1. (i) Consider a sequence of n independent Bernoulli trials, each with probability of success p. Let I_{i} denote the indicator random variable associated with a success in the i th trial $(i=1, \ldots, n)$; also let $X=I_{1}+I_{2}+\cdots+I_{n}$.
(a) Define I_{i} and hence find $\mathrm{E}\left(I_{i}\right), \operatorname{Var}\left(I_{i}\right)$. Why are $I_{1}, I_{2}, \ldots, I_{n}$ independent random variables?
(b) What does the random variable X represent? What is the probability distribution of X ? Calculate the mean and variance of X using the results in (a).
(ii) A random sample of size n is drawn, sampling without replacement, from a population of N_{1} type 1 items and N_{2} type 2 items, where $N_{1}+N_{2}=N$. Let the random variable X denote the number of type 1 items in the sample. Let

$$
I_{i}= \begin{cases}1 & \text { if the } i \text { th draw gives a type } 1 \text { item } \\ 0 & \text { otherwise }\end{cases}
$$

(a) Name the probability distribution of X and give its probability function. What is the connection between X and the indicator random variables $I_{1}, I_{2}, \ldots, I_{n}$?
(b) Explain why

$$
\mathrm{P}\left(I_{i}=1\right)=N_{1} / N \text { and } \mathrm{P}\left(I_{i}=1, I_{j}=1\right)=N_{1}\left(N_{1}-1\right) /\{N(N-1)\}, i \neq j .
$$

Then determine $\mathrm{E}\left(I_{i}\right), \operatorname{Var}\left(I_{i}\right)$ and $\operatorname{Cov}\left(I_{i}, I_{j}\right), \quad i \neq j$, and hence find the mean and variance of X.
(iii) Suppose n cards marked $1,2 \ldots, n$ are laid out at random in a row. Let A_{i} be the event that card i appears in the i th position - described as a match in the i th position. Let S_{n} denote the total number of matches. For the indicator random variables $\left\{I_{i}\right\}$ corresponding to the events $\left\{A_{i}\right\}$, show that

$$
\mathrm{E}\left(I_{i}\right)=\frac{1}{n} ; \quad \operatorname{Var}\left(I_{i}\right)=\frac{1}{n}-\frac{1}{n^{2}} ; \quad \operatorname{Cov}\left(I_{i}, I_{j}\right)=\frac{1}{n(n-1)}-\frac{1}{n^{2}}, i \neq j .
$$

Hence show that $\mathrm{E}\left(S_{n}\right)=1$ and $\operatorname{Var}\left(S_{n}\right)=1$.
2. (i) Find the probability generating function (PGF) of the random variable $X \sim \operatorname{Bin}(n, p)$ and hence its mean and variance. If $Y \sim \operatorname{Bin}(m, p)$ and X, Y are independent, find the probability distribution of $X+Y$.
(ii) The count random variable X has PGF

$$
G_{X}(s)=\frac{1-s^{M+1}}{(M+1)(1-s)}
$$

where M is a positive integer. Find the probability function of X.
(iii) A player can score 0,1 or 2 points in a game with respective probabilities $\frac{1}{10}, \frac{6}{10}, \frac{3}{10}$. A sequence of n independent games is played, where n is the value obtained by throwing a fair die. Find the PGF of the total sum of scores obtained by the player and the expected total sum.
3. (i) Let the random variable X have the geometric distribution with parameter p

$$
\text { i.e. } \mathrm{P}(X=x)=p q^{x-1}, \quad x=1,2, \ldots
$$

Show that the PGF of X is

$$
G_{X}(s)=p s /(1-q s), \quad|q s|<1
$$

and hence find the mean and variance of X.
(ii) Consider a sequence of independent Bernoulli trials, each with probability of success p. Let the random variable Z denote the number of trials required for r successes to occur.
(a) Explain why

$$
Z=X_{1}+X_{2}+\cdots+X_{r}
$$

where X_{1}, \ldots, X_{r} are independent random variables, each with the geometric distribution defined in (i).
(b) Explain why the PGF of Z is given by

