1. (i) Let $\mathrm{Q}(A)=\mathrm{P}(A \mid B)$. Then
(a) for every event $A \in \mathcal{F}$,

$$
\mathrm{Q}(A)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \geqslant 0 .
$$

Also, since $A \cap B \subset B, \mathrm{P}(A \cap B) \leqslant \mathrm{P}(B)$, so $\mathrm{Q}(A) \leqslant 1$.
(b) $\mathrm{Q}(S)=\mathrm{P}(S \mid B)=\frac{\mathrm{P}(S \cap B)}{\mathrm{P}(B)}=\frac{\mathrm{P}(B)}{\mathrm{P}(B)}=1$.
(c) Let $A_{1}, A_{2}, \ldots$ be mutually exclusive events in $\mathcal{F}$. Then

$$
\begin{array}{rlr}
\mathrm{Q}\left(\bigcup_{i} A_{i}\right) & =\frac{1}{\mathrm{P}(B)} \mathrm{P}\left(\left(\bigcup_{i} A_{i}\right) \cap B\right) & \\
& =\frac{1}{\mathrm{P}(B)} \mathrm{P}\left(\bigcup_{i}\left(A_{i} \cap B\right)\right) & \\
& =\frac{1}{\mathrm{P}(B)} \sum_{i} \mathrm{P}\left(A_{i} \cap B\right) & {\left[\left\{A_{i} \cap B\right\}\right. \text { m.e.: axiom 3] }} \\
& =\sum_{i} \mathrm{Q}\left(A_{i}\right) . &
\end{array}
$$

So $\mathrm{Q}(\cdot)=\mathrm{P}(\cdot \mid B)$ satisfies the three probability axioms.
(ii) Since

$$
\begin{aligned}
A_{1} \cap A_{2} \cap \cdots \cap A_{n-1} & \subset \\
& A_{1} \cap A_{2} \cap \cdots \cap A_{n-2} \\
& \subset \\
& A_{1} \cap A_{2} \cap \cdots \cap A_{n-3} \\
& \ldots \\
& \ldots \ldots \ldots \ldots \ldots \\
& \subset A_{1} \cap A_{2} \\
& \subset A_{1},
\end{aligned}
$$

then

$$
\begin{align*}
0 \leqslant & \mathrm{P}\left(A_{1} \cap \cdots \cap A_{n-1}\right) \\
\leqslant & \mathrm{P}\left(A_{1} \cap \cdots \cap A_{n-2}\right) \\
& \ldots \\
\leqslant & \mathrm{P}\left(A_{1} \cap A_{2}\right)  \tag{*}\\
\leqslant & \mathrm{P}\left(A_{1}\right) .
\end{align*}
$$

Then

$$
\begin{aligned}
& \mathrm{P}\left(A_{1} \cap \cdots \cap A_{n}\right)=\mathrm{P}\left(A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right) \mathrm{P}\left(A_{1} \cap \cdots \cap A_{n-1}\right) \\
& =\mathrm{P}\left(A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right) \mathrm{P}\left(A_{n-1} \mid A_{1} \cap \cdots \cap A_{n-2}\right) \\
& \times \mathrm{P}\left(A_{1} \cap \cdots \cap A_{n-2}\right) \\
& =\mathrm{P}\left(A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right) \mathrm{P}\left(A_{n-1} \mid A_{1} \cap \cdots \cap A_{n-2}\right) \ldots . \\
& \times \mathrm{P}\left(A_{3} \mid A_{1} \cap A_{2}\right) \mathrm{P}\left(A_{2} \mid A_{1}\right) \mathrm{P}\left(A_{1}\right)
\end{aligned}
$$

(by repeated application of the multiplication law $\mathrm{P}(A \cap B)=\mathrm{P}(A \mid B) \mathrm{P}(B)$ $(\mathrm{P}(B)>0)$ and noting from $(*)$ that, since $\mathrm{P}\left(A_{1} \cap \cdots \cap A_{n-1}\right)>0$, all the conditioning events have probability $>0$ as required).
2. (i) Bayes' Rule Let $H_{1}, H_{2}, \ldots, H_{n}$ be a set of mutually exclusive, exhaustive and possible events $\in \mathcal{F}$. For any event $A \in \mathcal{F}$ such that $\mathrm{P}(A)>0$,

$$
\mathrm{P}\left(H_{k} \mid A\right)=\frac{\mathrm{P}\left(A \mid H_{k}\right) \mathrm{P}\left(H_{k}\right)}{\sum_{j=1}^{n} \mathrm{P}\left(A \mid H_{j}\right) \mathrm{P}\left(H_{j}\right)} .
$$

