1. (i) $\mathrm{P}(A)=\mathrm{P}((A \cap B) \cup(A \cap \bar{B}))=\mathrm{P}(A \cap B)+\mathrm{P}(A \cap \bar{B}) \quad$ [m.e. events: axiom 3] i.e. $\quad \mathrm{P}(A \cap \bar{B})=\mathrm{P}(A)-\mathrm{P}(A \cap B)$.
(ii) $\mathrm{P}(\bar{A} \cap \bar{B})=\mathrm{P}(\overline{A \cup B})=1-\mathrm{P}(A \cup B)$

$$
=1-\mathrm{P}(A)-\mathrm{P}(B)+\mathrm{P}(A \cap B)
$$

[complementarity rule]
[addition law]
(iii) $\mathrm{P}($ exactly one of A, B occurs $)=\mathrm{P}((A \cap \bar{B}) \cup(\bar{A} \cap B))$

$$
\begin{array}{lr}
=\mathrm{P}(A \cap \bar{B})+\mathrm{P}(\bar{A} \cap B) & \text { [m.e. events: axiom 3] } \\
=\mathrm{P}(A)-\mathrm{P}(A \cap B)+\mathrm{P}(B)-\mathrm{P}(B \cap A) & \text { [using part (i) result] } \\
=\mathrm{P}(A)+\mathrm{P}(B)-2 \mathrm{P}(A \cap B) . &
\end{array}
$$

(iv) $\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B)=\mathrm{P}(A)-\mathrm{P}(A \cap \bar{B})-\mathrm{P}(A) \mathrm{P}(B) \quad$ [from part (i)]

$$
\begin{aligned}
& =\mathrm{P}(A)[1-\mathrm{P}(B)]-\mathrm{P}(A \cap \bar{B}) \\
& =\mathrm{P}(A) \mathrm{P}(\bar{B})-\mathrm{P}(A \cap \bar{B}) . \quad[(\text { complementarity rule }]
\end{aligned}
$$

The second result follows from symmetry: alternatively, using the first result,

$$
\begin{aligned}
\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B) & =\mathrm{P}(B \cap A)-\mathrm{P}(B) \mathrm{P}(A) \\
& =\mathrm{P}(B) \mathrm{P}(\bar{A})-\mathrm{P}(B \cap \bar{A}) \\
& =\mathrm{P}(\bar{A}) \mathrm{P}(B)-\mathrm{P}(\bar{A} \cap B) .
\end{aligned}
$$

To prove the third result:

$$
\begin{array}{rlrl}
\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B) & =\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cup B)-\mathrm{P}(A) \mathrm{P}(B) \text { [addn. law] } \\
= & 1-\mathrm{P}(\bar{A})+1-\mathrm{P}(\bar{B})-\mathrm{P}(A \cup B) \\
& -(1-\mathrm{P}(\bar{A}))(1-\mathrm{P}(\bar{B})) & \text { [complementarity] } \\
& =1-\mathrm{P}(\bar{A}) \mathrm{P}(\bar{B})-\mathrm{P}(A \cup B) & \text { [after cancellation] } \\
& =\mathrm{P}(\overline{A \cup B})-\mathrm{P}(\bar{A}) \mathrm{P}(\bar{B}) . & & \text { [complementarity] }
\end{array}
$$

2. (i)

$$
\begin{aligned}
\mathrm{P}\left(\bigcup_{i=1}^{n} A_{i}\right) & =1-\mathrm{P}\left(\overline{\bigcup_{i=1}^{n} A_{i}}\right) \\
& =1-\mathrm{P}\left(\bigcap_{i=1}^{n} \bar{A}_{i}\right) . \\
\mathrm{P}\left(\bigcap_{i=1}^{n} A_{i}\right) & =1-\mathrm{P}\left(\overline{\bigcap_{i=1}^{n} A_{i}}\right) \\
& =1-\mathrm{P}\left(\bigcup_{i=1}^{n} \bar{A}_{i}\right) .
\end{aligned}
$$

