1. (i) Consider a sequence of independent trials each consisting of placing a ball at random into one of three cells. The system is in state $k$ if exactly $k$ cells are occupied. Show that this system is a Markov chain and find the transition probability matrix $\boldsymbol{P}$.
If initially all cells are empty, find the absolute probability distribution of $X_{2}$ i.e. find $\mathrm{P}\left(X_{2}=k\right),(k=0,1,2,3)$ where $X_{2}=k$ if the system is in state $k$ after 2 trials.
(ii) Let $Y_{1}, Y_{2}, \ldots$ be independent, identically distributed discrete random variables with probability distribution $\left\{\mathrm{P}(Y=k)=a_{k}, \quad k=0,1,2, \ldots\right\}$. Let
$X_{n}=Y_{1}+Y_{2}+\cdots+Y_{n}, \quad n=1,2, \ldots$ and $X_{0}=0$. Show that $\left\{X_{n}\right\}$ is a Markov chain with homogeneous transition probabilities. Find $\boldsymbol{P}$.
(iii) Ehrenfest Model for Diffusion
$M$ molecules are distributed in two urns A and B. At each time point a molecule is chosen at random and moved to the other urn. Let $X_{n}$ denote the number of molecules in urn A immediately after the $n$th exchange. Show that $\left\{X_{0}, X_{1}, \ldots\right\}$ is a Markov chain with homogeneous transition probabilities. Find $\boldsymbol{P}$.
2. (i) Consider a Markov chain based on the two states 0 and 1 with transition probability matrix

$$
\boldsymbol{P}=\left(\begin{array}{cc}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

(a) Calculate $\mathrm{P}\left(X_{n}=1 \mid X_{n-1}=0\right), \mathrm{P}\left(X_{m}=0 \mid X_{m-2}=1\right)$ and $\mathrm{P}\left(X_{r+3}=1 \mid X_{r}=1\right)$.
(b) Given that initially the process is equally likely to be in state 0 or state 1 , calculate $\mathrm{P}\left(X_{1}=1\right), \mathrm{P}\left(X_{2}=1\right), \mathrm{P}\left(X_{3}=1\right)$.
(c) Why can we use Markov's thereom to find an approximation to $\boldsymbol{P}^{n}$ when $n$ is large? Calculate $\boldsymbol{P}^{n}$ as $n \rightarrow \infty$.
(ii) Let $\left\{X_{n}\right\}$ be a Markov chain with state space $0,1,2$, which is initially in state 0 and has transition probability matrix

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{2}{3} & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Find
(a) $\mathrm{P}\left(X_{0}=0, X_{1}=1, X_{2}=1\right)$;
(b) $\mathrm{P}\left(X_{n}=1 \mid X_{n-2}=0\right)$;
(c) the absolute probability distribution of $X_{2}$.
3. (i) Find the types and periods of the states of the Markov chains with the following transition probability matrices :
(a) $\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccccc}\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}\end{array}\right)$
(c) $\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{ccccc}\frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$
(ii) Find $\lim _{n \rightarrow \infty} \boldsymbol{P}^{n}$ where

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4}
\end{array}\right)
$$

4. Consider a sequence of independent Bernoulli trials, each with probability of success $p$. Let the process be in state $i, i=0,1, \ldots,(r-1)$, if $i$ successes have been observed since the trials started, and in state $r$ if at least $r$ successes have been observed.
(a) Considering the two cases $r=1$ and $r>1$ separately, show that the process is a Markov chain with homogeneous transition probabilities and find $\boldsymbol{P}$.
(b) For $\underline{r=1}$, show that, starting from state 0 , absorption is certain and that the mean time to absorption is $1 / p$.
(c) For $\underline{r>1}$, derive a set of equations for $\left\{f_{i r}, i=0, \ldots,(r-1)\right\}$, where $f_{i r}$ denotes the probability of eventual absorption in state $r$, starting from state $i$. Also derive a set of equations for the mean times to absorption given that the process started in states $0,1, \ldots,(r-1)$.

## Additional questions (NOT for handing in)

5. $N$ white balls and $N$ red balls are randomly distributed into two cells (labelled 1 and 2) so that each cell contains $N$ balls. At each subsequent step, one ball is selected at random from each cell and then placed in the other cell. Let $X_{n}$ denote the number of white balls in cell 1 after $n$ steps. Explain why $\left\{X_{n}, n \geq 0\right\}$ is a homogeneous Markov chain, and give its transition probability matrix. State the initial vector of absolute probabilities, and indicate how, for given $N$ and $n$, you would calculate the vector of absolute probabilities after step $n$.
6. A homogeneous Markov chain $\left\{X_{n}: n=0,1, \ldots\right\}$ has states $\{0,1,2\}$ and transition probability matrix

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{3}{4} & 0 & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right)
$$

At time $n=0$, the system is equally likely to be in states 0,1 or 2 .
(a) Find $\mathrm{P}\left(X_{2}=1\right)$ and $\mathrm{P}\left(X_{2}=2\right)$.
(b) Explain why a limiting distribution $\boldsymbol{\pi}$ exists, and determine it.
7. Classify as transient or absorbing the states $\{0,1,2,3,4\}$ of the Markov chain with transition probability matrix

$$
\boldsymbol{P}=\left(\begin{array}{ccccc}
\frac{1}{2} & 0 & \frac{1}{4} & 0 & \frac{1}{4} \\
0 & 1 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & 0 \\
\frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right)
$$

Let $f_{i k}$ denote the probability that the system eventually enters the absorbing state $k$, given that it started in the transient state $i$. Write down (without proof) a set of equations for the probabilities $\left\{f_{i k}\right\}$, and hence determine $f_{i k}$ for each $i$ and $k$. What is the mean time to absorption from each transient state?
8. Classify the states $\{0,1,2,3,4,5\}$ of a Markov chain with transition probability matrix

$$
\boldsymbol{P}=\left(\begin{array}{cccccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{4} & 0 & \frac{1}{2} & \frac{1}{8} & \frac{1}{8} \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4}
\end{array}\right)
$$