Proof $\mathrm{P}(A)=\mathrm{P}(A \cap \mathcal{S})=\mathrm{P}\left(A \cap\left(\bigcup_{j=1}^{n} H_{j}\right)\right)$

$$
\left.=\mathrm{P}\left(\bigcup_{j=1}^{n}\left(A \cap H_{j}\right)\right) \quad \text { [distributive law }\right]
$$

$$
=\sum_{j=1}^{n} \mathrm{P}\left(A \cap H_{j}\right) \quad\left[\left\{A \cap H_{j}\right\}\right. \text { m.e.: axiom 3] }
$$

$$
=\sum_{j=1}^{n} \mathrm{P}\left(A \mid H_{j}\right) \mathrm{P}\left(H_{j}\right) . \quad[\text { multiplication law }](*)
$$

Then

$$
\begin{array}{rlr}
\mathrm{P}\left(H_{k} \mid A\right) & =\frac{\mathrm{P}\left(H_{k} \cap A\right)}{\mathrm{P}(A)} & \text { [by definition] } \\
& =\frac{\mathrm{P}\left(A \mid H_{k}\right) \mathrm{P}\left(H_{k}\right)}{\sum_{j=1}^{n} \mathrm{P}\left(A \mid H_{j}\right) \mathrm{P}\left(H_{j}\right)} & \text { [using multiplication law and }(*) \text { ] }
\end{array}
$$

as required.
(ii) Let
$A_{i}$ : search of box $i$ does not uncover the ball
$H_{j}$ : ball is in box $j(j=1, \ldots, n)$.
Then we have

$$
\begin{aligned}
\mathrm{P}\left(H_{j}\right) & =p_{j} \\
\mathrm{P}\left(A_{i} \mid H_{j}\right) & = \begin{cases}1-\alpha_{i}, & \text { if } j=i \\
1, & \text { if } j \neq i\end{cases}
\end{aligned}
$$

So by Bayes' Rule

$$
\mathrm{P}\left(H_{j} \mid A_{i}\right)=\frac{\mathrm{P}\left(A_{i} \mid H_{j}\right) \mathrm{P}\left(H_{j}\right)}{\sum_{l=1}^{n} \mathrm{P}\left(A_{i} \mid H_{l}\right) \mathrm{P}\left(H_{l}\right)}
$$

The denominator is $\left(1-\alpha_{i}\right) p_{i}+\sum_{l=1, l \neq i}^{n} 1 \times p_{l}=\sum_{l=1}^{n} p_{l}-\alpha_{i} p_{i}=1-\alpha_{i} p_{i}$.
So

$$
\mathrm{P}\left(H_{j} \mid A_{i}\right)= \begin{cases}\frac{\left(1-\alpha_{i}\right) p_{i}}{1 \bar{p}_{j} p_{i}}, & \text { if } j=i \\ \frac{p_{j}}{1-\alpha_{i} p_{i}}, & \text { if } j \neq i\end{cases}
$$

(iii) Define events as follows:
$L$ : legitimate coin chosen
H2: 2-headed coin chosen
T2: 2-tailed coin chosen
$n H: \quad n$ heads in succession.
Then

$$
\begin{aligned}
\mathrm{P}(H 2) & =10^{-7}=\mathrm{P}(T 2) \\
\mathrm{P}(L) & =1-2 \times 10^{-7} \\
\mathrm{P}(10 H \mid H 2) & =1, \quad \mathrm{P}(10 H \mid T 2)=0, \quad \mathrm{P}(10 H \mid L)=2^{-10}
\end{aligned}
$$

So, using Bayes' Rule,

$$
\begin{aligned}
\mathrm{P}(H 2 \mid 10 H) & =\frac{\mathrm{P}(10 H \mid H 2) \mathbf{P}(H 2)}{\mathbf{P}(10 H \mid H 2) \mathbf{P}(H 2)+\mathrm{P}(10 H \mid T 2) \mathbf{P}(T 2)+\mathrm{P}(10 H \mid L)(\mathrm{P}(L)} \\
& =10^{-7} /\left\{10^{-7}+2^{-10}\left(1-2 \times 10^{-7}\right)\right\}
\end{aligned}
$$

