1. (i) (a) $I_{i}= \begin{cases}1, & \text { if a success occurs on the } i^{\text {th }} \text { trial } \\ 0, & \text { otherwise. }\end{cases}$

So

$$
\begin{aligned}
& \quad \mathrm{P}\left(I_{i}=1\right)=p, \quad \mathrm{P}\left(I_{i}=0\right)=1-p=q, \\
& \mathrm{E}\left(I_{i}\right)=0 \times q+1 \times p=p, \\
& \mathrm{E}\left(I_{i}^{2}\right)=0^{2} \times q+1^{2} \times p=p, \\
& \text { and } \operatorname{Var}\left(I_{i}\right)=p-p^{2}=p q .
\end{aligned}
$$

I_{1}, \ldots, I_{n} are independent random variables because I_{i} is associated with the outcome of the $i^{\text {th }}$ trial and the trials are independent, i.e. their outcomes are independent events.
(b) $X=I_{1}+\cdots+I_{n}=$ number of successes in the n trials.
$X \sim \operatorname{Binomial}(n, p)$.

$$
\begin{array}{rll}
\mathrm{E}(X) & =\mathrm{E}\left(I_{1}+\cdots+I_{n}\right) & =\mathrm{E}\left(I_{1}\right)+\cdots \mathrm{E}\left(I_{n}\right) \\
\operatorname{Var}(X) & =\operatorname{Var}\left(I_{1}+\cdots+I_{n}\right) & =\operatorname{Var}\left(I_{1}\right)+\cdots+\operatorname{Var}\left(I_{n}\right)
\end{array}=n p q .
$$

(There are no covariance terms involved because I_{1}, \ldots, I_{n} are independent random variables.)
(ii) (a) The random variable X has the hypergeometric distribution

$$
\mathrm{P}(X=x)=\frac{\binom{N_{1}}{x}\binom{N_{2}}{n-x}}{\binom{N}{n}}
$$

where $\quad 0 \leqslant x \leqslant N_{1}, \quad 0 \leqslant n-x \leqslant N_{2}$.
$X=I_{1}+\cdots+I_{n}$.
(b) Since I_{i} and I_{j} are indicator random variables,

$$
\mathrm{E}\left(I_{i}\right)=\mathrm{P}\left(I_{i}=1\right)=\frac{N_{1}}{N} \text {, [because the } i^{\text {th }} \text { ball selected is }
$$

equally likely to be any of the N balls]
$\operatorname{Var}\left(I_{i}\right)=\mathrm{E}\left(I_{i}^{2}\right)-\left[\mathrm{E}\left(I_{i}\right)\right]^{2}$
$=\mathrm{P}\left(I_{i}=1\right)-\left(\frac{N_{1}}{N}\right)^{2}=\frac{N_{1}}{N}-\left(\frac{N_{1}}{N}\right)^{2}$,
$\mathrm{E}\left(I_{i} \cdot I_{j}\right)=0 \times 0 \times \mathrm{P}\left(I_{i}=0, I_{j}=0\right)$
$+0 \times 1 \times \mathrm{P}\left(I_{i}=0, I_{j}=1\right)$ $+1 \times 0 \times \mathrm{P}\left(I_{i}=1, I_{j}=0\right)$ $+1 \times 1 \times \mathrm{P}\left(I_{i}=1, I_{j}=1\right)$
$=\mathrm{P}\left(I_{i}=1, I_{j}=1\right)$
$=\mathrm{P}\left(I_{j}=1 \mid I_{i}=1\right) \mathrm{P}\left(I_{i}=1\right)=\frac{N_{1}-1}{N-1} \times \frac{N_{1}}{N}$,
so

$$
\begin{aligned}
\operatorname{Cov}\left(I_{i}, I_{j}\right) & =\mathrm{E}\left(I_{i} \cdot I_{j}\right)-\mathrm{E}\left(I_{i}\right) \mathrm{E}\left(I_{j}\right) \\
& =\frac{N_{1}\left(N_{1}-1\right)}{N(N-1)}-\left(\frac{N_{1}}{N}\right)^{2} \\
& =-\frac{N_{1} N_{2}}{N^{2}(N-1)} . \quad\left[N_{1}+N_{2}=N\right]
\end{aligned}
$$

