∑

n=0

pn(t)sn (7.16)

where G(s, 0) = sa.

Multiply (7.14) by sn and sum over n to get

∂G(s, t)

∂t
= [−(α + β)s + αs2 + β]

∞
∑

n=1

npn(t)sn−1

= (αs − β)(s − 1)
∂G(s, t)

∂s

It can be verified that the solution satisfying the initial condition G(s, 0) = sa is

G(s, t) =



















[

(αs − β)e(β−α)t − β(s − 1)

(αs − β)e(β−α)t − α(s − 1)

]a

, if α 6= β

[

s − αt(s − 1)

1 − αt(s − 1)

]a

, if α = β.

(7.17)

Then pn(t) is the coefficient of sn when G(s, t) is expanded as a power series in s.

The probability of extinction by time t is

p0(t) = G(0, t) =



















[

β − βe(β−α)t

α − βe(β−α)t

]a

, if α 6= β

[

αt

αt + 1

]a

, if α = β

. (7.18)

Thus

p0(t) →

{

1, if α ≤ β
(β/α)a, if α > β

as t → ∞; (7.19)

i.e., extinction is certain if and only if α ≤ β.

The mean population size is

E{X(t)} =

[

∂G(s, t)

∂s

]

s=1
=

{

ae(α−β)t if α 6= β
a if α = β.

(7.20)

So, as t → ∞,

E{X(t)} →







0 if α < β
a if α = β
∞ if α > β.

(7.21)
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7.6 Steady-State Distribution

Often it is sufficient to study a Markov process in the limit t → ∞. Under certain conditions

pn(t) → πn as t → ∞, (7.22)

where {πn} is the equilibrium or steady-state distribution, obtained by setting
dpn

dt
= 0,

pn(t) = πn for all n in the appropriate differential equations. So for the birth-and-death process
we have

0 = −(αn + βn)πn + αn−1πn−1 + βn+1πn+1, n ≥ 1
0 = −α0π0 + β1π1,

or
(αn + βn)πn = αn−1πn−1 + βn+1πn+1, n ≥ 0, (7.23)

where we have defined α−1 = β0 = 0 for mathematical convenience. Now sum these equations
from n = 0 to n = m where m ≥ 0: we obtain

m
∑

n=0

(αn + βn)πn =
m

∑

n=0

αn−1πn−1+
m

∑

n=0

βn+1πn+1

=
m−1
∑

n=0

αnπn+
m+1
∑

n=0

βnπn

i.e. αmπm = βm+1πm+1, m ≥ 0,

(7.24)

from which we deduce that

πm =
α0α1.....αm−1

β1β2.....βm
π0, m ≥ 1.

The ‘normalisation’ requirement
∞
∑

m=0

πm = 1 (7.25)

yields

π0 = S−1, (7.26)

where

S = 1 +
α0

β1
+

α0α1

β1β2
+ ... (7.27)

The steady-state distribution (if it exists) can be derived directly without appealing to the
differential equations. It can be shown that when a general Markov process has a steady-state
distribution (π0, π1, ....) = π, it satisfies the equations

πQ = 0, (7.28)

where
Q = (λij), 0 = (0, 0, ....),

together with the normalisation condition
∑

i

πi = 1.

For a birth-and death process

Q =



















−α0 α0 0 0 .. .. ..
β1 −(α1 + β1) α1 0 .. .. ..
0 β2 −(α2 + β2) α2 .. .. ..
0 0 β3 −(α3 + β3) .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..



















and substitution in (7.28) yields the equations (7.23) derived above.
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7.7 Simple Queueing Systems

7.7.1 Introduction

Queueing is a common human activity and hence it is convenient to use human terminology
in discussing queueing systems (although such a system might involve machines waiting for
service, messages arriving at a switchboard, etc.). Customers arriving at a service point require
service from servers (channels, counters), but are not always able to get it immediately.

A queueing system is specified by

(i) The arrival pattern This is generally described by specifying the probability distri-
bution of the inter-arrival times; these are usually considered to be independent, but may
depend e.g. on the queue size.

(ii) The queue discipline This determines the order in which customers are served :
many everyday queues are ‘first-in, first-out’(FIFO). Some queues operate on a priority
basis (e.g. in an accident and emergency department of a hospital), and sometimes the
system has limited capacity.

(iii) The service mechanism The service time (nearly always considered to be indepen-
dent of the arrival pattern) is usually modelled by some continuous distribution. There
may be several servers, or waiting customers may be served in batches (e.g. a queue for
a lift or bus).