[complementarity rule] [de Morgan, (1.8) in notes] [complementarity rule] [de Morgan, (1.9) in notes]
(ii) (a) Since

$$
\begin{array}{rlr}
\mathrm{P}\left(A_{1} \cup A_{2}\right) & =\mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right)-\mathrm{P}\left(A_{1} \cap A_{2}\right) \quad \quad \text { [addition law] } \\
& \leqslant \mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right), \quad[\text { by axiom } \mathrm{P}(\cdot) \geqslant 0] \quad \tag{1}
\end{array}
$$

the result holds for $n=2$.
Now suppose that it holds for $n=m(\geqslant 2)$, i.e. that

$$
\begin{equation*}
\mathrm{P}\left(A_{1} \cup \ldots \cup A_{m}\right) \leqslant \sum_{i=1}^{m} \mathrm{P}\left(A_{i}\right) \tag{2}
\end{equation*}
$$

Then

$$
\begin{array}{rlr}
\mathrm{P}\left(\left[A_{1} \cup \ldots \cup A_{m}\right] \cup A_{m+1}\right) & \leqslant \mathrm{P}\left(A_{1} \cup \ldots \cup A_{m}\right)+\mathrm{P}\left(A_{m+1}\right) & {[\text { using }(1)]} \\
& \leqslant \sum_{i=1}^{m} \mathrm{P}\left(A_{i}\right)+\mathrm{P}\left(A_{m+1}\right) & {[\text { using }(2)]} \\
& =\sum_{i=1}^{m+1} \mathrm{P}\left(A_{i}\right) &
\end{array}
$$

i.e. the result holds for $n=m+1$. So by induction it holds for all $n \geqslant 2$.
[Note: this result concerns one side of the Bonferroni inequality ((1.17a) in lecture notes): for the other side, see Qn. 6 below.]
(b) We have that

$$
\begin{align*}
\mathrm{P}\left(\bigcap_{i=1}^{n} A_{i}\right) & =1-\mathrm{P}\left(\bigcup_{i=1}^{n} \bar{A}_{i}\right) \tag{i}\\
& \geqslant 1-\sum_{i=1}^{n} \mathrm{P}\left(\bar{A}_{i}\right) \\
& =1-\sum_{i=1}^{n}\left\{1-\mathrm{P}\left(A_{i}\right)\right\} \\
& =\sum_{i=1}^{n} \mathrm{P}\left(A_{i}\right)-(n-1)
\end{align*}
$$

[from part (ii)(a)]
[complementarity]
3. (i) (a) List total sample space and count favourable outcomes

Outcome $=(a, b, c)$, where a is the floor at which A gets out, etc.

A	B	C	A	B	C	A	B	C
1	1	1	2	1	1	3	1	1
1	1	2	2	1	2	3	1	2*
1	1	3	2	1	$3 *$	3	1	3
1	2	1	2	2	1	3	2	1*
1	2	2	2	2	2	3	2	2
1	2	3*	2	2	3	3	2	3
1	3	1	2	3	1*	3	3	1
1	3	2*	2	3	2	3	2	2
1	3	3	2	3	3	3	2	2

Favourable outcomes are marked *
So $\quad \mathrm{P}($ one person gets out at each floor $)=6 / 27=2 / 9$
(since the outcomes are equally likely).
(b) Enumerate sample space and favourable outcomes

The favourable outcomes are the arrangements of $1,2,3$: there are $3!=6$ such arrangements.
Total number of outcomes $=3 \times 3 \times 3=27$.
So required probability $=6 / 27=2 / 9$.
(ii) From lecture notes (page 11):

$$
p=(1-a)(1-2 a) \ldots(1-(n-1) a), \quad \text { where } a=1 / 365 \text {. }
$$

So $\quad \log _{e} p=\sum_{r=1}^{n-1} \log _{e}(1-r a)$.
For small positive $x, \log _{e}(1-x) \approx-x$.
So $\quad \log _{e} p \approx-\sum_{r=1}^{n-1} r a=-a \sum_{r=1}^{n-1} r=-\frac{n(n-1)}{2} a=-\frac{n(n-1)}{730}$.
For $n=30$:

$$
\log _{e} p \approx-\frac{30 \times 29}{730}=-1.1918
$$

so $\quad p \approx 0.3037$.
(The exact value is $p=0.294$.)
4. (a) $\quad \mathrm{P}\left(A_{i}\right)=\frac{\binom{2}{2}\binom{18}{2}}{\binom{20}{4}}=\frac{4 \times 3}{20 \times 19}=\frac{3}{95}$.