Since $2^{10} \approx 10^{3}$,

$$
\mathrm{P}(H 2 \mid 10 H) \approx 1 /\left\{1+10^{-3} \times 10^{7}\right\} \approx 10^{-4}
$$

Generalising to $n H$ we have

$$
\mathrm{P}(H 2 \mid n H)=\frac{\mathrm{P}(n H \mid H 2) \mathbf{P}(H 2)}{\mathrm{P}(n H \mid H 2) \mathrm{P}(H 2)+\mathrm{P}(n H \mid T 2) \mathbf{P}(T 2)+\mathrm{P}(n H \mid L)(\mathrm{P}(L)}
$$

where

$$
\mathrm{P}(n H \mid H 2)=1, \quad \mathrm{P}(n H \mid T 2)=0, \quad \mathrm{P}(n H \mid L)=2^{-n}
$$

so that

$$
\mathrm{P}(H 2 \mid n H)=10^{-7} /\left\{10^{-7}+2^{-n}\left(1-2 \times 10^{-7}\right)\right\}
$$

For approximately even odds that the chosen coin is 2 -headed, we require

$$
\mathrm{P}(H 2 \mid n H) \approx \frac{1}{2}
$$

i.e. we have to solve

$$
\begin{array}{lr} 
& 10^{-7}+2^{-n}\left(1-2 \times 10^{-7}\right) \\
\text { or } & \approx 2 \times 10^{-7} \\
\text { or } & 2^{-n}\left(10^{7}-2\right) \\
\approx 1 \\
\approx & 2^{n}
\end{array}
$$

for $n$. The solution of $2^{x}=10^{7}$ is $x=23.25$, so

$$
n=23 \quad \text { or } \quad 24 .
$$

(iv) Define events as follows:
$D:$ a certain person has the disease
$T^{+}$: test diagnoses that the person has the disease
$T^{-}$: test diagnose that the person does not have the disease.
We have

$$
\begin{aligned}
& \mathrm{P}\left(T^{+} \mid D\right)=0.95 \Rightarrow \mathrm{P}\left(T^{-} \mid D\right)=0.05 \\
& \mathrm{P}\left(T^{-} \mid \bar{D}\right)=0.995 \Rightarrow \mathrm{P}\left(T^{+} \mid \bar{D}\right)=0.005 .
\end{aligned}
$$

Then, by Bayes' Rule, the required probability is

$$
\begin{aligned}
\mathrm{P}\left(D \mid T^{+}\right) & =\frac{\mathrm{P}\left(T^{+} \mid D\right) \mathrm{P}(D)}{\mathrm{P}\left(T^{+} \mid D\right) \mathrm{P}(D)+\mathrm{P}\left(T^{+} \mid \bar{D}\right) \mathrm{P}(\bar{D})} \\
& =\frac{0.95 \times 0.0001}{(0.95 \times 0.0001)+(0.005 \times 0.9999)}=0.019
\end{aligned}
$$

[Although, with $\mathrm{P}\left(T^{+} \mid D\right)=0.95, \mathrm{P}\left(T^{-} \mid \bar{D}\right)=0.995$, the test appears at first sight to be a good one, the predictive positive probability (see below) is very low because of the very low prevalence probability $\mathrm{P}(D)=0.0001$. Compare, for example, the case where $\mathrm{P}(D)=0.01$ : then we find that $\mathrm{P}\left(D \mid T^{+}\right) \approx 0.66$ - very much better.
[Further notes: The validity of a test is measured by its
sensitivity $\quad \mathrm{P}\left(T^{+} \mid D\right) \times 100 \%$
and specificity $\quad \mathrm{P}\left(T^{-} \mid \bar{D}\right) \times 100 \%$

- both of which should be high.

