SOR201

Examples 5

1. (i) Consider a sequence of independent trials each consisting of placing a ball at random into one of three cells. The system is in state k if exactly k cells are occupied. Show that this system is a Markov chain and find the transition probability matrix \boldsymbol{P} .

If initially all cells are empty, find the absolute probability distribution of X_2 i.e. find $P(X_2 = k), (k = 0, 1, 2, 3)$ where $X_2 = k$ if the system is in state k after 2 trials.

- (ii) Let Y_1, Y_2, \ldots be independent, identically distributed discrete random variables with probability distribution $\{P(Y = k) = a_k, k = 0, 1, 2, \ldots\}$. Let $X_n = Y_1 + Y_2 + \cdots + Y_n, n = 1, 2, \ldots$ and $X_0 = 0$. Show that $\{X_n\}$ is a Markov chain with homogeneous transition probabilities. Find \boldsymbol{P} .
- (iii) Ehrenfest Model for Diffusion M molecules are distributed in two urns A and B. At each time point a molecule is chosen at random and moved to the other urn. Let X_n denote the number of molecules in urn A immediately after the *n*th exchange. Show that $\{X_0, X_1, \ldots\}$ is a Markov chain with homogeneous transition probabilities. Find \mathbf{P} .
- 2. (i) Consider a Markov chain based on the two states 0 and 1 with transition probability matrix

$$oldsymbol{P} = egin{pmatrix} rac{1}{3} & rac{2}{3} \ rac{1}{2} & rac{1}{2} \end{pmatrix}.$$

- (a) Calculate $P(X_n = 1 | X_{n-1} = 0)$, $P(X_m = 0 | X_{m-2} = 1)$ and $P(X_{r+3} = 1 | X_r = 1)$.
- (b) Given that initially the process is equally likely to be in state 0 or state 1, calculate $P(X_1 = 1), P(X_2 = 1), P(X_3 = 1)$.
- (c) Why can we use Markov's thereom to find an approximation to \mathbf{P}^n when n is large? Calculate \mathbf{P}^n as $n \to \infty$.
- (ii) Let $\{X_n\}$ be a Markov chain with state space 0,1,2, which is initially in state 0 and has transition probability matrix

$$\boldsymbol{P} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Find

- (a) $P(X_0 = 0, X_1 = 1, X_2 = 1);$
- (b) $P(X_n = 1 | X_{n-2} = 0);$
- (c) the absolute probability distribution of X_2 .

/continued overleaf

3. (i) Find the types and periods of the states of the Markov chains with the following transition probability matrices :

(a)
$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 (b)
$$\begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

(c)
$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 (d)
$$\begin{pmatrix} \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

(ii) Find $\lim_{n\to\infty} \boldsymbol{P}^n$ where

$$\boldsymbol{P} = \begin{pmatrix} 0 & 1 & 0 \\ rac{1}{2} & 0 & rac{1}{2} \\ rac{1}{2} & rac{1}{4} & rac{1}{4} \end{pmatrix}.$$

- 4. Consider a sequence of independent Bernoulli trials, each with probability of success p. Let the process be in state $i, i = 0, 1, \ldots, (r-1)$, if i successes have been observed since the trials started, and in state r if at least r successes have been observed.
 - (a) Considering the two cases r = 1 and r > 1 separately, show that the process is a Markov chain with homogeneous transition probabilities and find \boldsymbol{P} .
 - (b) For $\underline{r=1}$, show that, starting from state 0, absorption is certain and that the mean time to absorption is 1/p.
 - (c) For r > 1, derive a set of equations for $\{f_{ir}, i = 0, ..., (r-1)\}$, where f_{ir} denotes the probability of eventual absorption in state r, starting from state i. Also derive a set of equations for the mean times to absorption given that the process started in states 0, 1, ..., (r-1).

Additional questions (NOT for handing in)

- 5. N white balls and N red balls are randomly distributed into two cells (labelled 1 and 2) so that each cell contains N balls. At each subsequent step, one ball is selected at random from each cell and then placed in the other cell. Let X_n denote the number of white balls in cell 1 after n steps. Explain why $\{X_n, n \ge 0\}$ is a homogeneous Markov chain, and give its transition probability matrix. State the initial vector of absolute probabilities, and indicate how, for given N and n, you would calculate the vector of absolute probabilities after step n.
- 6. A homogeneous Markov chain $\{X_n : n = 0, 1, ...\}$ has states $\{0, 1, 2\}$ and transition probability matrix

$$oldsymbol{P} = egin{pmatrix} 0 & rac{1}{2} & rac{1}{2} \ rac{3}{4} & 0 & rac{1}{4} \ rac{1}{4} & rac{1}{4} & rac{1}{2} \end{pmatrix}.$$

- At time n = 0, the system is equally likely to be in states 0, 1 or 2.
- (a) Find $P(X_2 = 1)$ and $P(X_2 = 2)$.
- (b) Explain why a limiting distribution π exists, and determine it.
- 7. Classify as transient or absorbing the states $\{0, 1, 2, 3, 4\}$ of the Markov chain with transition probability matrix

$$oldsymbol{P} = egin{pmatrix} rac{1}{2} & 0 & rac{1}{4} & 0 & rac{1}{4} \ 0 & 1 & 0 & 0 & 0 \ rac{1}{3} & rac{1}{3} & 0 & rac{1}{3} & 0 \ 0 & 0 & 0 & 1 & 0 \ rac{1}{4} & 0 & rac{1}{4} & rac{1}{4} & rac{1}{4} \end{pmatrix}.$$

Let f_{ik} denote the probability that the system eventually enters the absorbing state k, given that it started in the transient state i. Write down (without proof) a set of equations for the probabilities $\{f_{ik}\}$, and hence determine f_{ik} for each i and k. What is the mean time to absorption from each transient state?

8. Classify the states $\{0, 1, 2, 3, 4, 5\}$ of a Markov chain with transition probability matrix

$$\boldsymbol{P} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 & \frac{1}{2} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$