1. (i) Define the cumulative distribution function of a random variable X. Derive the following properties of F :
(a) $F(x) \leq F(y)$ when $x \leq y$;
(b) $F(-\infty)=0, \quad F(+\infty)=1$;
(c) $\mathrm{P}(a<X \leq b)=F(b)-F(a)$.
(ii) Suppose a device either fails instantaneously when turned on or fails eventually because of some continuous ageing process. Let the random variable X denote the time to failure where $\mathrm{P}(X=0)=p>0$ and $\mathrm{P}(0<X \leq x)$ has the same form as the cumulative distribution function of a negative exponential distribution.
(a) Sketch the cumulative distribution function of X. Is it a continuous function?
(b) Find the cumulative distribution function of X.
(iii) Suppose the probability density function of the random variable X is symmetrical about the point a

$$
\text { i.e. } f(a-y)=f(a+y), \quad y \geq 0
$$

Show that

$$
\int_{-\infty}^{a} f(x) d x=\int_{0}^{\infty} f(a-y) d y \quad \text { and } \quad \int_{a}^{\infty} f(x) d x=\int_{0}^{\infty} f(a+y) d y
$$

Hence show that the median of X is a. Using similar transformations, show that the mean of X is also a.
2. (i) A continuous random variable X has cumulative distribution function

$$
F(x)=1-\exp \left(-x^{2} / 2\right), \quad x \geq 0
$$

Derive the probability density function of X and then find the mean, variance, median and mode of the distribution. Give a rough sketch of the probability density function.
Hint : Use the Gamma function in calculating the mean and variance.
(ii) If the random variable X has probability density function

$$
f_{X}(x)= \begin{cases}k x^{p-1} /(1+x)^{p+q}, & x \geq 0 ; \quad p, q>0 \\ 0, & \text { otherwise }\end{cases}
$$

find the probability density function of $Y=1 /(1+X)$.
(iii) Suppose the continuous random variable X has the uniform distribution on $[0,1]$

$$
\text { i.e. } f_{X}(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the probability density function of $Y=\log _{e}\{1 /(1-X)\}$.
(iv) Suppose X is a continuous random variable with cumulative distribution function $F_{X}(x),-\infty<x<\infty$. Show that $Y=F_{X}(X)$ is uniformly distributed on $[0,1]$.
3. (i) Find the probability density function of $Y=X^{2}$ when the probability density function of X is given by
(a) $\quad f_{X}(x)=2 x \exp \left(-x^{2}\right), \quad 0 \leq x<\infty$;
(b) $\quad f_{X}(x)=(1+x) / 2, \quad-1 \leq x \leq 1$;
(c) $\quad f_{X}(x)=1 / 2, \quad-1 / 2 \leq x \leq 3 / 2$.
(ii) Suppose $Z \sim \mathrm{~N}(0,1)$. Show that $V=Z^{2}$ has the χ^{2} distribution with 1 degree of freedom.

$f_{V}(v)=v^{r / 2-1} \exp (-v / 2) /\left\{2^{r / 2} \Gamma(r / 2)\right\}, \quad v \geq 0 ; r$ a positive integer: $\Gamma(1 / 2)=\sqrt{\pi}$.
(iii) Suppose the random variable X is uniformly distributed on $[0,1]$

$$
\text { i.e. } f_{X}(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the probability density function and cumulative distribution function of $Y=X^{\alpha}$, where α may be positive or negative.
Sketch the probability density function of Y when $\alpha=-1, \frac{1}{2}, 2$.
4. (i) Normal distribution Let $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.
(a) Prove that

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=1
$$

Hint : Change the integral into a Gamma function integral.
(b) Prove that the random variable $W=a+b X$ is distributed $\mathrm{N}\left(a+b \mu, b^{2} \sigma^{2}\right)$.
(ii) Negative exponential distribution Let the probability density function of X be

$$
f(x)=\lambda e^{-\lambda x}, \quad x \geq 0 ; \quad \lambda>0
$$

(a) Using the Gamma function, find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
(b) Show that the negative exponential distribution possesses the 'no memory' property i.e. for any $s, t>0, \quad \mathrm{P}(X>s+t \mid X>s)=\mathrm{P}(X>t)$.
(iii) Gamma distribution Let the probability density function of X be

$$
f(x)=\frac{\lambda^{\alpha} x^{\alpha-1} \exp (-\lambda x)}{\Gamma(\alpha)}, \quad x \geq 0 ; \quad \alpha, \lambda>0
$$

(a) Find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
(b) Write down the probability density function of the χ^{2} distribution with r degrees of freedom and its mean and variance.
(iv) Beta distribution Let $X \sim \operatorname{Beta}(a, b)$

$$
\text { i.e. } f_{X}(x)=x^{a-1}(1-x)^{b-1} / B(a, b), \quad 0 \leq x \leq 1 ; \quad a, b>0
$$

(a) Find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
(b) Show that $Y=1-X$ is also Beta distributed.
(c) Suppose the random variable W is defined over the finite interval [A,B], and is zero elsewhere, and the probability density function of W has the same shape as that of X. What is the relationship between W and X ? Hence find the probability density function of W.
(v) Weibull distribution The cumulative distribution function of the two-parameter Weibull distribution is

$$
F(x)= \begin{cases}1-\exp \left\{-\left(\frac{x}{b}\right)^{c}\right\}, & x \geq 0 ; \quad b, c>0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the probability density function of X and hence its mean value.
(b) Calculate the survival function, hazard function and hazard rate function for this distribution. How does the hazard rate function behave for $c<1, c=1, c>1$?

