1. (i) Suppose the continuous random variables (X, Y, Z) have joint

$$
f(x, y, z)=K x y z^{2}, \quad 0 \leq x, y \leq 1, \quad 0 \leq z \leq 3
$$

(a) Show that the constant $K=\frac{4}{9}$.
(b) Find the marginal probability density function of Y and hence show that $\mathrm{E}(Y)=\frac{2}{3}$.
(c) Show that the marginal joint probability density function of (X, Z) is

$$
f_{X, Z}(x, z)=\frac{2}{9} x z^{2}, \quad 0 \leq x \leq 1, \quad 0 \leq z \leq 3 .
$$

(d) Find the conditional distribution of Y given $X=\frac{1}{2}, Z=1$ and hence find $\mathrm{E}\left(Y \left\lvert\, X=\frac{1}{2}\right., Z=1\right)$.
(ii) The joint probability density function of the random variables (X, Y) is

$$
f(x, y)=K(1-x)^{\alpha} y^{\beta}, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq x ; \quad \alpha, \beta>-1
$$

(a) Sketch the area of the (x, y) plane where $f(x, y)$ is positive.
(b) Explain why the marginal distribution of X has probability density function

$$
g(x)=\int_{0}^{x} K(1-x)^{\alpha} y^{\beta} d y, \quad 0 \leq x \leq 1
$$

Calculate $g(x)$ and hence find K in terms of α, β and a Beta function. Find the conditional probability density function $f(y \mid x)$ and hence calculate $\mathrm{E}(Y \mid x)$.
(c) Similarly calculate the marginal probability density function of $Y, h(y)$, and the conditional probability density function $f(x \mid y)$. Indicate how to calculate $\mathrm{E}(X \mid y)$.
2. Suppose the random variables X and Y are independent and are Gamma distributed with parameters (α, λ) and (β, λ) respectively

$$
\text { i.e. } f_{X}(x)=\frac{\lambda^{\alpha} x^{\alpha-1} \exp (-\lambda x)}{\Gamma(\alpha)}, \quad x \geq 0 ; \quad \alpha, \lambda>0
$$

with a similar expression for $f_{Y}(y)$.
(a) By calculating the joint probability density function of $X+Y$ and X / Y, show that these random variables are independent and that $X+Y$ has the Gamma $(\alpha+\beta, \lambda)$ distribution. Find the probability density function of X / Y. Why are $X+Y$ and Y / X independent? What is the probability density function of Y / X ?
(b) Hence show that $X /(X+Y)$ and $X+Y$ are independent and that $X /(X+Y)$ is Beta distributed.
(c) What are the corresponding results for the negative exponential distribution?
(d) What are the corresponding results for the χ^{2} distribution?
3. (i) Let X and Y be independent continuous random variables with respective probability density functions $f_{X}(x),-\infty<x<\infty$, and $f_{Y}(y),-\infty<y<\infty$. Show that
(a) the probability density function of $U=X Y$ is

$$
\int_{-\infty}^{\infty} f_{X}(u / v) f_{Y}(v)|1 / v| d v=\int_{-\infty}^{\infty} f_{X}(v) f_{Y}(u / v)|1 / v| d v
$$

(b) the probability density function of $U=X / Y$ is

$$
\int_{-\infty}^{\infty} f_{X}(u v) f_{Y}(v)|v| d v
$$

(c) the probability density function of $U=X+Y$ is

$$
\int_{-\infty}^{\infty} f_{X}(v) f_{Y}(u-v) d v=\int_{-\infty}^{\infty} f_{X}(u-v) f_{Y}(v) d v
$$

(ii) Let X and Y be independent random variables, each distributed uniformly on $[0,1]$:

$$
\text { i.e. } f_{X}(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

with a similar expression for $f_{Y}(y)$.
Using part (i), or otherwise, find the probability density functions of
(a) $X Y$
(b) X / Y
(c) $X+Y$.
4. (i) Suppose that X_{1}, X_{2}, X_{3} are independent, identically distributed $\mathrm{N}\left(\mu, \sigma^{2}\right)$ random variables. Derive the joint probability density function of

$$
U=X_{1}-X_{3}, \quad V=X_{2}-X_{3}, \quad W=X_{1}+X_{2}+X_{3}-3 \mu
$$

and hence obtain the joint probability density function of (U, V).
(ii) Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be independent $\mathrm{N}(0,1)$ random variables.
(a) Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be such that

$$
\sum_{i=1}^{n} a_{i}^{2}=\sum_{i=1}^{n} b_{i}^{2}=1, \quad \sum_{i=1}^{n} a_{i} b_{i}=0 .
$$

Define

$$
Y_{1}=\sum_{i=1}^{n} a_{i} Z_{i}, \quad Y_{2}=\sum_{i=1}^{n} b_{i} Z_{i}, \quad W=\sum_{i=1}^{n} Z_{i}^{2}-\left\{\sum_{i=1}^{n} a_{i} Z_{i}\right\}^{2}-\left\{\sum_{i=1}^{n} b_{i} Z_{i}\right\}^{2} .
$$

Explain why Y_{1}, Y_{2} and W are independent random variables with $Y_{1}, Y_{2} \sim \mathrm{~N}(0,1)$ and $W \sim \chi^{2}(n-2)$.
(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent $\mathrm{N}\left(\mu, \sigma^{2}\right)$ random variables. Define the sample mean random variable \bar{X} and the sample variance random variable S^{2}.
Quoting any relevant results for the random variables $Z_{1}, Z_{2}, \ldots, Z_{n}$, prove that \bar{X} and S^{2} are independent random variables and derive the distributions of \bar{X}, S^{2} and $(\bar{X}-\mu) / \sqrt{S^{2} / n}$.

