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SOR201 Solutions to Examples 4

1. (i) (a) Ii =

{

1, if a success occurs on the ith trial
0, otherwise.

So
P(Ii = 1) = p, P(Ii = 0) = 1 − p = q,

E(Ii) = 0 × q + 1 × p = p,

E(I2
i ) = 02 × q + 12 × p = p,

and Var(Ii) = p − p2 = pq.

I1, ..., In are independent random variables because Ii is associated with the
outcome of the ith trial and the trials are independent, i.e. their outcomes are
independent events.

(b) X = I1 + · · ·+ In = number of successes in the n trials.
X ∼ Binomial(n, p).

E(X) = E(I1 + · · ·+ In) = E(I1) + · · ·E(In) = np,

Var(X) = Var(I1 + · · ·+ In) = Var(I1) + · · ·+ Var(In) = npq.

(There are no covariance terms involved because I1, ..., In are independent
random variables.)

(ii) (a) The random variable X has the hypergeometric distribution

P(X = x) =

(

N1

x

)(

N2

n − x

)

(

N

n

) ,

where 0 6 x 6 N1, 0 6 n − x 6 N2.

�
�

Q
Q

Q
Q

�
�

N

N1 N2

n

x n − x

X = I1 + · · ·+ In.

(b) Since Ii and Ij are indicator random variables,

E(Ii) = P(Ii = 1) =
N1

N
, [because the ith ball selected is

equally likely to be any of the N balls]
Var(Ii) = E(I2

i ) − [E(Ii)]
2

= P(Ii = 1) −

(

N1

N

)2

=
N1

N
−

(

N1

N

)2

,

E(Ii.Ij) = 0 × 0 × P(Ii = 0, Ij = 0)
+0 × 1 × P(Ii = 0, Ij = 1)
+1 × 0 × P(Ii = 1, Ij = 0)
+1 × 1 × P(Ii = 1, Ij = 1)

= P(Ii = 1, Ij = 1)

= P(Ij = 1|Ii = 1)P(Ii = 1) =
N1 − 1

N − 1
×

N1

N
,

so Cov(Ii, Ij) = E(Ii.Ij) − E(Ii)E(Ij)

=
N1(N1 − 1)

N(N − 1)
−

(

N1

N

)2

= −
N1N2

N2(N − 1)
. [N1 + N2 = N ]

/continued overleaf
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Then E(X) = E(I1 + · · · + In) = E(I1) + · · · + E(In) =
nN1

N
,

and

Var(X) = Var(I1 + · · · + In) =

n
∑

i=1

Var(Ii) + 2
∑

i<j

Cov(Ii, Ij)

= n

{

N1

N
−

(

N1

N

)2
}

+ 2

(

n

2

) {

−
N1N2

N2(N − 1)

}

=
nN1

N

{

1 −
N1

N
−

(n − 1)N2

N(N − 1)

}

=
nN1

N2

{

N2 −
(n − 1)N2

(N − 1)

}

=
nN1N2(N − n)

N2(N − 1)
.

(iii) Let

Ii =

{

1, if Ai occurs
0, otherwise.

Then E(Ii) = P(Ii = 1) = P(Ai) =
(n − 1)!

n!
=

1

n
, i = 1, ..., n

and Var(Ii) = P(Ii = 1) − [P(Ii = 1)]2 =
1

n
−

(

1

n

)2

, i = 1, ..., n.

Now Sn = I1 + I2 + · · ·+ In.

So E(Sn) =
n

∑

i=1

E(Ii) = n ×
1

n
= 1.

Also Var(Sn) =
n

∑

i=1

Var(Ii) + 2
∑

i<j

Cov(Ii, Ij),

where
Cov(Ii, Ij) = E(Ii.Ij) − E(Ii)E(Ij)

= P(Ai ∩ Aj) − P(Ai)P(Aj) i 6= j

=
(n − 2)!

n!
−

(

1

n

)2

=
1

n(n − 1)
−

1

n2
.

So

Var(Sn) = n

(

1

n
−

1

n2

)

+ 2

(

n

2

) (

1

n(n − 1)
−

1

n2

)

= 1 −
1

n
+ 1 −

n(n − 1)

n2
= 1.