By symmetry this result holds for $i=1, \ldots, 10$.

For $i \neq j: \quad \mathrm{P}\left(A_{i} \cap A_{j}\right)=\frac{\binom{2}{2}\binom{2}{2}\binom{16}{0}}{\binom{20}{4}}=\frac{1}{4845}$.

Again by symmetry this result holds for $i, j=1, \ldots, 10 ; i \neq j$.
Also $\quad \mathrm{P}\left(A_{i} \cap A_{j} \cap A_{k}\right)=0, \quad i \neq j \neq k$;

$$
\mathrm{P}\left(A_{i} \cap A_{j} \cap A_{k} \cap A_{l}\right)=0 ; \quad i \neq j \neq k \neq l \quad \text { etc. }
$$

Then

$$
\begin{aligned}
\mathrm{P}(\text { at least one pair }) & =\mathrm{P}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{10}\right) \\
& =\sum_{i=1}^{10} \mathrm{P}\left(A_{i}\right)-\sum_{1 \leqslant i<j \leqslant 10} \mathrm{P}\left(A_{i} \cap A_{j}\right) \\
& =10 \times \frac{3}{95}-\binom{10}{2} \times \frac{1}{4845}=\frac{99}{323} \approx \underline{0.31} .
\end{aligned}
$$

(b) If no pair is selected, then the selection consists of one from each of 4 different pairs. The number of such selections is $\binom{10}{4} 2^{4}$. The total number of possible (equally likely) selections is $\binom{20}{4}$. So

$$
\mathrm{P}(\text { no pair })=\frac{\binom{10}{4} 2^{4}}{\binom{20}{4}}=\frac{224}{323} .
$$

So $\mathrm{P}($ at least one pair $)=1-\frac{224}{323}=\frac{99}{323} \quad$ (as in (a)).
(c) To find P (exactly one pair): the one pair can be chosen in 10 ways, and the other 2 shoes in $\binom{9}{2} 2^{2}$ ways. So

$$
\mathrm{P}(\text { exactly one pair })=\frac{10 \times\binom{ 9}{2} 2^{2}}{\binom{20}{4}}=\frac{96}{323} .
$$

5. Number the 3 favourite dinosaurs 1,2,3. Let
A_{i} : dinosaur i not found in purchase of 6 packets $(i=1,2,3)$.
The required probability is

$$
\begin{aligned}
\mathrm{P}\left(\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3}\right) & =1-\mathrm{P}\left(\overline{\bar{A}}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3}\right) \\
& =1-\mathrm{P}\left(A_{1} \cup A_{2} \cup A_{3}\right) .
\end{aligned}
$$

[de Morgan: eqn. (1.9) of notes]
Now

$$
\mathrm{P}\left(A_{1} \cup A_{2} \cup A_{3}\right)=\sum_{i=1}^{3} \mathrm{P}\left(A_{i}\right)-\sum_{1 \leqslant i<j \leqslant 3} \mathrm{P}\left(A_{i} \cap A_{j}\right)+\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right),
$$

where

$$
\begin{array}{rlrl}
\mathrm{P}\left(A_{i}\right) & =\left(\frac{4}{5}\right)^{6}, & & {\left[\text { by combinatorial argument: } \frac{4 \times 4 \times 4 \times 4 \times 4 \times 4}{5 \times 5 \times 5 \times 5 \times 5 \times 5}\right.} \\
\mathrm{P}\left(A_{i} \cap A_{j}\right) & =\left(\frac{3}{5}\right)^{6}, \quad i \neq j & & \text { or using multiplication law for independent events] } \\
\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right) & =\left(\frac{2}{5}\right)^{6} . &
\end{array}
$$

So the required probability is $\quad 1-3\left(\frac{4}{5}\right)^{6}+3\left(\frac{3}{5}\right)^{6}-\left(\frac{2}{5}\right)^{6}$.
6. The result is true (as an equality) for $n=2$ (by the addition law).

