1. (a) An outcome is an unordered sample $\left\{i_{1}, \ldots, i_{n}\right\}$, a subset of $\{1, \ldots, N\}$, where the i_{j} 's are all different. The random variable X can take the values $n, n+1, \ldots, N$.
If $X=x$, the other numbers selected have values in the range $1, \ldots,(x-1)$.
If $X=x,(n-1)$ numbers have been selected from the set $\{1, \ldots,(x-1)\}$ and 0 numbers from the set $\{(x+1), \ldots, N\}$. This can be done in $\binom{x-1}{n-1}$ ways. The total number of possible selections is $\binom{N}{n}$. So

$$
\mathrm{P}(X=x)=\binom{x-1}{n-1} /\binom{N}{n}, \quad x=n, \ldots, N .
$$

(b) If the largest number in the sample is $\leqslant y$, then all numbers in the sample are $\leqslant y$, and vice versa; also $y \geqslant n$ and y need not be an integer.
Consider y to be one of the values $n, n+1, \ldots, N$. Then

$$
\begin{aligned}
\mathrm{P}(X \leqslant y) & =\mathrm{P}(\text { all numbers in sample } \leqslant y) \\
& =\frac{\text { No. of ways of selecting } n \text { numbers from }\{1, \ldots, y\}, \text { without replacement }}{\text { No. of ways of selecting } n \text { numbers from }\{1, \ldots, N\}, \text { without replacement }} \\
& =\binom{y}{n} /\binom{N}{n}, \quad y=n, n+1, \ldots, N .
\end{aligned}
$$

So

$$
\begin{aligned}
\mathrm{P}(X=x) & =\mathrm{P}(X \leqslant x)-\mathrm{P}(X \leqslant x-1) \\
& =\left[\binom{x}{n}-\binom{x-1}{n}\right] /\binom{N}{n} \\
& =\binom{x-1}{n-1} /\binom{N}{n}, \quad x=n, \ldots, N .
\end{aligned}
$$

(using the identity $\binom{y}{r-1}+\binom{y}{r}=\binom{y+1}{r}$).
2. (i) (a) $Y=X^{2}$ or $X= \pm \sqrt{Y}$. So

$$
\begin{aligned}
\mathrm{P}(Y=y) & =\mathrm{P}(X=\sqrt{y})+\mathrm{P}(X=-\sqrt{y}) \\
& =p(\sqrt{y})+p(-\sqrt{y}), \quad y=1,4,9, \ldots \\
\text { and } \quad \mathrm{P}(Y=0) & =p(0) .
\end{aligned}
$$

(b) $W=|X|= \begin{cases}X, & \text { when } X \geqslant 0 \\ -X, & \text { when } X<0 .\end{cases}$

So

$$
\begin{aligned}
\mathrm{P}(W=w) & =p(w)+p(-w), \quad w=1,2, \ldots \\
\text { and } \quad \mathrm{P}(W=0) & =p(0) .
\end{aligned}
$$

(c) $Z=\operatorname{sgn}(X)= \begin{cases}1, & \text { when } X>0 \\ -1, & \text { when } X<0 \\ 0, & \text { when } X=0 .\end{cases}$ So

$$
\begin{array}{ll}
\mathrm{P}(Z=1) & =\sum_{x>0} p(x), \\
\mathrm{P}(Z=0) & =p(0) \\
\mathrm{P}(Z=-1) & =\sum_{x<0} p(x) .
\end{array}
$$

(ii) Let

$$
\begin{aligned}
g(a) & =\mathrm{E}\left[(X-a)^{2}\right] \\
& =\mathrm{E}\left[X^{2}-2 a X+a^{2}\right] \\
& =\mathrm{E}\left(X^{2}\right)-2 a \mathrm{E}(X)+a^{2} .
\end{aligned}
$$

Then

$$
\begin{array}{rlrl}
\frac{d g}{d a} & =-2 \mathrm{E}(X)+2 a=0 & & \text { when } a=\mathrm{E}(X) \\
\frac{d^{2} g}{d a^{2}}=2>0 & & \text { when } a=\mathrm{E}(X)
\end{array}
$$

So $\mathrm{E}[(X-a)]^{2}$ is minimized when $a=\mathrm{E}(X)$.
[Note: $\mathrm{E}(|X-b|)$ is minimized when $b=$ median of X.]
3. (i) (a) We have

$$
\begin{aligned}
\mathrm{P}(X>m) & =\sum_{x=m+1}^{\infty} \mathrm{P}(X=x) \\
& =p q^{m}+p q^{m+1}+\cdots \\
& =p q^{m}\left[1+q+q^{2}+\cdots\right] \\
& =\frac{p q^{m}}{1-q}=q^{m} \quad \text { since } p+q=1 .
\end{aligned}
$$