For relatively simple systems a queue is described by the notation A / B / s (due to Kendall),
where

A : inter-arrival time distribution,

B : service time distribution,

s : number of servers.

Examples:

(i) The D / M / 1 queue has a constant inter-arrival time (D for deterministic) and an
exponential service time distribution (M for Markov), with 1 server.

(ii) The M / M / 2 queue has an exponential inter-arrival time distribution (or equivalently the
arrival pattern is a Poisson process) and a (different) exponential service time distribution,
with 2 servers.

Amongst the aspects of interest are

• the probability distribution of the number of customers in the queue;

• the distribution of a customer’s waiting time (queueing time + service time);

• the busy (or idle) time of the servers.

Much of the simple theory has been developed under the assumption that the queueing system
is in the equilibrium or steady state, and we shall confine our discussion to this case.



page 111 110SOR201(2002)

7.7.2 Queues as birth-and-death processes

Consider a queueing system in which, if the current queue size (that is, number of customers
waiting or being served) is n, then

(i) the time to the next arrival is exponentially distributed with parameter λn;

(ii) the time to the next departure (upon completion of service) is exponentially distributed
with parameter µn.

Then the system can be modelled as a birth-and-death process with

X(t) = number of customers in the system at time t;
αn = λn, βn = µn.

If a steady-state distribution {πn} exists,

πn =
λ0λ1....λn−1

µ1µ2, , , , µn
π0, n ≥ 1, (7.24)

where

π0 = S−1, S = 1 +
λ0

µ1
+

λ0λ1

µ1µ2
+ · · · (7.25)

7.7.3 Specific Queues

(i) M/M/1 queue (‘simple’ queue)

In this case the arrival and service rates are constant:

λn = λ, n ≥ 0; µn = µ, n ≥ 1. (7.26)

All inter-arrival times have the same negative exponential distribution, with parameter λ, i.e.
arrivals follow a Poisson process with parameter λ. There is one server, whose service time
is negative exponential with mean µ−1, i.e. service completions follow a Poisson process with
parameter µ. Let

ρ =
λ

µ
=

Mean service time

Mean inter-arrival time

(called the traffic intensity). Then

πn =

(

λ

µ

)n

π0 = ρnπ0,

where

π0 = S−1, S = 1 + ρ + ρ2 + · · · =
1

1 − ρ
provided 0 ≤ ρ < 1.

Thus 0 ≤ ρ < 1 is the condition for the existence of a steady-state distribution, and then

πn = (1 − ρ)ρn, n ≥ 0 (7.27)

– a modified geometric distribution with mean
ρ

1 − ρ
(being the average queue size).
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(ii) Queue with discouragement

This is the situation when the arrival rate decreases as n, the number of customers in the
system, increases. Suppose for example that

λn =
λ

n + 1
, n ≥ 0

µm = µ, n ≥ 1.
(7.28)

Then

πn =
ρn

n!
e−ρ, n ≥ 0, ρ = λ/µ. (7.29)

Note that in this case the steady-state distribution exists for all ρ ≥ 0.

(iii) Queue with limited capacity

This can be viewed as a special case of the previous situation: now λn is falls abruptly to zero
for some critical value of n and above. For example, suppose that we have a ‘simple’ queue
with the additional restriction that there is room in the system for at most N customers. Then
we set

λn =

{

λ for n < N
0 for n ≥ N.

(7.30)

(iv) M/M/s queue

In this case there are s independent servers: suppose that each serves customers at rate µ.
Then we set

µn =

{

nµ, n < s
sµ, n ≥ s.

(7.31)

For, so long as all the servers are occupied (n ≥ s), the service completions comprise s inde-
pendent Poisson processes and therefore together follow a single Poisson process with rate sµ:
otherwise we have n independent Poisson processes, equivalent to a single Poisson process with
rate nµ.

(v) M/M/k queue with capacity k

An example of such a system is a telephone exchange with k lines and a ‘blocked calls cleared’
protocol; i.e. any call which arrives to find all lines being utilised is lost to the system. In this
case we take

λn =

{

λ , n < k
0, n ≥ k

µn =

{

nµ, 1 ≤ n ≤ k
0, n > k.

(7.32)

(vi) Queue with ample independent servers

‘Ample’ means that a server is always available to serve a customer immediately upon arrival,
so that there are no waiting customers at all! Then, in the simplest case, we have

λn = λ, n ≥ 0
µn = nµ, n ≥ 1.

(7.33)

For further analysis of some of the above cases, see Homework 9.

*****