Assume that it is true for $n=m(\geqslant 2)$, i.e. that

$$
\begin{equation*}
\mathrm{P}\left(A_{1} \cup \cdots \cup A_{m}\right) \geqslant \sum_{i=1}^{m} \mathrm{P}\left(A_{i}\right)-\sum_{1 \leqslant i<j \leqslant m} \mathrm{P}\left(A_{i} \cap A_{j}\right) \tag{*}
\end{equation*}
$$

Then
$\mathrm{P}\left(\left[A_{1} \cup \cdots \cup A_{m}\right] \cup A_{m+1}\right)=\mathrm{P}\left(A_{1} \cup \cdots \cup A_{m}\right)+\mathrm{P}\left(A_{m+1}\right)-\mathrm{P}\left(\left[A_{1} \cup \cdots \cup A_{m}\right] \cap A_{m+1}\right)$.

The first term is developed using $\left(^{*}\right)$; we can write the third term as $\mathrm{P}\left(\underset{i=1}{m}\left(A_{i} \cup A_{m+1}\right)\right)$ and then use the result in Qn. 2(ii)(a) above. Finally we obtain

$$
\begin{aligned}
\mathrm{P}\left(A_{1} \cup \cdots \cup A_{m+1}\right) & \geqslant \sum_{i=1}^{m} \mathrm{P}\left(A_{i}\right)-\sum_{1 \leqslant i<j \leqslant m} \mathrm{P}\left(A_{i} \cap A_{j}\right)+\mathrm{P}\left(A_{m+1}\right)-\sum_{i=1}^{m} \mathrm{P}\left(A_{i} \cap A_{m+1}\right) \\
& =\sum_{i=1}^{m+1} \mathrm{P}\left(A_{i}\right)-\sum_{1 \leqslant i<j \leqslant m+1} \mathrm{P}\left(A_{i} \cap A_{j}\right),
\end{aligned}
$$

i.e. the result is true for $n=m+1$. So by induction it is true for all $n \geqslant 2$.
7. Listing the outcomes in which no cup is placed on a saucer of the same colour:

Saucer:	Y	Y	B	B	G	G
Cup:	B	B	G	G	Y	Y
	G	G	Y	Y	B	B
	B	G	Y	G	B	Y
	B	G	Y	G	Y	B
	B	G	G	Y	B	Y
	B	G	G	Y	Y	B
	G	B	Y	G	B	Y
	G	B	Y	G	Y	B
	G	B	G	Y	B	Y
	G	B	G	Y	Y	B

There are 10 favourable outcomes altogether.
Total number of arrangements of cups on saucers is $\frac{6!}{2!2!2!}=90$.
So the required probability is $\frac{10}{90}=\frac{1}{9}$.
(Solution of this problem by means of the generalized addition law is difficult.)
8. First consider matches on a particular set of k cards. The probability that there are no matches on any of the other $(n-k)$ cards is

$$
\begin{equation*}
1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{n-k}}{(n-k)!} \tag{*}
\end{equation*}
$$

(from result in Lectures applied to $(n-k)$ cards.) Now there are $(n-k)$! ways of arranging the $(n-k)$ cards, so the number of arrangements which yield no matches is $(*) \times(n-k)!$. But also there are $\binom{n}{k}$ possible selections of the k matching cards. So the number of arrangements of all n cards in which there are exactly k matches is $\binom{n}{k} \times(n-k)!\times(*)$. The required probability is then obtained by dividing this by $n!$, the total number of arrangements, giving

$$
\left[1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{n-k}}{(n-k)!}\right] / k!
$$

For large n this is approximately $e^{-1} / k!$. The values

$$
e^{-1} / k!, \quad k=0,1, \ldots
$$

are those associated with the Poisson distribution with mean 1.
[The above argument is more succinctly expressed using conditional probabilities (discussed in the next chapter of the lecture notes).]
9. Let A_{i} : player i does not win a game in the series.