(b) 'No memory' property:

$$
\begin{aligned}
\mathrm{P}(X>m+n \mid X>m) & =\frac{\mathrm{P}((X>m+n) \cap(X>m))}{\mathrm{P}(X>m)} \\
& =\frac{\mathrm{P}(X>m+n)}{\mathrm{P}(X>m)} \quad \text { since }(X>m+n) \subset(X>m) \\
& \left.=\frac{q^{m+n}}{q^{m}}=q^{n}=\mathrm{P}(X>n) . \quad \text { [using result in part (a) }\right]
\end{aligned}
$$

(ii) We can write out $\mathrm{E}(X)$ as follows:

$$
\begin{aligned}
\mathrm{E}(X)= & \sum_{x=0}^{\infty} x \mathrm{P}(X=x) \\
= & \sum_{x=1}^{\infty} x \mathrm{P}(X=x) \\
= & \quad \mathrm{P}(X=1) \\
& +\mathrm{P}(X=2) \quad+\mathrm{P}(X=2) \\
& +\mathrm{P}(X=3) \quad+\mathrm{P}(X=3) \quad+\mathrm{P}(X=3)
\end{aligned}
$$

Since the series is convergent and the terms are positive, we can re-arrange the order of the terms. So, summing vertically, we obtain

$$
\mathrm{E}(X)=\sum_{x=0}^{\infty} \mathrm{P}(X>x)
$$

For the geometric distribution in part (i):

$$
\begin{aligned}
& \mathrm{P}(X>0)=1 ; \\
& \mathrm{P}(X>x)=q^{x} \quad(x \text { a positive integer }) .
\end{aligned}
$$

So

$$
\mathrm{E}(X)=1+q+q^{2}+\cdots=\frac{1}{1-q}=\frac{1}{p} .
$$

4. We are given that X and Y are independent random variables with

$$
\mathrm{P}(X=k)=\mathrm{P}(Y=k)=p q^{k}, \quad k=0,1, \ldots ; \quad p+q=1 .
$$

Then
(a) $\mathrm{P}(X=Y)=\sum_{k=0}^{\infty} \mathrm{P}(X=k, Y=k)$

$$
\begin{array}{ll}
=\sum_{k=0}^{\infty} \mathrm{P}(X=k) \cdot \mathrm{P}(Y=k) & \\
=\sum_{k=0}^{\infty}\left(p q^{k}\right)^{2} & \\
=p^{2} \sum_{k=0}^{\infty}\left(q^{2}\right)^{k} & \\
=\frac{p^{2}}{\left(1-q^{2}\right)} & \\
=\frac{[\text { since } X \text { and } Y \text { are independent }]}{(1+q)} . & {[\text { since } p=1-q]}
\end{array}
$$

(b) We have that

$$
\begin{align*}
\mathrm{P}(X+Y=n) & =\sum_{x=0}^{n} \mathrm{P}(X=x, Y=n-x) \\
& =\sum_{x=0}^{n=0} \mathrm{P}(X=x) \cdot \mathrm{P}(Y=n-x) \\
& =\sum_{x=0}^{n} p q^{x} \cdot p q^{n-x} \\
& =\sum_{x=0}^{n} p^{2} q^{n}=(n+1) p^{2} q^{n} \tag{*}
\end{align*}
$$

Then

$$
\begin{aligned}
\mathrm{P}(X=x \mid X+Y=n) & =\frac{\mathrm{P}(X=x \text { and } X+Y=n)}{\mathrm{P}(X+Y=n)} \\
& =\frac{\mathrm{P}(X=x, Y=n-x)}{\mathrm{P}(X+Y=n)} \\
& \left.=\frac{p q^{x} \cdot p q^{n-x}}{(n+1) p^{2} q^{n}} \quad \quad \text { [using independence and }(*)\right] \\
& =\frac{1}{n+1}, \quad x=0,1, \ldots, n
\end{aligned}
$$

- the discrete uniform distribution on $(0,1,2, \ldots, \mathrm{n})$
(c) $U=\min (X, Y) \quad$ takes the values $0,1,2, \ldots$

The event $(U=u)$ can be decomposed into mutually exclusive events thus:

$$
\begin{aligned}
(U=u)= & (X=u, Y=u) \\
& \cup(X=u, Y=u+1) \cup(X=u, Y=u+2) \cup \cdots \\
& \cup(X=u+1, Y=u) \cup(X=u+2, Y=u) \cup \cdots
\end{aligned}
$$