Note:

(a) In deriving expressions for E(Ii) and Cov(Ii, Ij), one can alternatively argue
as in part (ii)(b).

(b) From Examples 1, Question 8, we have that

P(Sn = k) −→
e−1

k!
as n → ∞

i.e. Sn has a Poisson distribution with

E(Sn) = Var(Sn) = 1.

Now we have found that this result holds for all n (even though the distribution
of Sn for finite n is not Poisson).
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2. (i) The PGF of X is

GX(s) = E(sX) =
∑

x

P(X = x)sx

=
n
∑

x=0

(

n

x

)

pxqn−xsx

=
n
∑

x=0

(

n

x

)

(ps)xqn−x = (ps + q)n.

Then
G

(1)
X (s) = n(ps + q)n−1.p so E(X) = G

(1)
X (1) = np.

G
(2)
X (s) = n(n − 1)(ps + q)n−2.p2 so G

(2)
X (1) = n(n − 1)p2.

So

Var(X) = G
(2)
X (1) + G

(1)
X (1) −

[

G
(1)
X (1)

]2

= n(n − 1)p2 + np − n2p2

= −np2 + np = np(1 − p) = npq.

Now

GX+Y (s) = GX(s).GY (s) when X,Y are independent
= (ps + q)n.(ps + q)m

= (ps + q)m+n − the PGF of Bin(m + n, p).

So X + Y ∼ Bin(m + n, p).

Alternative argument:

Consider n independent Bernoulli trials, each with probability p, followed by m

independent Bernoulli trials, also each with probability p.

Then
number of successes in first n trials

+ number of successes in last m trials = number of successes in (n + m) trials.

Hence X + Y = Z ∼ Bin(n + m, p).

(ii) GX(s) =
1 − sM+1

(M + 1)(1 − s)
.

Since GX(s) =
∞
∑

x=0

P(X = x)sx,

P(X = x) is the coefficient of sx in the power series expansion of the r.h.s.

Now

GX(s) =
1

M + 1
(1 − sM+1)(1 + s + s2 + · · ·), |s| < 1

=
1

M + 1
(1 + s + s2 + · · · − sM+1 − sM+2 − · · ·)

=
1

M + 1
(1 + s + · · ·+ sM).

So

P(X = x) =
1

M + 1
, x = 0, 1, ..., M (discrete uniform distribution.)

/continued overleaf
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(iii) The total sum of the scores is

SN = X1 + · · ·+ XN ,

where Xi is the score in the ith game and the {Xi} are independent, identically
distributed random variables; the random variable N is the value obtained from
throwing the die. Then the PGF of SN is GN(GX(s)), where GN(u) is the PGF of
N and GX(s) is the PGF of (any) game score.
Now

GN(u) =
6

∑

n=1

P(N = n)un

=
6

∑

n=1

1
6
un = 1

6
.
u(1 − u6)

1 − u
;

GX(s) =
2

∑

x=0

P(X = x)sx

= 1
10

+ 6
10

s + 3
10

s2.

So the PGF of SN is

1

6
.
{ 1

10
+ 6

10
s + 3

10
s2}{1 − ( 1

10
+ 6

10
s + 3

10
s2)6}

1 − ( 1
10

+ 6
10

s + 3
10

s2)
.

We have that E(SN) = E(N)E(X).
But

E(N) =
6

∑

n=1

n.P(N = n) = 1
6

6
∑

n=1

n = 7
2
;

E(X) =
[

G
(1)
X (s)

]

s=1
= 12

10
.

So E(SN) = 7
2
× 12

10
= 4.2 .

3. (i) We have

GX(s) =
∞
∑

x=1

P(X = x)sx =
∞
∑

x=1

pqx−1sx

= ps
∞
∑

x=1

(qs)x−1 = ps
∞
∑

r=0

(qs)r [r = x − 1]

=
ps

1 − qs
, |qs| < 1.

G
(1)
X (s) =

p

1 − qs
−

ps(−q)

(1 − qs)2
,

G
(2)
X (s) = −

p(−q)

(1 − qs)2
+

pq

(1 − qs)2
−

2pqs(−q)

(1 − qs)3
.