For a patient, however, the important measures are the
predictive positive probability $\quad \mathrm{P}\left(D \mid T^{+}\right)$
and predictive negative probability $\mathrm{P}\left(\bar{D} \mid T^{-}\right)$,
which depend upon the prevalence rate $\mathrm{P}(D)$.]
3. (i) $A=A \cap \mathcal{S}=A \cap(B \cup \bar{B})=(A \cap B) \cup(A \cap \bar{B})$.
[union of 2 m.e. events]
So

$$
\begin{array}{rlr}
\mathrm{P}(A) & =\mathrm{P}(A \cap B)+\mathrm{P}(A \cap \bar{B}), & \text { [axiom 3] } \\
\text { i.e. } & \mathrm{P}(A \cap \bar{B}) & =\mathrm{P}(A)-\mathrm{P}(A \cap B) \\
& =\mathrm{P}(A)-\mathrm{P}(A) \mathrm{P}(B) & \text { [independence] } \\
& =\mathrm{P}(A)[1-\mathrm{P}(B)]=\mathrm{P}(A) \mathrm{P}(\bar{B}) . & \text { [complementarity] }
\end{array}
$$

So $A$ and $\bar{B}$ are independent events.
To prove that $\bar{A}$ and $B$ are independent, reverse the symbols $A$ and $B$ in the above proof.
Also

$$
\begin{array}{rlr}
\mathrm{P}(\bar{A} \cap \bar{B})=\mathrm{P}(\overline{A \cup B}) & =1-\mathrm{P}(A \cup B) & \text { [complementarity] } \\
& =1-\mathrm{P}(A)-\mathrm{P}(B)+\mathrm{P}(A \cap B) & \text { [addition law] } \\
& =1-\mathrm{P}(A)-\mathrm{P}(B)+\mathrm{P}(A) \mathrm{P}(B) & \text { [independence] } \\
& =\{1-\mathrm{P}(A)\}\{1-\mathrm{P}(B)\} & \\
& =\mathrm{P}(\bar{A}) \mathrm{P}(\bar{B}) . & \text { [complementarity] }
\end{array}
$$

So $\bar{A}$ and $\bar{B}$ are independent events.
We have therefore proved that independence of $A, B \Rightarrow$ independence of $A, \bar{B} ; \quad$ of $\bar{A}, B ; \quad \&$ of $\bar{A}, \bar{B}$. So independence of $A, \bar{B} \Rightarrow \quad$ independence of $A, \overline{\bar{B}}=B ;$ of $\bar{A}, \bar{B} ; \&$ of $\bar{A}, \bar{B}=B$. independence of $\bar{A}, B \Rightarrow$ independence of $\bar{A}, \bar{B}$; of $\overline{\bar{A}}=A, B ;$ \& of $\overline{\bar{A}}=A, \bar{B}$. independence of $\bar{A}, \bar{B} \Rightarrow \quad$ independence of $\bar{A}, \overline{\bar{B}}=B$; of $\overline{\bar{A}}=A, \bar{B}$;

$$
\& \text { of } \overline{\bar{A}}=A, \overline{\bar{B}}=B
$$

(ii) (a) $\mathcal{S}=\{(a, b, c),(a, c, b),(b, a, c),(b, c, a),(c, a, b),(c, b, a),(a, a, a),(b, b, b),(c, c, c)\}$. $\mathrm{P}\left(A_{1}\right)=\frac{3}{9}=\frac{1}{3} ; \mathrm{P}\left(A_{2}\right)=\frac{3}{9}=\frac{1}{3} ; \mathrm{P}\left(A_{3}\right)=\frac{3}{9}=\frac{1}{3}$.

$$
\begin{aligned}
& \mathrm{P}\left(A_{1} \cap A_{2}\right)=\frac{1}{9}=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \\
& \mathrm{P}\left(A_{1} \cap A_{3}\right)=\frac{1}{9}=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{3}\right) \\
& \mathrm{P}\left(A_{2} \cap A_{3}\right)=\frac{1}{9}=\mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right) .
\end{aligned}
$$

But

$$
\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{1}{9} \neq \mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right) \quad\left(=\frac{1}{27}\right) .
$$