So, invoking the most general ('countably additive') form of Axiom 3, we have:

$$
\begin{aligned}
\mathrm{P}(U=u) & =\mathrm{P}(U=u, Y=u)+\sum_{y=u+1}^{\infty} \mathrm{P}(X=u, Y=y)+\sum_{x=u+1}^{\infty} \mathrm{P}(Y=u, X=x) \\
& =\left(p q^{u}\right)^{2}+\sum_{y=u+1}^{\infty} p q^{u} \cdot p q^{y}+\sum_{x=u+1}^{\infty} p q^{u} \cdot p q^{x} \\
& =p^{2} q^{2 u}+2 \sum_{y=u+1}^{\infty} p^{2} q^{u+y} \\
& =p^{2} q^{2 u}+2 p^{2} q^{2 u+1} \sum_{i=0}^{\infty} q^{i} \\
& =p^{2} q^{2 u}+2 p^{2} q^{2 u+1} /(1-q)=p^{2} q^{2 u}+2 p q^{2 u+1} \\
& =p q^{2 u}(p+2 q)=p q^{2 u}(q+1), \quad u=0,1, \ldots
\end{aligned}
$$

5. (a)

Sample Points					X	Y	Z
H	H	H	H	H	5	1	5
H	H	H	H	T	4	1	4
H	H	H	T	H	4	2	3
H	H	T	H	H	4	2	2
H	T	H	H	H	4	2	3
T	H	H	H	H	4	1	4
H	H	H	T	T	3	1	3
H	H	T	H	T	3	2	2
H	T	H	H	T	3	2	2
T	H	H	H	T	3	1	3
H	H	T	T	H	3	2	2
H	T	H	T	H	3	3	1
T	H	H	T	H	3	2	2
H	T	T	H	H	3	2	2
T	H	T	H	H	3	2	2
T	T	H	H	H	3	1	3
H	H	T	T	T	2	1	2
H	T	H	T	T	2	2	1
T	H	H	T	T	2	1	2
H	T	T	H	T	2	2	1
T	H	T	H	T	2	2	1
T	T	H	H	T	2	1	2
H	T	T	T	H	2	2	1
T	H	T	T	H	2	2	1
T	T	H	T	H	2	2	1
T	T	T	H	H	2	1	2
H	T	T	T	T	1	1	1
T	H	T	T	T	1	1	1
T	T	H	T	T	1	,	1
T	T	T	H	T	1	1	1
T	T	T	T	H	1	1	1
T	T	T	T	T	0	0	0

(b) Let

$$
p(x, y, z)=\mathrm{P}(X=x, Y=y, Z=z)
$$

From the listing of the sample space in (a), we deduce that

$$
\begin{array}{ll}
p(0,0,0)=\frac{1}{32} & p(1,1,1)=\frac{5}{32} \\
p(2,1,2)=\frac{4}{32} & p(2,2,1)=\frac{6}{32} \\
p(3,1,3)=\frac{3}{32} & p(3,2,2)=\frac{6}{32} \\
p(3,3,1)=\frac{1}{32} & p(4,1,4)=\frac{2}{32} \\
p(4,2,2)=\frac{1}{32} & p(4,2,3)=\frac{2}{32} \\
p(5,1,5)=\frac{1}{32} &
\end{array}
$$

All other probabilities of the form

$$
p(x, y, z), 0 \leqslant x \leqslant 5,0 \leqslant y \leqslant 3,0 \leqslant z \leqslant 5
$$

are zero. [Check: $\sum_{x, y, z} p(x, y, z)=1$.]
The joint probability function of (X, Y) is given by

$$
\begin{aligned}
\mathrm{P}(X=x, Y=y) & =\sum_{z=0}^{5} \mathrm{P}(X=x, Y=y, Z=z) \\
& =\sum_{z=0}^{5} p(x, y, z) \quad \text { for } \quad 0 \leqslant x \leqslant 5, \quad 0 \leqslant y \leqslant 3
\end{aligned}
$$

If this function is tabulated in a two-way table, the row and column totals give the probability function values for the random variables Y and X respectively, since

$$
\begin{aligned}
\mathrm{P}(X=x) & =\sum_{y=0}^{3} \mathrm{P}(X=x, Y=y)=\sum_{y=0}^{3} \sum_{z=0}^{5} p(x, y, z), \quad 0 \leqslant x \leqslant 5 \\
\text { and } \quad \mathrm{P}(Y=y) & =\sum_{x=0}^{5} \mathrm{P}(X=x, Y=y)=\sum_{x=0}^{5} \sum_{z=0}^{5} p(x, y, z), \quad 0 \leqslant y \leqslant 3 .
\end{aligned}
$$

