SOR201

Examples 7

1. (i) Suppose the continuous random variables (X, Y, Z) have joint

$$f(x, y, z) = Kxyz^2, \qquad 0 \le x, y \le 1, \quad 0 \le z \le 3.$$

- (a) Show that the constant $K = \frac{4}{9}$.
- (b) Find the marginal probability density function of Y and hence show that $E(Y) = \frac{2}{3}$.
- (c) Show that the marginal joint probability density function of (X, Z) is

$$f_{X,Z}(x,z) = \frac{2}{9}xz^2, \qquad 0 \le x \le 1, \quad 0 \le z \le 3.$$

- (d) Find the conditional distribution of Y given $X = \frac{1}{2}, Z = 1$ and hence find $E(Y|X = \frac{1}{2}, Z = 1)$.
- (ii) The joint probability density function of the random variables (X, Y) is

$$f(x,y) = K(1-x)^{\alpha} y^{\beta}, \qquad 0 \le x \le 1, \quad 0 \le y \le x; \qquad \alpha, \beta > -1.$$

- (a) Sketch the area of the (x, y) plane where f(x, y) is positive.
- (b) Explain why the marginal distribution of X has probability density function r^{x}

$$g(x) = \int_0^x K(1-x)^{\alpha} y^{\beta} \, dy, \qquad 0 \le x \le 1.$$

Calculate g(x) and hence find K in terms of α, β and a Beta function. Find the conditional probability density function f(y|x) and hence calculate E(Y|x).

- (c) Similarly calculate the marginal probability density function of Y, h(y), and the conditional probability density function f(x|y). Indicate how to calculate E(X|y).
- 2. Suppose the random variables X and Y are independent and are Gamma distributed with parameters (α, λ) and (β, λ) respectively

i.e.
$$f_X(x) = \frac{\lambda^{\alpha} x^{\alpha-1} \exp(-\lambda x)}{\Gamma(\alpha)}, \qquad x \ge 0; \quad \alpha, \lambda > 0,$$

with a similar expression for $f_Y(y)$.

- (a) By calculating the joint probability density function of X + Y and X/Y, show that these random variables are independent and that X + Y has the Gamma $(\alpha + \beta, \lambda)$ distribution. Find the probability density function of X/Y. Why are X + Y and Y/X independent? What is the probability density function of Y/X?
- (b) Hence show that X/(X+Y) and X+Y are independent and that X/(X+Y) is Beta distributed.
- (c) What are the corresponding results for the negative exponential distribution?
- (d) What are the corresponding results for the χ^2 distribution?

- 3. (i) Let X and Y be independent continuous random variables with respective probability density functions $f_X(x)$, $-\infty < x < \infty$, and $f_Y(y)$, $-\infty < y < \infty$. Show that
 - (a) the probability density function of U = XY is

$$\int_{-\infty}^{\infty} f_X(u/v) f_Y(v) |1/v| \, dv = \int_{-\infty}^{\infty} f_X(v) f_Y(u/v) |1/v| \, dv;$$

(b) the probability density function of U = X/Y is

$$\int_{-\infty}^{\infty} f_X(uv) f_Y(v) |v| \, dv;$$

(c) the probability density function of U = X + Y is

$$\int_{-\infty}^{\infty} f_X(v) f_Y(u-v) \, dv = \int_{-\infty}^{\infty} f_X(u-v) f_Y(v) \, dv.$$

(ii) Let X and Y be independent random variables, each distributed uniformly on [0,1]:

i.e.
$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

with a similar expression for $f_Y(y)$.

Using part (i), or otherwise, find the probability density functions of

(a) XY (b) X/Y (c) X + Y.

4. (i) Suppose that X_1, X_2, X_3 are independent, identically distributed $N(\mu, \sigma^2)$ random variables. Derive the joint probability density function of

$$U = X_1 - X_3,$$
 $V = X_2 - X_3,$ $W = X_1 + X_2 + X_3 - 3\mu$

and hence obtain the joint probability density function of (U, V).

- (ii) Let Z_1, Z_2, \ldots, Z_n be independent N(0,1) random variables.
 - (a) Let (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) be such that

$$\sum_{i=1}^{n} a_i^2 = \sum_{i=1}^{n} b_i^2 = 1, \qquad \sum_{i=1}^{n} a_i b_i = 0.$$

Define

$$Y_1 = \sum_{i=1}^n a_i Z_i, \quad Y_2 = \sum_{i=1}^n b_i Z_i, \quad W = \sum_{i=1}^n Z_i^2 - \{\sum_{i=1}^n a_i Z_i\}^2 - \{\sum_{i=1}^n b_i Z_i\}^2.$$

Explain why Y_1, Y_2 and W are independent random variables with $Y_1, Y_2 \sim N(0, 1)$ and $W \sim \chi^2(n-2)$.

(b) Let X_1, X_2, \ldots, X_n be independent $N(\mu, \sigma^2)$ random variables. Define the sample mean random variable \overline{X} and the sample variance random variable S^2 .

Quoting any relevant results for the random variables Z_1, Z_2, \ldots, Z_n , prove that \overline{X} and S^2 are independent random variables and derive the distributions of \overline{X} , S^2 and $(\overline{X} - \mu)/\sqrt{S^2/n}$.