Then

$$
\begin{aligned}
\mathrm{P}(\text { at least one player does not win a game })= & \mathrm{P}\left(A_{1} \cup \cdots \cup A_{n}\right) \\
= & \sum_{i=1}^{n} \mathrm{P}\left(A_{i}\right)-\sum_{1 \leqslant i<j \leqslant n} \mathrm{P}\left(A_{i} \cap A_{j}\right) \\
& +\cdots+(-1)^{n+1} \mathrm{P}\left(A_{1} \cap \cdots \cap A_{n}\right) .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \mathrm{P}\left(A_{i}\right)=\mathrm{P}(\text { player } i \text { doesn't win game } 1) \\
& \text { \& player } i \text { doesn't win game } 2 \\
& \text { \& player } i \text { doesn't win game } 3 \\
& \text { \& player } i \text { doesn't win game } n \text {) } \\
& =\left(\frac{n-1}{n}\right)^{r}, \quad i=1, \ldots, n .
\end{aligned}
$$

[either by combinatorial method: $\frac{(n-1) \cdot(n-1) \ldots . .(n-1)}{n . n \ldots . n}$
or product of probabilities: $\left(\frac{n-1}{n}\right) \ldots .\left(\frac{n-1}{n}\right)$]
Similarly

$$
\mathrm{P}\left(A_{i} \cap A_{j}\right)=\left(\frac{n-2}{n}\right)^{r} \quad i \neq j
$$

and so on. Finally $\mathrm{P}\left(A_{1} \cap \cdots \cap A_{n}\right)=0$.
So required probability is

$$
n\left(\frac{n-1}{n}\right)^{r}-\binom{n}{2}\left(\frac{n-2}{n}\right)^{r}+\binom{n}{3}\left(\frac{n-3}{n}\right)^{r}-\cdots+(-1)^{n}\binom{n}{n-1}\left(\frac{1}{n}\right)^{r}
$$

10. Let A_{i} : couple i seated together. Required probability is then

$$
\begin{array}{r}
1-\mathrm{P}\left(A_{1} \cup \cdots \cup A_{n}\right)=1-\sum_{i=1}^{n} \mathrm{P}\left(A_{i}\right)+\sum_{1 \leqslant i_{1}<i_{2} \leqslant n} \mathrm{P}\left(A_{i_{1}} \cap A_{i_{2}}\right) \\
+\cdots+(-1)^{n} \mathrm{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right) .
\end{array}
$$

There are (2n)! equally likely seatings. Consider a typical term $\mathrm{P}\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)$ in the $k^{\text {th }}$ summation. Regard as k entities the k couples who are are seated together. There are $(2 n-2 k)$ other people, i.e. $(2 n-k)$ entities in all. Number of (linear) arrangements is $(2 n-k)$! But also each couple can be seated in 2 ways. So the total number of seatings with k specified couples together is $2^{k}(2 n-k)$! So

$$
\mathrm{P}\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=\frac{2^{k}(2 n-k)!}{(2 n)!}
$$

and the required probability is then

$$
1-\binom{n}{1} \frac{2!(2 n-1)!}{(2 n)!}+\binom{n}{2} \frac{2!(2 n-2)!}{(2 n)!}-\cdots+(-1)^{n}\binom{n}{n} 2^{n} \frac{n!}{(2 n)!}
$$

For $n=4$ this is

$$
1-\frac{4 \times 2}{8}+\frac{6 \times 4}{8 \times 7}-\frac{4 \times 8}{6 \times 7 \times 6}+\frac{16}{8 \times 7 \times 6 \times 5}=1-1+\frac{3}{7}-\frac{2}{21}+\frac{1}{105}=\frac{12}{35}
$$