Thus:

		X						
		0	1	2	3	4	5	
Y	0	$\frac{1}{32}$	0	0	0	0	0	$\frac{1}{32}$
	1	0	$\frac{5}{32}$	$\frac{4}{32}$	$\frac{3}{32}$	$\frac{2}{32}$	$\frac{1}{32}$	$\frac{15}{32}$
	2	0	0	$\frac{6}{32}$	$\frac{6}{32}$	$\frac{5}{32}$	0	$\frac{15}{32}$
	3	0	0	0	$\frac{1}{32}$	0	0	$\frac{1}{32}$
		$\frac{1}{32}$	$\frac{5}{32}$	$\frac{10}{32}$	$\frac{10}{32}$	$\frac{5}{32}$	$\frac{1}{32}$	1

Similarly, the joint probability function of (Y, Z) and the probability functions of Y and Z are

		0	1	2	3	4	5	
Y	0	$\frac{1}{32}$	0	0	0	0	0	$\frac{1}{32}$
	1	0	$\frac{5}{32}$	$\frac{4}{32}$	$\frac{3}{32}$	$\frac{2}{32}$	$\frac{1}{32}$	$\frac{15}{32}$
	2	0	$\frac{6}{32}$	$\frac{7}{32}$	$\frac{2}{32}$	0	0	$\frac{15}{32}$
	3	0	$\frac{1}{32}$	0	0	0	0	$\frac{1}{32}$
		$\frac{1}{32}$	$\frac{12}{32}$	$\frac{11}{32}$	$\frac{5}{32}$	$\frac{2}{32}$	$\frac{1}{32}$	1

(c) $\mathrm{E}(Y)=\left(0 \times \frac{1}{32}\right)+\left(1 \times \frac{15}{32}\right)+\left(2 \times \frac{15}{32}\right)+\left(3 \times \frac{1}{32}\right)=\frac{48}{32}=\frac{3}{2}$
$\mathrm{E}\left(Y^{2}\right)=\left(0 \times \frac{1}{32}\right)+\left(1 \times \frac{15}{32}\right)+\left(4 \times \frac{15}{32}\right)+\left(9 \times \frac{1}{32}\right)=\frac{84}{32}=\frac{21}{8}$
So $\quad \operatorname{Var}(Y)=\mathrm{E}\left(Y^{2}\right)-\{\mathrm{E}(Y)\}^{2}=\frac{21}{8}-\frac{9}{4}=\frac{3}{8}$.
$\mathrm{E}(Z)=\left(0 \times \frac{1}{32}\right)+\left(1 \times \frac{12}{32}\right)+\left(2 \times \frac{11}{32}\right)+\left(3 \times \frac{5}{32}\right)+\left(4 \times \frac{2}{32}\right)+\left(5 \times \frac{1}{32}\right)=\frac{62}{32}=\frac{31}{16}$
$\mathrm{E}\left(Z^{2}\right)=\left(0 \times \frac{1}{32}\right)+\left(1 \times \frac{12}{32}\right)+\left(4 \times \frac{11}{32}\right)+\left(9 \times \frac{5}{32}\right)+\left(16 \times \frac{2}{32}\right)+\left(25 \times \frac{1}{32}\right)=\frac{158}{32}=\frac{79}{16}$
So $\quad \operatorname{Var}(Z)=\mathrm{E}\left(Z^{2}\right)-\{\mathrm{E}(Z)\}^{2}=\frac{79}{16}-\left(\frac{31}{16}\right)^{2}=\frac{303}{256}$.

$$
\begin{aligned}
\mathrm{E}(Y Z)= & \left(1 \times 1 \times \frac{5}{32}\right)+\left(1 \times 2 \times \frac{4}{32}\right)+\left(1 \times 3 \times \frac{3}{32}\right)+\left(1 \times 4 \times \frac{2}{32}\right)+\left(1 \times 5 \times \frac{1}{32}\right) \\
& \quad+\left(2 \times 1 \times \frac{6}{32}\right)+\left(2 \times 2 \times \frac{7}{32}\right)+\left(2 \times 3 \times \frac{2}{32}\right)+\left(3 \times 1 \times \frac{1}{32}\right) \\
= & \frac{90}{32} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{Cov}(Y, Z) & =\frac{90}{32}-\frac{3}{2} \times \frac{31}{16}=-\frac{3}{32} \\
\text { and } \quad \rho(Y, Z) & =\frac{-\frac{3}{32}}{\sqrt{\frac{3}{8} \times \frac{303}{256}}}=-\frac{3 \sqrt{2}}{\sqrt{909}} \approx-\mathbf{0 . 1 4 1}
\end{aligned}
$$

