SOR 201

Examples 4

- 1. (i) Consider a sequence of n independent Bernoulli trials, each with probability of success p. Let I_i denote the indicator random variable associated with a success in the *i*th trial (i = 1, ..., n); also let $X = I_1 + I_2 + \cdots + I_n$.
 - (a) Define I_i and hence find $E(I_i)$, $Var(I_i)$. Why are I_1, I_2, \ldots, I_n independent random variables ?
 - (b) What does the random variable X represent ? What is the probability distribution of X ? Calculate the mean and variance of X using the results in (a).
 - (ii) A random sample of size n is drawn, sampling without replacement, from a population of N_1 type 1 items and N_2 type 2 items, where $N_1 + N_2 = N$. Let the random variable X denote the number of type 1 items in the sample. Let

$$I_i = \begin{cases} 1 & \text{if the } i \text{th draw gives a type 1 item} \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Name the probability distribution of X and give its probability function. What is the connection between X and the indicator random variables I_1, I_2, \ldots, I_n ?
- (b) Explain why

$$P(I_i = 1) = N_1/N$$
 and $P(I_i = 1, I_j = 1) = N_1(N_1 - 1)/\{N(N - 1)\}, i \neq j.$

Then determine $E(I_i)$, $Var(I_i)$ and $Cov(I_i, I_j)$, $i \neq j$, and hence find the mean and variance of X.

(iii) Suppose n cards marked 1, 2..., n are laid out at random in a row. Let A_i be the event that card *i* appears in the *i*th position – described as a match in the *i*th position. Let S_n denote the total number of matches. For the indicator random variables $\{I_i\}$ corresponding to the events $\{A_i\}$, show that

$$E(I_i) = \frac{1}{n}; \quad Var(I_i) = \frac{1}{n} - \frac{1}{n^2}; \quad Cov(I_i, I_j) = \frac{1}{n(n-1)} - \frac{1}{n^2}, i \neq j.$$

Hence show that $E(S_n) = 1$ and $Var(S_n) = 1$.

- 2. (i) Find the probability generating function (PGF) of the random variable $X \sim Bin(n, p)$ and hence its mean and variance. If $Y \sim Bin(m, p)$ and X, Y are independent, find the probability distribution of X + Y.
 - (ii) The count random variable X has PGF

$$G_X(s) = \frac{1 - s^{M+1}}{(M+1)(1-s)}$$

where M is a positive integer. Find the probability function of X.

(iii) A player can score 0,1 or 2 points in a game with respective probabilities $\frac{1}{10}, \frac{6}{10}, \frac{3}{10}$. A sequence of *n* independent games is played, where *n* is the value obtained by throwing a fair die. Find the PGF of the total sum of scores obtained by the player and the expected total sum.

/continued overleaf

3. (i) Let the random variable X have the geometric distribution with parameter p

i.e.
$$P(X = x) = pq^{x-1}, \qquad x = 1, 2, \dots$$

Show that the PGF of X is

$$G_X(s) = ps/(1-qs), \qquad |qs| < 1$$

and hence find the mean and variance of X.

- (ii) Consider a sequence of independent Bernoulli trials, each with probability of success p. Let the random variable Z denote the number of trials required for r successes to occur.
 - (a) Explain why

$$Z = X_1 + X_2 + \dots + X_n$$

where X_1, \ldots, X_r are independent random variables, each with the geometric distribution defined in (i).

(b) Explain why the PGF of Z is given by

$$G_X(s) = \{ps/(1-qs)\}^r, \qquad |qs| < 1$$

and hence show that

$$P(Z = z) = {\binom{z-1}{r-1}} p^r q^{z-r}, \qquad z = r, r+1, \dots$$

Hint:
$$1/(1-a)^r = \sum_{i=0}^{\infty} {i+r-1 \choose i} a^i, \qquad |a| < 1.$$

(c) Find the mean and variance of Z.

4. <u>Discrete branching process</u> Consider a population of individuals which can die or reproduce independently of each other with fixed generation time. Suppose the population is of size 1 initially. Let the random variable C denote the number of children of one individual where

$$P(C = k) = \left(\frac{1}{2}\right)^{k+1}, \qquad k = 0, 1, 2, \dots$$

with PGF G(s). Let the random variable X_n be the size of the *n*th generation with PGF $G_n(s)$.

- (a) Find the PGFs $G_0(s), G_1(s), G_2(s)$ and $G_3(s)$. *Hint*: Use the result $G_n(s) = G_{n-1}(G(s)), n \ge 1$.
- (b) Using the principle of induction, prove that

$$G_n(s) = \frac{n - (n - 1)s}{(n + 1) - ns}, \qquad n \ge 1.$$

(c) Hence find $P(X_n = 0)$ and $P(X_n = x)$, $x \ge 1$. What is the limit of $P(X_n = 0)$ as $n \to \infty$? Interpret this result.

]

Additional questions (NOT for handing in)

5. (i) Let I_A, I_B be the indicator random variables for the events A, B respectively, where P(A), P(B) > 0. Show that

$$\operatorname{Cov}(I_A, I_B) \begin{cases} > 0, \\ = 0, \\ < 0, \end{cases} \text{ if } \operatorname{P}(A|B) \begin{cases} > \\ = \\ < \end{cases} \operatorname{P}(A).$$

(ii) Consider *n* events $A_1, A_2, ..., A_n$. Let *X* be the number of events which occur and define $Y = \begin{cases} 1, & \text{if } X \ge 1 \\ 0, & \text{otherwise.} \end{cases}$

Using indicator r.v.s, prove that $P\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} P(A_i).$

(iii) For the multinomial distribution with parameters $\{n; p_1, ..., p_k\}$, prove the result $\text{Cov}(X_i, X_j) = -np_ip_j$ by an alternative argument, using the formula

$$\operatorname{Var}(X_i + X_j) = \operatorname{Var}(X_i) + \operatorname{Var}(X_j) + 2\operatorname{Cov}(X_i, X_j).$$

[*Hint*: What is the distribution of $X_i + X_j$?]

6. A bag contains W white balls and B black balls. Balls are taken out one at a time until the first white ball is drawn. Find E(X), where X is the number of balls withdrawn from the bag.

[*Hint*: Label the black balls $1, 2, \dots B$ and let

$$I_i = \begin{cases} 1, & \text{if black ball } i \text{ is withdrawn before any white ball} \\ 0, & \text{otherwise.} \end{cases}$$

7. Let X be the total score obtained in 3 rolls of a fair die. Show that

$$G_X(s) = \frac{s^3(1-s^6)^3}{6^3(1-s)^3}$$

and derive the value of P(X = 14). [Use the hint in Qn. 3(ii)(b).]

8. A software representative makes sales to a random number of companies, N, each week, where N is Poisson distributed with parameter $\lambda = \log_e 5$. At company i, the representative sells X_i items, where each X_i has the distribution

$$p_k = \frac{\left(\frac{4}{5}\right)^k}{k \log_e 5}, \quad k = 1, 2, \dots,$$

and N, X_1, X_2, \dots are all independent. Find the PGF of T, the total number of items sold in a week, and hence show that T has the modified geometric distribution with parameter $p = \frac{1}{5}$.

[*Hints*:
$$\log_e(1-x) = -\sum_{k=1}^{\infty} x^k/k$$
 for $|x| < 1$; $e^{-\log_e a} = 1/a$.]