1. Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order statistic random variables associated with random samples of size n from the uniform distribution on $[0,1]$

$$
\text { i.e. with p.d.f. } f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise. }\end{cases}
$$

(a) Show that the probability density function of $X_{(i)}$ is

$$
f_{(i)}(x)=n!/\{(i-1)!(n-i)!\} x^{i-1}(1-x)^{n-i}, \quad 0 \leq x \leq 1
$$

and hence show that

$$
\mathrm{E}\left(X_{(i)}\right)=p_{i}, \quad \operatorname{Var}\left(X_{(i)}\right)=p_{i} q_{i} /(n+2)
$$

where $p_{i}=i /(n+1), \quad q_{i}=1-p_{i}$.

$$
\begin{gathered}
\text { Hints : } \quad \int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=B(a, b)=\Gamma(a) \Gamma(b) / \Gamma(a+b), \quad a, b>0 \\
\Gamma(n+1)=n!, \quad n \geq 0
\end{gathered}
$$

(b) Find the joint probability density function of $\left(X_{(i)}, X_{(j)}\right), \quad i<j$.
(c) Find the joint probability density function of (R, W) where $R=X_{(n)}-X_{(1)}$ and $W=X_{(1)}$. Hence show that the probability density function of R is

$$
f_{R}(r)=n(n-1) r^{n-2}(1-r), \quad 0 \leq r \leq 1
$$

and hence calculate $\mathrm{E}(R)$ and $\operatorname{Var}(R)$.
2. (i) Show that the MGF of the negative exponential distribution with probability density function

$$
f_{X}(x)=\lambda e^{-\lambda x}, \quad x \geq 0 ; \quad \lambda>0
$$

is given by

$$
M_{X}(\theta)=\lambda /(\lambda-\theta), \quad \theta<\lambda
$$

Hence find the mean and variance of the above distribution.
(ii) (a) If X_{1}, \ldots, X_{n} are independent random variables, each distributed with the probability density function in (i), show that $W=X_{1}+X_{2}+\cdots+X_{n}$ has the Gamma (n, λ) distribution i.e. shape or index parameter n and scale parameter λ.
Hint : The Gamma (α, λ) distribution has probability density function

$$
f_{U}(u)=\frac{\lambda^{\alpha} u^{\alpha-1} \exp (-\lambda u)}{\Gamma(\alpha)}, \quad u \geq 0 ; \quad \alpha, \lambda>0
$$

(b) Using MGF, find the distribution of $\bar{X}=\sum_{i=1}^{n} X_{i} / n$.
(c) If $U_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \lambda\right), \quad U_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \lambda\right)$ and U_{1}, U_{2} are independent random variables, prove that

$$
U_{1}+U_{2} \sim \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \lambda\right)
$$

3. (i) Let Y be distributed uniformly on $[a, b]$

$$
\text { i.e. } f_{Y}(y)= \begin{cases}1 /(b-a), & a \leq y \leq b \\ 0, & \text { otherwise }\end{cases}
$$

Find the MGF of Y and hence calculate $\mathrm{E}(Y)$ and $\operatorname{Var}(Y)$.
(ii) Suppose that X_{1}, \ldots, X_{n} are independent random variables, each distributed uniformly on $[0,1]$.
(a) Show that X_{i} has MGF $\left(e^{\theta}-1\right) / \theta$.
(b) Show that the MGF of $\bar{X}=\sum_{i=1}^{n} X_{i} / n$ is given by

$$
M_{\bar{X}}(\theta)=[\{\exp (\theta / n)-1\} /(\theta / n)]^{n}
$$

(c) By expanding $\log _{e} M_{\bar{X}}(\theta)$ in a power series in θ, show that

$$
M_{\bar{X}}(\theta)=\exp \left\{\theta / 2+\theta^{2} /(24 n)+O\left(1 / n^{2}\right)\right\} \quad \text { for large } n
$$

Hence find an approximation to the distribution of \bar{X} when n is large.
Hints : $\log _{e}(1+a)=a-\frac{1}{2} a^{2}+\frac{1}{3} a^{3}-\cdots$ provided $|a|<1$.

$$
\text { MGF of } \mathrm{N}\left(\mu, \sigma^{2}\right) \text { is } \exp \left(\mu \theta+\frac{1}{2} \sigma^{2} \theta^{2}\right)
$$

4. (i) Suppose that X_{1}, \ldots, X_{n} are independent random variables, where $X_{i} \sim \mathrm{~N}\left(\mu_{i}, \sigma_{i}^{2}\right)$, $(i=1, \ldots, n)$. Using MGF, prove that

$$
W=\sum_{i=1}^{n} a_{i} X_{i} \sim \mathrm{~N}\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)
$$

In particular, if $X_{i} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right),(i=1, \ldots, n)$, prove that the sample mean random variable $\bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2} / n\right)$.
Hint : MGF of $\mathrm{N}\left(\mu, \sigma^{2}\right)$ is $\exp \left(\mu \theta+\frac{1}{2} \sigma^{2} \theta^{2}\right)$.
(ii) Define the bivariate MGF of the continuous random variables $\left(X_{1}, X_{2}\right)$ with joint probability density function $f\left(x_{1}, x_{2}\right), \infty<x_{1}, x_{2}<\infty$.
If $\left(X_{1}, X_{2}\right) \sim \mathrm{N}\left(\mu_{1}, \mu_{2} ; \sigma_{1}^{2}, \sigma_{2}^{2} ; \rho\right)$, their MGF is

$$
M_{X_{1}, X_{2}}\left(\theta_{1}, \theta_{2}\right)=\exp \left\{\mu_{1} \theta_{1}+\mu_{2} \theta_{2}+\frac{1}{2}\left(\sigma_{1}^{2} \theta_{1}^{2}+2 \rho \sigma_{1} \sigma_{2} \theta_{1} \theta_{2}+\sigma_{2}^{2} \theta_{2}^{2}\right)\right\}
$$

(a) Calculate $\mathrm{E}\left(X_{i}\right), \operatorname{Var}\left(X_{i}\right),(i=1,2)$ and the correlation between X_{1} and X_{2}.
(b) Find the distribution of $a_{1} X_{1}+a_{2} X_{2}$.
(iii) Let X_{1}, X_{2}, \ldots be a sequence of independent random variables, each distributed Poisson(1).
(a) What is the distribution of $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$?
(b) What is the limit of the cumulative distribution function of $\left(S_{n}-n\right) / \sqrt{n}$ as $n \rightarrow \infty$?
(c) By finding the limit of $\mathrm{P}\left(S_{n} \leq n\right)$ as $n \rightarrow \infty$, prove that

$$
e^{-n}\left(1+n+\frac{n^{2}}{2!}+\cdots+\frac{n^{n}}{n!}\right) \rightarrow \frac{1}{2} \quad \text { as } n \rightarrow \infty
$$