(d) $\mathrm{P}(X=x \mid Y=1)=\mathrm{P}(X=x, Y=1) / \mathrm{P}(Y=1), \quad 0 \leqslant x \leqslant 5$.

$$
\begin{aligned}
& \begin{array}{c|cccccc|c}
x & 0 & 1 & 2 & 3 & 4 & 5 & \\
\hline \mathrm{P}(X=x \mid Y=1) & 0 & \frac{5}{15} & \frac{4}{15} & \frac{3}{15} & \frac{2}{15} & \frac{1}{15} & 1
\end{array} \\
& \mathrm{P}(Y=y, Z=z \mid X=3)=\frac{\mathrm{P}(X=3, Y=y, Z=z)}{\mathrm{P}(X=3)}, \quad 0 \leqslant y \leqslant 3,0 \leqslant z \leqslant 5 \text {. }
\end{aligned}
$$

Thus

$$
\begin{gathered}
\mathrm{P}(Y=1, Z=3 \mid X=3)=\frac{3}{10} \\
\mathrm{P}(Y=2, Z=2 \mid X=3)=\frac{6}{10} \\
\mathrm{P}(Y=3, Z=1 \mid X=3)=\frac{1}{10} \\
\text { all other probabilities are zero. }
\end{gathered}
$$

(e) The random variable $\mathrm{E}(Y \mid X)$ takes the values $\mathrm{E}(Y \mid X=x), \quad x=0, \ldots, 5$, where

$$
\begin{aligned}
\mathrm{E}(Y \mid X=x) & =\sum_{y=0}^{3} y \mathbf{P}(Y=y \mid X=x) \\
& =\sum_{y=0}^{3} y \frac{\mathbf{P}(X=x, Y=y)}{\mathbf{P}(X=x)}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& \mathrm{E}(Y \mid X=0)=0 \times \frac{1 / 32}{1 / 32}=0 \\
& \mathrm{E}(Y \mid X=1)=1 \times \frac{5 / 32}{5 / 32}=1 \\
& \mathrm{E}(Y \mid X=2)=1 \times \frac{4 / 32}{10 / 32}+2 \times \frac{6 / 32}{10 / 32}=\frac{16}{10} \\
& \mathrm{E}(Y \mid X=3)=1 \times \frac{3 / 32}{10 / 32}+2 \times \frac{6 / 32}{10 / 32}+3 \times \frac{1 / 32}{10 / 32}=\frac{18}{10} \\
& \mathrm{E}(Y \mid X=4)=1 \times \frac{2 / 32}{5 / 32}+2 \times \frac{3 / 32}{5 / 32}=\frac{16}{10} \\
& \mathrm{E}(Y \mid X=5)=1 \times \frac{1 / 32}{1 / 32}=1
\end{aligned}
$$

The probabilities are derived from $\{\mathrm{P}(X=x)\}$. Thus:

$\mathrm{E}(Y \mid X)$	0	1	$\frac{16}{10}$	$\frac{18}{10}$	
Prob.	$\frac{1}{32}$	$\frac{6}{32}$	$\frac{10}{32}+\frac{5}{32}$	$\frac{10}{32}$	1
			$\frac{15}{32}$		

and $\mathrm{E}[\mathrm{E}(Y \mid X)]=\left(0 \times \frac{1}{32}\right)+\left(1 \times \frac{6}{32}\right)+\left(\frac{16}{10} \times \frac{15}{32}\right)+\left(\frac{18}{10} \times \frac{10}{32}\right)=\frac{48}{32}=\mathrm{E}(Y)$.

6. Let

$X=$ time to freedom (hours)
$Y=$ number of door originally chosen (1,2 or 3).
Then

$$
\mathrm{E}(X)=\mathrm{E}(X \mid Y=1) \mathrm{P}(Y=1)+\mathrm{E}(X \mid Y=2) \mathrm{P}(Y=2)+\mathrm{E}(X \mid Y=3) \mathrm{P}(Y=3) .
$$

Now

$$
\begin{aligned}
\mathrm{E}(X \mid Y=1) & =2+\mathrm{E}(X) \\
\mathrm{E}(Y \mid Y=2) & =4+\mathrm{E}(X) \\
\mathrm{E}(X \mid Y=3) & =1 .
\end{aligned}
$$