So the events $A_{1}, A_{2}, A_{3}$ are pairwise independent but not completely independent.
(b) $\mathrm{P}\left(E_{1}\right)=\frac{\sqrt{2}}{2}-\frac{1}{4} ; \mathrm{P}\left(E_{2}\right)=\mathrm{P}\left(E_{4}\right)=\frac{1}{4} ; \mathrm{P}\left(E_{3}\right)=\frac{3}{4}-\frac{\sqrt{2}}{2}$. So

$$
\begin{aligned}
& \mathrm{P}\left(A_{1}\right)=\mathrm{P}\left(E_{1}\right)+\mathrm{P}\left(E_{3}\right)=\frac{1}{2} ; \\
& \mathrm{P}\left(A_{2}\right)=\mathrm{P}\left(E_{2}\right)+\mathrm{P}\left(E_{3}\right)=1-\frac{\sqrt{2}}{2} ; \\
& \mathrm{P}\left(A_{3}\right)=1-\frac{\sqrt{2}}{2} .
\end{aligned}
$$

Now

$$
\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathrm{P}\left(E_{3}\right)=\frac{3}{4}-\frac{\sqrt{2}}{2}
$$

and

$$
\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right)=\frac{1}{2}\left(1-\frac{\sqrt{2}}{2}\right)^{2}=\frac{1}{2}\left(1-\sqrt{2}+\frac{1}{2}\right)=\frac{3}{4}-\frac{\sqrt{2}}{2}=\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right) .
$$

But

$$
\mathrm{P}\left(A_{1} \cap A_{2}\right)=\mathrm{P}\left(E_{3}\right)=\frac{3}{4}-\frac{\sqrt{2}}{2} \neq \mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \quad\left(=\frac{1}{2}-\frac{\sqrt{2}}{4}\right)
$$

So the events $A_{1}, A_{2}, A_{3}$ are not completely independent.
4. (i) Let
$E_{n}$ : even number of sixes in $n$ throws
$S$ : six on first throw
Then conditioning on the result of the first throw:

$$
\begin{aligned}
\mathrm{P}\left(E_{n}\right) & =\mathrm{P}\left(E_{n} \mid S\right) \mathrm{P}(S)+\mathrm{P}\left(E_{n} \mid \bar{S}\right) \mathrm{P}(\bar{S}) \\
& =\mathrm{P}\left(\bar{E}_{n-1}\right) \mathrm{P}(S)+\mathrm{P}\left(E_{n-1}\right) \mathrm{P}(\bar{S}),
\end{aligned}
$$

i.e.

$$
\begin{align*}
p_{n} & =\frac{1}{6}\left(1-p_{n-1}\right)+\frac{5}{6} p_{n-1}  \tag{1}\\
& =\frac{2}{3} p_{n-1}+\frac{1}{6}, \quad n \geqslant 2 .
\end{align*}
$$

Also

$$
\begin{equation*}
p_{1}=\mathrm{P}(\text { not six on first throw })=\frac{5}{6} . \tag{2}
\end{equation*}
$$

Notes:
(a) This is 'first step analysis': alternatively we could have used 'last step analysis'.
(b) With experience, we can appeal to the diagram below and write down (1) directly (cf. solution to part (ii)).


To show that

$$
\begin{equation*}
p_{n}=\frac{1}{2}\left[1+\left(\frac{2}{3}\right)^{n}\right], \quad n \geqslant 1 \tag{3}
\end{equation*}
$$

we use induction. (3) is true for $n=1$. Suppose it is true for $n=m$, where $m \geqslant 1$. Then (1) gives

$$
p_{m+1}=\frac{2}{3} \times \frac{1}{2}\left[1+\left(\frac{2}{3}\right)^{m}\right]+\frac{1}{6}=\frac{1}{2}\left[1+\left(\frac{2}{3}\right)^{m+1}\right]
$$

i.e. it is true for $n=m+1$. So by induction it is true for all $n \geqslant 1$.
(ii) Here

$$
p_{n}=\mathrm{P}(\text { player obtains a total of exactly } n \text { points at some stage of play }) .
$$

For $n \geqslant 3$, we can decompose the event of interest by again conditioning on the result of the first trial, as shown:


First trial
Further trials

Hence

$$
p_{n}=\frac{1}{3} p_{n}+\frac{5}{12} p_{n-1}+\frac{1}{4} p_{n-2}, \quad n \geqslant 3,
$$

i.e.

$$
\begin{equation*}
p_{n}=\frac{5}{8} p_{n-1}+\frac{3}{8} p_{n-2}, \quad n \geqslant 3 . \tag{1}
\end{equation*}
$$