$$
G_{X}(s)=\{p s /(1-q s)\}^{r}, \quad|q s|<1
$$

and hence show that

$$
\mathrm{P}(Z=z)=\binom{z-1}{r-1} p^{r} q^{z-r}, \quad z=r, r+1, \ldots
$$

Hint: $\quad 1 /(1-a)^{r}=\sum_{i=0}^{\infty}\binom{i+r-1}{i} a^{i}, \quad|a|<1$.
(c) Find the mean and variance of Z.
4. Discrete branching process Consider a population of individuals which can die or reproduce independently of each other with fixed generation time. Suppose the population is of size 1 initially. Let the random variable C denote the number of children of one individual where

$$
\mathrm{P}(C=k)=\left(\frac{1}{2}\right)^{k+1}, \quad k=0,1,2, \ldots
$$

with PGF $G(s)$. Let the random variable X_{n} be the size of the nth generation with PGF $G_{n}(s)$.
(a) Find the PGFs $G_{0}(s), G_{1}(s), G_{2}(s)$ and $G_{3}(s)$.

Hint: Use the result $\quad G_{n}(s)=G_{n-1}(G(s)), \quad n \geq 1$.
(b) Using the principle of induction, prove that

$$
G_{n}(s)=\frac{n-(n-1) s}{(n+1)-n s}, \quad n \geq 1
$$

(c) Hence find $\mathrm{P}\left(X_{n}=0\right)$ and $\mathrm{P}\left(X_{n}=x\right), \quad x \geq 1$. What is the limit of $\mathrm{P}\left(X_{n}=0\right)$ as $n \rightarrow \infty$? Interpret this result.

Additional questions (NOT for handing in)

5. (i) Let I_{A}, I_{B} be the indicator random variables for the events A, B respectively, where $\mathrm{P}(A), \mathrm{P}(B)>0$. Show that

$$
\operatorname{Cov}\left(I_{A}, I_{B}\right)\left\{\begin{array} { l }
{ > 0 , } \\
{ = 0 , } \\
{ < 0 , }
\end{array} \quad \text { if } \mathrm { P } (A | B) \left\{\begin{array}{ll}
> & \\
= & \mathrm{P}(A) . \\
< &
\end{array}\right.\right.
$$

(ii) Consider n events $A_{1}, A_{2}, \ldots A_{n}$. Let X be the number of events which occur and define $Y= \begin{cases}1, & \text { if } X \geq 1 \\ 0, & \text { otherwise. }\end{cases}$
Using indicator r.v.s, prove that $\mathrm{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathrm{P}\left(A_{i}\right)$.
(iii) For the multinomial distribution with parameters $\left\{n ; p_{1}, \ldots, p_{k}\right\}$, prove the result $\operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}$ by an alternative argument, using the formula

$$
\operatorname{Var}\left(X_{i}+X_{j}\right)=\operatorname{Var}\left(X_{i}\right)+\operatorname{Var}\left(X_{j}\right)+2 \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

[Hint: What is the distribution of $X_{i}+X_{j}$?]
6. A bag contains W white balls and B black balls. Balls are taken out one at a time until the first white ball is drawn. Find $\mathrm{E}(X)$, where X is the number of balls withdrawn from the bag.
[Hint: Label the black balls $1,2, \ldots . B$ and let

$$
I_{i}= \begin{cases}1, & \text { if black ball } i \text { is withdrawn before any white ball } \\ 0, & \text { otherwise. }\end{cases}
$$

7. Let X be the total score obtained in 3 rolls of a fair die. Show that

$$
G_{X}(s)=\frac{s^{3}\left(1-s^{6}\right)^{3}}{6^{3}(1-s)^{3}}
$$

and derive the value of $\mathrm{P}(X=14)$. [Use the hint in Qn. 3(ii)(b).]
8. A software representative makes sales to a random number of companies, N, each week, where N is Poisson distributed with parameter $\lambda=\log _{e} 5$. At company i, the representative sells X_{i} items, where each X_{i} has the distribution

$$
p_{k}=\frac{\left(\frac{4}{5}\right)^{k}}{k \log _{e} 5}, \quad k=1,2, \ldots .
$$

and N, X_{1}, X_{2}, \ldots are all independent. Find the PGF of T , the total number of items sold in a week, and hence show that T has the modified geometric distribution with parameter $p=\frac{1}{5}$.
[Hints: $\log _{e}(1-x)=-\sum_{k=1}^{\infty} x^{k} / k \quad$ for $\left.\quad|x|<1 ; \quad e^{-\log _{e} a}=1 / a.\right]$