So

$$
\begin{aligned}
\mathrm{E}(X) & =0.5[2+\mathrm{E}(X)]+0.3[4+\mathrm{E}(X)]+0.2[1] \\
& =2.4+0.8 \mathrm{E}(X)
\end{aligned}
$$

So $\mathrm{E}(X)=12.0$ days.
7. (a)

$$
\mathrm{P}(X=x)=\mathrm{P}(X=2 N-x+1), \quad x=1, \ldots, N
$$

$$
\mathrm{E}\left(X-N-\frac{1}{2}\right)=\sum_{x=1}^{2 N}\left(x-N-\frac{1}{2}\right) \mathrm{P}(X=x)
$$

Now

$$
\begin{aligned}
1 \text { st term } & =\left(\frac{1}{2}-N\right) \mathrm{P}(X=1) \\
2 \text { nd term } & =\left(\frac{3}{2}-N\right) \mathrm{P}(X=2)
\end{aligned}
$$

etc.
2nd last term $=\left(N-\frac{3}{2}\right) \mathrm{P}(X=2 N-1)=\left(N-\frac{3}{2}\right) \mathrm{P}(X=2)$
last term $=\left(N-\frac{1}{2}\right) \mathrm{P}(X=2 N)=\left(N-\frac{1}{2}\right) \mathrm{P}(X=1)$.
Summing 1 st and last terms gives 0; 2nd and 2nd last terms gives 0 ; etc.
So

$$
\mathrm{E}\left(X-N-\frac{1}{2}\right)=0=\mathrm{E}(X)-\left(N+\frac{1}{2}\right),
$$

i.e.

$$
\mathrm{E}(X)=N+\frac{1}{2}
$$

Since $\mathrm{P}\left(X \leqslant N+\frac{1}{2}\right)=\mathrm{P}\left(X \geqslant N+\frac{1}{2}\right)=\frac{1}{2}$, the median of X is $N+\frac{1}{2}$ (actually any value between N and $N+1$ can be considered the median).
(b)

By a similar procedure to that in part (a), we can show that

$$
\mathrm{E}(Y-M)=0
$$

and hence

$$
\mathrm{E}(Y)=M
$$

Since $\quad \mathrm{P}(Y<M)=P(Y>M)$, the median of Y is M.
8. We have:

$$
\begin{array}{rlr}
\mathrm{P}\left(X_{1}=X_{2}\right) & =\mathrm{P}\left(\bigcup_{k=0}^{n}\left[X_{1}=k, X_{2}=k\right]\right) \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{1}=k, X_{2}=k\right) & \quad \text { [m.e. events] } \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{1}=k\right) \mathrm{P}\left(X_{2}=k\right) . \quad \text { [independence] }
\end{array}
$$

But

$$
\mathrm{P}\left(X_{2}=k\right)=\mathrm{P}\left(X_{2}=n-k\right) \quad \text { since } \quad \mathrm{P}(H)=\mathrm{P}(T) .
$$

So

$$
\begin{array}{rlr}
\mathrm{P}\left(X_{1}=X_{2}\right) & =\sum_{k=0}^{n} \mathrm{P}\left(X_{1}=k\right) \mathrm{P}\left(X_{2}=n-k\right) \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{1}=k, X_{2}=n-k\right) \quad \text { [independence] } \\
& =\mathrm{P}\left(\bigcup_{k=0}^{n}\left[X_{1}=k, X_{2}=n-k\right]\right) \quad \text { [m.e. events] } \\
& =\mathrm{P}\left(X_{1}+X_{2}=n\right) .
\end{array}
$$

Because the two people toss independently, the experiment can be regarded as a single Bernoulli process with $2 n$ trials and $p=\frac{1}{2}, X=X_{1}+X_{2}$ being the total number of heads obtained. Then the required probability is

$$
\begin{aligned}
\mathrm{P}(X=n) & =\binom{2 n}{n}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{2 n-n} \\
& =\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n} .
\end{aligned}
$$

9. (a)

		X						
		0	1	2	3	4	5	
Z	0	$\frac{1}{32}$	0	0	0	0	0	$\frac{1}{32}$
	1	0	$\frac{5}{32}$	$\frac{6}{32}$	$\frac{1}{32}$	0	0	$\frac{12}{32}$
	2	0	0	$\frac{4}{32}$	$\frac{6}{32}$	$\frac{1}{32}$	0	$\frac{11}{32}$
	3	0	0	0	$\frac{3}{32}$	$\frac{2}{32}$	0	$\frac{5}{32}$
	4	0	0	0	0	$\frac{2}{32}$	0	$\frac{2}{32}$
	5	0	0	0	0	0	$\frac{1}{32}$	$\frac{1}{32}$
	$\frac{1}{32}$	$\frac{5}{32}$	$\frac{10}{32}$	$\frac{10}{32}$	$\frac{5}{32}$	$\frac{1}{32}$	1	