To start the recursion, we need $p_{1}$ and $p_{2}$. Now the event 'total of 1 at some stage' comprises the mutually exclusive events

$$
\{1,01,001,0001, \ldots\}
$$

So

$$
p_{1}=\frac{5}{12}+\frac{1}{3} \frac{5}{12}+\left(\frac{1}{3}\right)^{2} \frac{5}{12}+\cdots=\frac{5}{12} \times \frac{1}{1-\frac{1}{3}}=\frac{5}{8} .
$$

Similarly, the event 'total of 2 at some stage' comprises the mutually exclusive events

$$
\{2,02,002, \ldots ; r \text { zeros and one ' } 1 \text { ', followed by a ' } 1 \text { ', } r \geqslant 0\} .
$$

Hence

$$
\begin{aligned}
p_{2} & =\sum_{r=0}^{\infty}\left(\frac{1}{4}\right)\left(\frac{1}{3}\right)^{r}+\sum_{r=0}^{\infty}\binom{r+1}{1}\left(\frac{5}{12}\right)\left(\frac{1}{3}\right)^{r} \times \frac{5}{12} \\
& =\frac{1}{4} \times \frac{1}{1-\frac{1}{3}}+\frac{1}{\left(1-\frac{1}{3}\right)^{2}}\left(\frac{5}{12}\right)^{2}=\frac{49}{64} .
\end{aligned}
$$

Alternatively we can use suitable diagrams:
(a) $p_{1}=\frac{1}{3} p_{1}+\frac{5}{12}$, giving $p_{1}=\frac{5}{8}$.

(b) $p_{2}=\frac{1}{3} p_{2}+\frac{5}{12} p_{1}+\frac{1}{4}$ which (using $p_{1}=\frac{5}{8}$ ) gives $p_{2}=\frac{49}{64}$.


To show that

$$
\begin{equation*}
p_{n}=\frac{8}{11}+\frac{3}{11}\left(-\frac{3}{8}\right)^{n}, \quad n \geqslant 1 \tag{2}
\end{equation*}
$$

we first note that it is true for $n=1, n=2$, since it gives

$$
\begin{aligned}
& p_{1}=\frac{8}{11}+\frac{3}{11}\left(-\frac{3}{8}\right)=\frac{5}{8} \\
& p_{2}=\frac{8}{11}+\frac{3}{11}\left(-\frac{3}{8}\right)^{2}=\frac{49}{64} . \\
& \sqrt{ }
\end{aligned}
$$

Now assume that it is true for $n=m-2$ and $n=m-1 \quad(m \geqslant 3)$. Then from (1):

$$
\begin{aligned}
p_{m} & =\frac{5}{8}\left\{\frac{8}{11}+\frac{3}{11}\left(-\frac{3}{8}\right)^{m-1}\right\}+\frac{3}{8}\left\{\frac{8}{11}+\frac{3}{11}\left(-\frac{3}{8}\right)^{m-2}\right\} \\
& =\frac{8}{11}+\frac{3}{11}\left(-\frac{3}{8}\right)^{m}
\end{aligned}
$$

i.e it is true for $n=m$. Hence by induction it is true for all $n \geqslant 1$.
5. Let

A: no run of 3 consecutive heads in $n$ tosses
$T_{i}$ : first tail occurs on the $i^{\text {th }}$ toss.
Then

$$
\begin{aligned}
p_{n}=\mathrm{P}(A)= & \mathrm{P}\left(A \mid T_{1}\right) \mathrm{P}\left(T_{1}\right)+\mathrm{P}\left(A \mid T_{2}\right) \mathrm{P}\left(T_{2}\right)+\mathrm{P}\left(A \mid T_{3}\right) \mathrm{P}\left(T_{3}\right) \\
& {\left[\mathrm{P}\left(A \mid T_{i}\right)=0 \quad \text { for } \quad i=4, \ldots, n\right] }
\end{aligned}
$$