Then

E(X) = G
(1)
X (1) =

p

1 − q
+

pq

(1 − q)2
= 1 +

q

p
=

1

p
;

E[X(X − 1)] = G
(2)
X (1) =

2pq

(1 − q)2
+

2pq2

(1 − q)3

=
2q

p
+

2q2

p2
=

2pq + 2q2

p2
=

2q

p2
.

So Var(X) =
2q

p2
+

1

p
−

1

p2
=

2q + p − 1

p2
=

q

p2
.

/continued overleaf
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(ii) (a) A sequence of successes and failures ending with the r th success may be
divided into r sub-sequences each consisting of a number of failures followed
by a single success, e.g.

F F ... F S F ... F S S F ... F S .... F ... F S
1 2 3 4 r

Let Xi be the number of trials in the ith sub-sequence. Then X1, ..., Xr are
independent random variables, each distributed with the geometric distribution
defined in part (i). If Z denotes the number of trials required for r successes to
occur,

Z = X1 + X2 + · · · + Xr.

(b) Since X1, ..., Xr are independent random variables,

GZ(s) = GX1
(s)...GXr

(s) =

{

ps

1 − qs

}r

, |qs| < 1.

P(Z = z) is the coefficient of sz in the power series expansion of GZ(s), where
z = r, r + 1, ... Using the binomial expansion for negative integer index (see
Appendix to Lecture Notes), we have

GZ(s) = prsr

∞
∑

i=0

(

i + r − 1

i

)

(qs)i, |qs| < 1.

Let z = r + j, where j = 0, 1, ... Then the coefficient of sz = sr+j in GZ(s)
is

pr

(

j + r − 1

j

)

qj =

(

z − 1

z − r

)

prqz−r, z = r, r + 1, ...

i.e. P(Z = z) =

(

z − 1

r − 1

)

prqz−r, z = r, r + 1, ...

(c) Z =

r
∑

i=1

Xi, so E(Z) =

r
∑

i=1

E(Xi) =
r

p
.

Since the Xi’s are independent,

Var(Z) =

r
∑

i=1

Var(Xi) =
rq

p2
.

Alternatively:

Determine G
(1)
Z (s); then E(X) = G

(1)
Z (1) =

r

p
.

Determine G
(2)
Z (s); then E[X(X − 1)] = G

(2)
Z (1) =

r(r − 1)

p2
+

2rq

p2
.

So

Var(Z) =
r(r − 1)

p2
+

2rq

p2
+

r

p
−

r2

p2

=
r

p

(

−
1

p
+

2q

p
+ 1

)

[−1 + 2q + p = q]

=
rq

p2
.
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4. (a) Since X0 = 1, P(X0 = k) =

{

1, k = 1
0, k 6= 1.

So G0(s) =
∑

k

P(X0 = k)sk = s.

The PGF of the random variable C is

G(s) =

∞
∑

k=0

P(C = k)sk

=
∞

∑

k=0

(1
2
)k+1sk = 1

2

∞
∑

k=0

(

1
2
s
)k

= 1
2
.

1

1 − 1
2
s
, |1

2
s| < 1

=
1

2 − s
, |s| < 2.

So G1(s) = G(s) =
1

2 − s
, |s| < 2.

Then

G2(s) = G1(G(s)) =
1

2 −
(

1
2−s

) =
2 − s

3 − 2s

G3(s) = G2(G(s)) =
2 −

(

1
2−s

)

3 − 2
(

1
2−s

) =
3 − 2s

4 − 3s
.

(b) The result

Gn(s) =
n − (n − 1)s

(n + 1) − ns

holds for n = 1. Suppose it holds for n = m, i.e. that Gm(s) =
m − (m − 1)s

(m + 1) − ms
.

Then

Gm+1(s) = Gm(G(s))

=
m − (m − 1)( 1

2−s
)

(m + 1) − m( 1
2−s

)

=
2m − ms − m + 1

2m + 2 − ms − s − m
=

(m + 1) − ms

(m + 2) − (m + 1)s

i.e. the result holds for n = m + 1. So, by induction, it holds for all n > 1.

(c) P(Xn = 0) is the constant term in the power series expansion of Gn(s);
P(Xn = x), x > 1 is the coefficient of sx. Now

n − (n − 1)s

(n + 1) − ns
=

n − (n − 1)s

(n + 1){1 − n
n+1

s}

= 1
n+1

{n − (n − 1)s}{1 + ( n
n+1

)s + ( n
n+1

)2s2 + · · ·} | n
n+1

s| < 1.

