1. (i) Let the event $B \in \mathcal{F}$ with $\mathrm{P}(B)>0$. Prove that the conditional probability function $\mathrm{P}(\cdot \mid B)$ satisfies the three conditions for a probability function.
(ii) If $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{F}$ and $\mathrm{P}\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n-1}\right)>0$, prove that

$$
\mathrm{P}\left(A_{1}\right)>0, \quad \mathrm{P}\left(A_{1} \cap A_{2}\right)>0, \ldots, \mathrm{P}\left(A_{1} \cap \ldots \cap A_{n-2}\right)>0 .
$$

[Hint: What is the relationship between $A_{1} \cap \ldots \cap A_{n-1}$ and $A_{1} \cap \ldots \cap A_{n-2}$, and so on?]
Hence prove the (generalised) multiplication rule for conditional probabilities.
2. (i) State and prove Bayes' rule.
(ii) A ball is in any one of n boxes. It is in the i th box with probability p_{i}. If the ball is in box i , a search of that box will uncover it with probability α_{i}. Show that the conditional probability that the ball is is box j, given that a search of box i did not uncover it, is

$$
\begin{cases}\frac{p_{j}}{1-\alpha_{i} p_{i}}, & \text { if } j \neq i \\ \frac{\left(1-\alpha_{i}\right) p_{i}}{1-\alpha_{i} p_{i}}, & \text { if } j=i\end{cases}
$$

(iii) One coin in 10,000,000 has two heads; one coin in 10,000,000 has two tails; the remaining coins are legitimate. If a coin, chosen at random, is tossed 10 times and comes up heads every time, what is the probability that it is two-headed? Suppose it falls heads n times in a row. How large must n be to make the odds approximately even that the coin is two-headed?
(iv) Suppose a rare disease occurs by chance in 1 per 10,000 people. Suppose there is a diagnostic test with the following properties :
if a person has the disease, the test will diagnose this correctly with probability 0.95 ;
if a person does not have the disease, the test will diagnose this correctly with probability 0.995 .
If the test says that a person has the disease, calculate the probability that this is a correct diagnosis.
3. (i) If A and B are independent events, prove that so are A and \bar{B}, \bar{A} and B, and \bar{A} and \bar{B}.
Discuss why any one of the four pairs being independent implies independence in each of the other three pairs.
(ii) (a) Consider the sample space

$$
\{(a, b, c),(a, c, b),(b, a, c),(b, c, a),(c, a, b),(c, b, a),(a, a, a),(b, b, b),(c, c, c)\}
$$

Assign the probability of $1 / 9$ to each sample point. Let A_{i} be the event that the i th place in a sample point is occupied by the letter a. Show that the events A_{1}, A_{2}, A_{3} are pairwise independent but not completely independent.
(b) Consider the sample space $\mathcal{S}=\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ where

$$
\mathrm{P}\left(E_{1}\right)=\sqrt{2} / 2-1 / 4, \quad \mathrm{P}\left(E_{2}\right)=\mathrm{P}\left(E_{4}\right)=1 / 4, \quad \mathrm{P}\left(E_{3}\right)=3 / 4-\sqrt{2} / 2 .
$$

Let $A_{1}=\left\{E_{1}, E_{3}\right\}, \quad A_{2}=\left\{E_{2}, E_{3}\right\}, \quad A_{3}=\left\{E_{3}, E_{4}\right\}$.
Show that $\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathrm{P}\left(A_{1}\right) \cdot \mathrm{P}\left(A_{2}\right) \cdot \mathrm{P}\left(A_{3}\right)$ but that A_{1}, A_{2}, A_{3} are not completely independent.
4. (i) A fair die is thrown n times. Let p_{n} be the probability of an even number of sixes in the n throws. (Zero is considered an even number.) Find a relationship between p_{n} and $p_{n-1}, \quad(n \geq 2)$ and hence show that

$$
p_{n}=\frac{1}{2}\left[1+\left(\frac{2}{3}\right)^{n}\right], \quad n \geq 1 .
$$

(ii) In a series of independent trials a player has probabilities $1 / 3,5 / 12$ and $1 / 4$ of scoring 0,1 and 2 points respectively at each trial, the series continuing indefinitely. The scores are added. Let p_{n} be the probability of the player obtaining a total of exactly n points at some stage of play. Find the values of p_{0}, p_{1} and p_{2} and set up a difference equation for $p_{n},(n \geq 3)$. Show that the solution is of the form

$$
p_{n}=\frac{8}{11}+\frac{3}{11}\left(-\frac{3}{8}\right)^{n}, \quad n \geq 1 .
$$

Additional questions (NOT for handing in)

5. Let p_{n} denote the probability that in n tosses of a fair coin no run of three consecutive heads appears. Show that

$$
\begin{aligned}
p_{n} & =\frac{1}{2} p_{n-1}+\frac{1}{4} p_{n-2}+\frac{1}{8} p_{n-3} \\
p_{0} & =p_{1}=p_{2}=1 .
\end{aligned}
$$

Find p_{8}.
(Hint: Condition on the occurrence of the first tail.)
6. Prove that if $A_{1}, A_{2}, \ldots, A_{n}$ are independent events, then

$$
\mathrm{P}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=1=\prod_{i=1}^{n}\left[1-\mathrm{P}\left(A_{i}\right)\right] .
$$

7. A group of n players $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{n}$ sit round a table, and each player in turn, starting with P_{1}, tosses a fair die. The die is passed around the table (making more than one circuit of the table if necessary) until a player throws a six and thereby wins the game. Show that the probability that P_{i} wins the game is

$$
\frac{\frac{1}{6}\left(\frac{5}{6}\right)^{i-1}}{1-\left(\frac{5}{6}\right)^{n}}, \quad i=1, \ldots, n
$$

8. A random number N of fair dice is thrown, where

$$
\mathrm{P}(N=n)=2^{-n}, \quad n \geq 1
$$

Let S denote the sum of the scores on the dice. Find the probability that
(a) $N=2$, given $S=3$;
(b) $S=3$, given N is odd.
9. Each of n urns contains a white balls and b black balls; the urns are numbered 1,2 , \ldots, n. One randomly selected ball is transferred from the first urn into the second, then another from the second into the third, and so on. Finally a ball is drawn at random from the nth urn. Let

$$
p_{r}=\mathrm{P}(\text { white ball drawn from the } r \text { th urn }) .
$$

Express p_{r} in terms of p_{r-1}, a and b for $r=1, \ldots, n$.