But $\mathrm{P}\left(T_{1}\right)=\frac{1}{2}, \mathrm{P}\left(T_{2}\right)=\mathrm{P}(H T)=\left(\frac{1}{2}\right)^{2}, \mathrm{P}\left(T_{3}\right)=\mathrm{P}(H H T)=\left(\frac{1}{2}\right)^{3}$,
and

$$
\mathrm{P}\left(A \mid T_{i}\right)=p_{n-i}, \quad i=1,2,3
$$

So

$$
p_{n}=\frac{1}{2} p_{n-1}+\frac{1}{4} p_{n-2}+\frac{1}{8} p_{n-3}, \quad n \geqslant 3
$$

To get three successive heads, we need at least 3 tosses, so clearly

$$
p_{1}=p_{2}=p_{3}=1
$$

Then

$$
\begin{array}{ll}
p_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8} & =\frac{7}{8} \\
p_{4}=\left(\frac{1}{2} \times \frac{7}{8}\right)+\left(\frac{1}{4} \times 1\right)+\left(\frac{1}{8} \times 1\right) & =\frac{13}{16} \\
p_{5}=\left(\frac{1}{2} \times \frac{13}{16}\right)+\left(\frac{1}{4} \times \frac{7}{8}\right)+\left(\frac{1}{8} \times 1\right) & =\frac{3}{4} \\
p_{6}=\left(\frac{1}{2} \times \frac{3}{4}\right)+\left(\frac{1}{4} \times \frac{13}{16}\right)+\left(\frac{1}{8} \times \frac{7}{8}\right) & =\frac{11}{16} \\
p_{7}=\left(\frac{1}{2} \times \frac{11}{16}\right)+\left(\frac{1}{4} \times \frac{3}{4}\right)+\left(\frac{1}{8} \times \frac{13}{16}\right) & =\frac{81}{128} \\
p_{8}=\left(\frac{1}{2} \times \frac{181}{128}\right)+\left(\frac{1}{4} \times \frac{11}{16}\right)+\left(\frac{1}{8} \times \frac{3}{4}\right) & =\frac{149}{256}
\end{array}
$$

6. We have

$$
\begin{array}{rlrl}
\mathrm{P}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right) & =\mathrm{P}\left(\overline{A_{1} \cap A_{2} \cap \cdots \cap A_{n}}\right) & \\
& =1-\mathrm{P}\left(\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right) & \text { [complementarity] } \\
& =1-\mathrm{P}\left(\bar{A}_{1}\right) \mathrm{P}\left(\bar{A}_{2}\right) \cdots \mathrm{P}\left(\bar{A}_{n}\right) & & \text { [independence] } \\
& =1-\prod_{i=1}^{n}\left[1-\mathrm{P}\left(A_{i}\right)\right] . & & \text { [complementarity] }
\end{array}
$$

7. Write $\overline{6}$ to mean 'not a 6', and let
$A_{i k}$ : die makes $k$ circuits (with all $n$ players throwing $\overline{6}$ on each turn),

$$
\text { then players } 1, \ldots, i-1 \text { throw } \overline{6} \text { and player } i \text { throws } 6 \text { (to win). }
$$

From independence it follows that

$$
\mathrm{P}\left(A_{i k}\right)=\left[\left(\frac{5}{6}\right)^{n}\right]^{k}\left(\frac{5}{6}\right)^{i-1} \frac{1}{6} .
$$

Then

$$
\begin{aligned}
\mathrm{P}(\text { player } i \text { wins }) & =\mathrm{P}\left(A_{i 0} \cup A_{i 1} \cup A_{i 2} \cup \cdots\right) \\
& =\sum_{k=0}^{\infty} \mathrm{P}\left(A_{i k}\right) \\
& =\sum_{k=0}^{\infty}\left[\left(\frac{5}{6}\right)^{n}\right]^{k}\left(\frac{5}{6}\right)^{i-1} \frac{1}{6}
\end{aligned}
$$

$$
=\frac{{ }^{k=0}}{1-\left(\frac{5}{6}\right)^{n}}\left(\frac{5}{6}\right)^{i-1} \frac{1}{6} \quad \quad \text { [geometric series] }
$$

8. (a) By Bayes' Rule:

$$
\begin{aligned}
& \mathrm{P}(N=2 \mid S=3)=\frac{\mathrm{P}(S=3 \mid N=2) \mathrm{P}(N=2)}{\mathrm{P}(S=3)} \\
& \text { where } \mathrm{P}(S=3)=\sum_{k=1}^{\infty} \mathrm{P}(S=3 \mid N=k) \mathrm{P}(N=k) .
\end{aligned}
$$