Hence P(X0 = 0) = n
n+1

−→ 1 as n −→ ∞ i.e. ultimate extinction is certain.

/continued overleaf
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P(Xn = x) =
(

n
n+1

) (

n
n+1

)x
−

(

n−1
n+1

) (

n
n+1

)x−1
x > 1

=
(

1
n+1

) (

n
n+1

)x−1
{n

(

n
n+1

)

− (n − 1)}

=
(

1
n+1

) (

n
n+1

)x−1 (

1
n+1

)

=
nx−1

(n + 1)x+1
, x = 1, 2, ...

5. (i) We have
E(IA) = P(A), E(IB) = P(B),

E(IAIB) = P(A ∩ B).

So
Cov(IA, IB) = E(IAIB) − E(IA)E(IB)

= P(A ∩ B) − P(A)P(B)
= P(A|B)P(B) − P(A)P(B)
= P(B)[P(A|B) − P(A)].

The result follows immediately.

(ii) Let Ii be the indicator random variable for Ai (i = 1, ..., n).

Then X =

n
∑

i=1

Ii

and E(X) =

n
∑

i=1

E(Ii) =

n
∑

i=1

P(Ai).

But X > Y , so

E(X) > E(Y ) = P(Y = 1) = P(X > 1) = P(A1 ∪ · · · ∪ An),

proving the result.

(iii) Combine the outcomes Ei and Ej into one outcome Eij (with probability pi + pj):
we now have a multinomial situation with k − 1 outcomes (and n trials), so the
distribution of Xij = Xi +Xj is binomial with variance n(pi +pj)(1−(pi +pj)).

Using the quoted formula we have:

n(pi + pj)(1 − pi − pj) = Var(Xi) + Var(Xj) + 2Cov(Xi, Xj)
= npi(1 − pi) + npj(1 − pj) + 2Cov(Xi, Xj)

which yields Cov(Xi, Xj) = −npipj as before.

6. We have X = 1+
B

∑

i=1

Ii

so E(X) = 1+

B
∑

i=1

E(Ii) = 1+

B
∑

i=1

P(Ii = 1).

But P(Ii) = 1) =
1

W + 1
,

since each ball from the set {black ball i, all W white balls} has the same probability of
being drawn.

So E(X) = 1 +
B

W + 1
.

/continued overleaf
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[Comment A question such as

If cards are drawn at random from a standard pack, one by one, how many
cards would one expect to draw before getting (a) a king; (b) a club; ....?

is just a special case of the above problem.]

7. Let Xi = score on the ith roll. Then

Gi(s) =
1

6

6
∑

x=1

sx =
5

6

5
∑

y=0

sy =
s(1 − s6)

6(1 − s)
, i = 1, 2, 3.

Since X =

3
∑

i=1

Xi, GX(s) =
s3(1 − s6)3

63(1 − s)3
. Then P(X = 14) is the coefficient of s14

in the series expansion of GX(s), i.e. the coefficient of s11 in the expansion of

(1 − s6)3

63(1 − s)3
=

1

6

[

1 − 3s6 + 3s12 − s18
]

[

1 +

(

3

1

)

s +

(

4

2

)

s2 + ...

]

,

i.e.
1

63

[(

13

11

)

− 3

(

7

5

)]

=
1

63

[

13 × 12

12
−

3 × 7 × 6

2

]

=
5

72
.

8. The PGF of each Xi is

G(s) =

∞
∑

k=1

(4
5
)ksk

k loge 5
= −

loge(1 − 4
5
s)

loge 5
.

Now T =
N

∑

i=1

Xi , so GT (s) = GN(G(s)).

But GN (s) = eλ(s−1) = elog
e
5(s−1).

So

GT (s) = exp

[

loge 5

{

−
loge(1 − 4

5
s)

loge 5
− 1

}]

= exp
[

− loge(1 − 4
5
s)

]

exp[− loge 5]

=
1
5

1 − 4
5
s
.

But the PGF of the modified geometric distribution is

∞
∑

k=0

pqksk = p

∞
∑

k=0

(qs)k =
p

1 − qs
, |qs| < 1.

So T has the modified geometric distribution with parameter p = 1
5
.