(b) $\mathrm{E}(X)=\left(0 \times \frac{1}{32}\right)+\left(1 \times \frac{5}{32}\right)+\left(2 \times \frac{10}{32}\right)+\left(3 \times \frac{10}{32}\right)+\left(4 \times \frac{5}{32}\right)+\left(5 \times \frac{1}{32}\right)=\frac{80}{32}=\frac{5}{2}$ $\mathrm{E}\left(X^{2}\right)=\left(0 \times \frac{1}{32}\right)+\left(1 \times \frac{5}{32}\right)+\left(4 \times \frac{10}{32}\right)+\left(9 \times \frac{10}{32}\right)+\left(16 \times \frac{5}{32}\right)+\left(25 \times \frac{1}{32}\right)=\frac{240}{32}=\frac{15}{2}$.
So $\quad \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\{\mathrm{E}(X)\}^{2}=\frac{15}{2}-\left(\frac{5}{2}\right)^{2}=\frac{5}{4}$.

$$
\begin{aligned}
\mathrm{E}(X Y)= & \left(1 \times 1 \times \frac{5}{32}\right)+\left(2 \times 1 \times \frac{4}{32}\right)+\left(2 \times 2 \times \frac{6}{32}\right)+\left(3 \times 1 \times \frac{3}{32}\right)+\left(3 \times 2 \times \frac{6}{32}\right) \\
& +\left(3 \times 3 \times \frac{1}{32}\right)+\left(4 \times 1 \times \frac{2}{32}\right)+\left(4 \times 2 \times \frac{3}{32}\right)+\left(5 \times 1 \times \frac{1}{32}\right) \\
= & \frac{128}{32}=4 \\
\mathrm{E}(X Z)= & \left(1 \times 1 \times \frac{5}{32}\right)+\left(2 \times 1 \times \frac{6}{32}\right)+\left(2 \times 2 \times \frac{4}{32}\right)+\left(3 \times 1 \times \frac{1}{32}\right)+\left(3 \times 3 \times \frac{3}{32}\right) \\
& +\left(4 \times 2 \times \frac{1}{32}\right)+\left(4 \times 3 \times \frac{2}{32}\right)+\left(4 \times 4 \times \frac{2}{32}\right)+\left(5 \times 5 \times \frac{1}{32}\right) \\
= & \frac{188}{32}=\frac{47}{8} .
\end{aligned}
$$

So

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =4-\frac{5}{2} \times \frac{3}{2}=\frac{1}{4} \\
\rho(X, Y) & =\frac{\frac{1}{4}}{\sqrt{\frac{5}{4} \times \frac{3}{8}}}=\sqrt{\frac{2}{15}} \approx 0.365
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Cov}(X, Z) & =\frac{188}{32}-\frac{5}{2} \times \frac{31}{16}=\frac{33}{32} \\
\rho(X, Z) & =\frac{\frac{33}{32}}{\sqrt{\frac{5}{4} \times \frac{303}{256}}}=\frac{33}{\sqrt{1515}} \approx 0.848
\end{aligned}
$$

(c) $\mathrm{P}(X=x \mid Y=2, Z=2)=\frac{\mathrm{P}(X=x, Y=2, Z=2)}{\mathrm{P}(Y=2, Z=2)}, \quad 0 \leqslant x \leqslant 5$.

So

$$
\begin{aligned}
& \mathrm{P}(X=3 \mid Y=2, Z=2)=\frac{6}{7} \\
& \mathrm{P}(X=4 \mid Y=2, Z=2)=\frac{1}{7} ;
\end{aligned}
$$

all other probabilities are zero.
(d)

$$
\mathrm{E}(Z \mid X=x)=\sum_{z=0}^{5} z \frac{\mathrm{P}(X=x, Z=z)}{\mathrm{P}(X=x)}
$$

Thus:

$$
\begin{aligned}
& \mathrm{E}(Z \mid X=0)=0 \times \frac{1 / 32}{1 / 32}=0 \\
& \mathrm{E}(Z \mid X=1)=1 \times \frac{5 / 32}{5 / 32}=1 \\
& \mathrm{E}(Z \mid X=2)=1 \times \frac{6 / 32}{10 / 32}+2 \times \frac{4 / 32}{10 / 32}=\frac{14}{10} \\
& \mathrm{E}(Z \mid X=3)=1 \times \frac{1 / 32}{10 / 32}+2 \times \frac{6 / 32}{10 / 32}+3 \times \frac{3 / 32}{10 / 32}=\frac{22}{10} \\
& \mathrm{E}(Z \mid X=4)=2 \times \frac{1 / 32}{5 / 32}+3 \times \frac{2 / 32}{5 / 32}+4 \times \frac{2 / 32}{5 / 32}=\frac{32}{10} \\
& \mathrm{E}(Z \mid X=5)=5 \times \frac{1 / 32}{1 / 32}=5 .
\end{aligned}
$$