But

$$
\begin{aligned}
& \mathrm{P}(S=3 \mid N=1)=\frac{1}{6} \\
& \mathrm{P}(S=3 \mid N=2)=\mathrm{P}(\{(1,2),(2,1)\})=\frac{2}{36}=\frac{1}{18} \\
& \mathrm{P}(S=3 \mid N=3)=\mathrm{P}((1,1,1))=\frac{1}{6^{3}}=\frac{1}{216} \\
& \mathrm{P}(S-3 \mid N=k)=0 \text { for } k \geqslant 4 .
\end{aligned}
$$

So

$$
\mathrm{P}(S=3)=\left(\frac{1}{6} \times \frac{1}{2}\right)+\left(\frac{1}{18} \times \frac{1}{4}\right)+\left(\frac{1}{216} \times \frac{1}{8}\right)=\frac{169}{36 \times 48}
$$

and

$$
\mathrm{P}(N=2 \mid S=3)=\frac{1}{18} \times \frac{1}{4} \times \frac{36 \times 48}{169}=\frac{24}{169} .
$$

(b) $\mathrm{P}(S=3 \mid N$ odd $)=\frac{\mathrm{P}((S=3) \cap(N \text { odd }))}{\mathrm{P}(N \text { odd })}$.

Now

$$
\begin{aligned}
\mathrm{P}(N \text { odd }) & =\mathrm{P}(N=1)+\mathrm{P}(N=3)+\cdots \\
& =\frac{1}{2}+\left(\frac{1}{2}\right)^{3}+\cdots \\
& =\frac{1}{2}\left(1+\frac{1}{4}+\left(\frac{1}{4}\right)^{2}+\cdots\right) \\
& =\frac{1}{2} \times \frac{1}{1-\frac{1}{4}} \\
& =\frac{2}{3},
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{P}((S=3) \cap(N \text { odd })) & =\sum_{k=1}^{\infty} \mathrm{P}((S=3) \cap(N \text { odd }) \mid N=k) \mathrm{P}(N=k) \\
& =\mathrm{P}(S=3 \mid N=1) \mathrm{P}(N=1)+\mathrm{P}(S=3 \mid N=3) \mathrm{P}(N=3) \\
& =\left(\frac{1}{6} \times \frac{1}{2}\right)+\left(\frac{1}{216} \times \frac{1}{8}\right) \\
& =\frac{145}{36 \times 48}
\end{aligned}
$$

[Alternatively:

$$
\begin{array}{rlr}
\mathrm{P}((S=3) \cap(N \text { odd })) & =\mathrm{P}(N \text { odd } \mid S=3) \mathrm{P}(S=3) & \\
& =[1-\mathrm{P}(N \text { even } \mid S=3)] \mathrm{P}(S=3) \\
& =1-\mathrm{P}(N=2 \mid S=3)] \mathrm{P}(S=3) \\
& =\left[1-\frac{24}{169}\right] \times \frac{169}{36 \times 48} \\
& =\frac{145}{36 \times 48} . & \text { [using results in (a) }]
\end{array}
$$

So

$$
\mathrm{P}(S=3 \mid N \text { odd })=\frac{145}{36 \times 48} \times \frac{3}{2}=\frac{145}{1152} .
$$

9. Let
$W_{r}$ : white ball drawn from urn $r$
$B_{r}$ : black ball drawn from urn $r$
Conditioning on the result of the draw from urn $r-1$ :

$$
\begin{aligned}
p_{r}=\mathrm{P}\left(W_{r}\right) & =\mathrm{P}\left(W_{r} \mid W_{r-1}\right) \mathrm{P}\left(W_{r-1}\right)+\mathrm{P}\left(W_{r} \mid B_{r-1}\right) \mathrm{P}\left(B_{r-1}\right) \\
& =\left(\frac{a+1}{a+b+1}\right) p_{r-1}+\left(\frac{a}{a+b+1}\right)\left(1-p_{r-1}\right) \\
& =\frac{1}{a+b+1} p_{r-1}+\frac{a}{a+b+1}, \quad r=2, \ldots, n
\end{aligned}
$$

with $p_{1}=\frac{a}{a+b}$.

