1. A box contains N cards numbered 1 to N; n cards, $n \leq N$, are randomly selected without replacement. Let the random variable X be the largest number selected.
(a) Define an outcome of this experiment. What values can X take? If $X=x$, what can be said about the other numbers selected? Explain why

$$
\mathrm{P}(X=x)=\binom{x-1}{n-1} /\binom{N}{n}
$$

for relevant values of x.
(b) Alternative method Using the fact that the events 'largest number in the sample $\leq y$ ' and 'all numbers in the sample $\leq y$ ' are equivalent, find the cumulative distribution function of X i.e. $\mathrm{P}(X \leq y)$, and hence $\mathrm{P}(X=x)$.
2. (i) Suppose the random variable X has probability function $p(x), \quad x=0, \pm 1, \pm 2, \ldots$. Find the probability functions of the following transformations of X :
(a) $Y=X^{2}$
(b) $W=|X|$
(c) $Z=\operatorname{sgn}(X)= \begin{cases}X /|X|, & X \neq 0 \\ 0, & X=0 .\end{cases}$
(ii) Prove that $\mathrm{E}\left[(X-a)^{2}\right]$ is minimized w.r.t. a when $a=\mathrm{E}(X)$.
3. (i) Let the random variable X have the geometric distribution with parameter p,

$$
\text { i.e. } \mathrm{P}(X=x)=p q^{x-1}, \quad x=1,2, \ldots
$$

(a) Show that $\mathrm{P}(X>m)=q^{m}$, where m is a positive integer.
(b) Show that

$$
\mathrm{P}(X>m+n \mid X>m)=\mathrm{P}(X>n),
$$

where m and n are positive integers i.e. the geometric distribution has the 'no-memory' property.
(ii) Suppose the random variable X takes non-negative integer values, i.e. X is a count random variable. Prove that

$$
\mathrm{E}(X)=\sum_{x=0}^{\infty} \mathrm{P}(X>x)
$$

[Hint: Since all terms in the summation are non-negative, we may rearrange the order of the terms.]
Hence show that the geometric distribution defined in (i) has mean $1 / p$.
4. Let X and Y be independent random variables which have the same geometric distribution:

$$
\mathrm{P}(X=k)=\mathrm{P}(Y=k)=p q^{k}, \quad k=0,1,2, \ldots, ; \quad p+q=1 .
$$

(a) Calculate $\mathrm{P}(X=Y)$.
(b) Show that the conditional distribution of X given $X+Y$ is the discrete uniform distribution, i.e.

$$
\mathrm{P}(X=x \mid X+Y=n)=\frac{1}{n+1}, \quad x=0,1, \ldots, n
$$

(c) If $U=\min (X, Y)$, find the probability distribution of U.
5. In 5 tosses of a fair coin let X, Y and Z be the number of heads, the number of head runs and the length of the longest head run respectively.
(a) Tabulate the 32 outcomes in the sample space

$$
\mathcal{S}=\{H H H H H, H H H H T, \ldots, T T T T T\},
$$

together with the corresponding values of X, Y and Z.
(b) Tabulate the probability functions of the distributions of

$$
(X, Y, Z),(X, Y),(Y, Z), X, Y, Z .
$$

(c) Calculate the correlation coefficient $\rho(Y, Z)$.
(d) Tabulate the probability functions

$$
\{\mathrm{P}(X=x \mid Y=1)\} \text { and }\{\mathrm{P}(Y=y, Z=z \mid X=3)\} .
$$

(e) Tabulate the probability function of the random variable $\mathrm{E}(Y \mid X)$. Hence, or otherwise, calculate $\mathrm{E}[\mathrm{E}(Y \mid X)]$ and verify that it is equal to $\mathrm{E}(Y)$.
6. A prisoner is trapped in a dark cell containing 3 doors. The first door leads to a tunnel that returns him to his cell after 2 days of travel, the second leads to a tunnel that returns him to his cell after 4 days, while the third door leads to freedom after 1 day. If it is assumed that the prisoner will always select doors 1,2 and 3 with probabilities $0.5,0.3$ and 0.2 respectively, what is the expected time for the prisoner to reach freedom?

Additional questions (NOT for handing in)

7. (a) Suppose the discrete random variable X takes the values $1,2, \ldots, 2 N$ and its probability function is symmetrical about the value $\left(N+\frac{1}{2}\right)$. Give a rough sketch of an example of such a probability function and hence write down a probability relationship for $\mathrm{P}(X=x), \quad x=1, \ldots, N$.
Write down a summation expression for $\mathrm{E}\left(X-N-\frac{1}{2}\right)$. By looking at individual terms, calculate $\mathrm{E}\left(X-N-\frac{1}{2}\right)$ and hence find $\mathrm{E}(X)$. Also calculate the median of X.
(b) Suppose the discrete random variable Y takes the values $0,1, \ldots, 2 M$ and its probability function is symmetrical about the value M. Repeat (a) for this distribution.
8. Two people toss a fair coin n times each. Show that, if X_{i} is the number of heads thrown by person i, then

$$
\mathrm{P}\left(X_{1}=X_{2}\right)=\mathrm{P}\left(X_{1}+X_{2}=n\right)
$$

[Hint: use the fact that
$\mathrm{P}($ person throws k heads $)=\mathrm{P}($ person throws k tails $), \quad k=0, \ldots, n$.
Hence show that the probability of the two people throwing equal numbers of heads is

$$
\binom{2 n}{n} /(2)^{2 n}
$$

9. For the random variables X, Y, Z in Question 5, determine also
(a) the probability function of the distribution of (X, Z);
(b) $\rho(X, Y)$ and $\rho(X, Z)$;
(c) the probability function $\{\mathrm{P}(X=x \mid Y=2, Z=2)\}$;
(d) the probability function of the random variable $\mathrm{E}(Z \mid X)$, and hence $\mathrm{E}[\mathrm{E}(Z \mid X)]$ (verifying that it is equal to $\mathrm{E}(Z)$).
10. In a certain dice game, a pair of fair dice are rolled. If the sum of the scores is 7 , the game ends and the player wins 0 . Otherwise, the player has the option of either stopping the game and receiving an amount equal to that sum, or starting over again. Suppose a player adopts a strategy of stopping when a sum greater or equal to k is obtained. What value of k maximises the expected return?
[Hint: Let X_{k} be the return when the critical value k is used. Compute $\mathrm{E}\left(X_{k}\right)$ by conditioning on the value of the sum obtained in the first roll.]