From $\{\mathrm{P}(X=x)\}$ we deduce

$\mathrm{E}(Z \mid X)$	0	1	$\frac{14}{10}$	$\frac{22}{10}$	$\frac{32}{10}$	5	
Prob.	$\frac{1}{32}$	$\frac{5}{32}$	$\frac{10}{32}$	$\frac{10}{32}$	$\frac{5}{32}$	$\frac{1}{32}$	1

So

$$
\begin{aligned}
\mathrm{E}[\mathrm{E}(Z \mid X)] & =\left(0 \times \frac{1}{32}\right)+\left(1 \times \frac{5}{32}\right)+\left(\frac{14}{10} \times \frac{10}{32}\right)+\left(\frac{22}{10} \times \frac{10}{32}\right)+\left(\frac{32}{10} \times \frac{5}{32}\right)+\left(5 \times \frac{1}{32}\right) \\
& =\frac{62}{32}=\mathrm{E}(Z) .
\end{aligned}
$$

10. Let
$X_{k}=$ return when critical value k is used $S=$ value on first roll.

The probability distribution of S is:

j	2	3	4	5	6	7	8	9	10	11	12	
$\mathrm{P}(S=j)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	1

Then

$$
\mathrm{E}\left(X_{k}\right)=\sum_{j=2}^{12} \mathrm{E}\left(X_{k} \mid S=j\right) \mathrm{P}(S=j)
$$

Now

$$
\mathrm{E}\left(X_{k} \mid S=j\right)= \begin{cases}0, & \text { if } j=7 \\ \mathrm{E}\left(X_{k}\right), & \text { if } j<k \text { and } j \neq 7 \text { (because we start again) } \\ j, & \text { if } j \geqslant k \text { and } j \neq 7 .\end{cases}
$$

Then

$$
\begin{aligned}
& \mathrm{E}\left(X_{6}\right)=\frac{1}{36}[1+2+3+4] \mathrm{E}\left(X_{6}\right)+\frac{1}{36}[(6 \times 5)+(8 \times 5)+(9 \times 4) \\
& +(10 \times 3)+(11 \times 2)+(12 \times 1)] \\
& =\frac{10}{36} \mathrm{E}\left(X_{6}\right)+\frac{170}{36} \\
& \text { i.e } \quad \frac{26}{36} \mathrm{E}\left(X_{6}\right)=\frac{170}{36} \quad \longrightarrow \quad \mathrm{E}\left(X_{6}\right)=\frac{170}{36}=\mathbf{6 . 5 3 8} . \\
& {\left[\mathrm{E}\left(X_{7}\right)=\right] \mathrm{E}\left(X_{8}\right)=\frac{1}{36}[1+2+3+4+5] \mathrm{E}\left(X_{8}\right)+\frac{1}{36}[(8 \times 5)+(9 \times 4)} \\
& +(10 \times 3)+(11 \times 2)+(12 \times 1)] \\
& =\frac{15}{36} \mathrm{E}\left(X_{8}\right)+\frac{140}{36} \\
& \text { i.e } \quad \frac{21}{36} \mathrm{E}\left(X_{8}\right)=\frac{140}{36} \quad \longrightarrow \quad \mathrm{E}\left(X_{8}\right)=\frac{140}{21}=6.667 \text {. } \\
& \mathrm{E}\left(X_{9}\right)=\frac{1}{36}[1+2+3+4+5+5] \mathrm{E}\left(X_{9}\right)+\frac{1}{36}[(9 \times 4)+(10 \times 3)+(11 \times 2)+(12 \times 1)] \\
& =\frac{20}{36} \mathrm{E}\left(X_{9}\right)+\frac{100}{36} \\
& \text { i.e } \quad \frac{16}{36} \mathrm{E}\left(X_{9}\right)=\frac{100}{36} \quad \longrightarrow \quad \mathrm{E}\left(X_{9}\right)=\frac{100}{16}=\mathbf{6 . 2 5 0} \text {. }
\end{aligned}
$$

So $\mathrm{E}\left(X_{k}\right)$ is maximised at $k=8$.