Then $\mathrm{E}(X)=\mathrm{E}\left(I_{1}+\cdots+I_{n}\right)=\mathrm{E}\left(I_{1}\right)+\cdots+\mathrm{E}\left(I_{n}\right)=\frac{n N_{1}}{N}$,
and

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Var}\left(I_{1}+\cdots+I_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(I_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(I_{i}, I_{j}\right) \\
& =n\left\{\frac{N_{1}}{N}-\left(\frac{N_{1}}{N}\right)^{2}\right\}+2\binom{n}{2}\left\{-\frac{N_{1} N_{2}}{N^{2}(N-1)}\right\} \\
& =\frac{n N_{1}}{N}\left\{1-\frac{N_{1}}{N}-\frac{(n-1) N_{2}}{N(N-1)}\right\} \\
& =\frac{n N_{1}}{N^{2}}\left\{N_{2}-\frac{(n-1) N_{2}}{(N-1)}\right\}=\frac{n N_{1} N_{2}(N-n)}{N^{2}(N-1)} .
\end{aligned}
$$

(iii) Let

$$
I_{i}= \begin{cases}1, & \text { if } A_{i} \text { occurs } \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\mathrm{E}\left(I_{i}\right)=\mathrm{P}\left(I_{i}=1\right)=\mathrm{P}\left(A_{i}\right)=\frac{(n-1)!}{n!}=\frac{1}{n}, \quad i=1, \ldots, n
$$

and $\quad \operatorname{Var}\left(I_{i}\right)=\mathrm{P}\left(I_{i}=1\right)-\left[\mathrm{P}\left(I_{i}=1\right)\right]^{2}=\frac{1}{n}-\left(\frac{1}{n}\right)^{2}, \quad i=1, \ldots, n$.
Now $\quad S_{n}=I_{1}+I_{2}+\cdots+I_{n}$.
So $\quad \mathrm{E}\left(S_{n}\right)=\sum_{i=1}^{n} \mathrm{E}\left(I_{i}\right)=n \times \frac{1}{n}=1$.
Also $\operatorname{Var}\left(S_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(I_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(I_{i}, I_{j}\right)$,
where

$$
\begin{aligned}
\operatorname{Cov}\left(I_{i}, I_{j}\right) & =\mathrm{E}\left(I_{i} \cdot I_{j}\right)-\mathrm{E}\left(I_{i}\right) \mathrm{E}\left(I_{j}\right) \\
& =\mathrm{P}\left(A_{i} \cap A_{j}\right)-\mathrm{P}\left(A_{i}\right) \mathrm{P}\left(A_{j}\right) \quad i \neq j \\
& =\frac{(n-2)!}{n!}-\left(\frac{1}{n}\right)^{2}=\frac{1}{n(n-1)}-\frac{1}{n^{2}}
\end{aligned}
$$

So

$$
\begin{aligned}
\operatorname{Var}\left(S_{n}\right) & =n\left(\frac{1}{n}-\frac{1}{n^{2}}\right)+2\binom{n}{2}\left(\frac{1}{n(n-1)}-\frac{1}{n^{2}}\right) \\
& =1-\frac{1}{n}+1-\frac{n(n-1)}{n^{2}}=1 .
\end{aligned}
$$

Note:
(a) In deriving expressions for $\mathrm{E}\left(I_{i}\right)$ and $\operatorname{Cov}\left(I_{i}, I_{j}\right)$, one can alternatively argue as in part (ii)(b).
(b) From Examples 1, Question 8, we have that

$$
\mathrm{P}\left(S_{n}=k\right) \longrightarrow \frac{e^{-1}}{k!} \quad \text { as } n \rightarrow \infty
$$

i.e. S_{n} has a Poisson distribution with

$$
\mathrm{E}\left(S_{n}\right)=\operatorname{Var}\left(S_{n}\right)=1
$$

Now we have found that this result holds for all n (even though the distribution of S_{n} for finite n is not Poisson).
2. (i) The PGF of X is

$$
\begin{aligned}
G_{X}(s) & =\mathrm{E}\left(s^{X}\right)=\sum_{x} \mathrm{P}(X=x) s^{x} \\
& =\sum_{x=0}^{n}\binom{n}{x} p^{x} q^{n-x} s^{x} \\
& =\sum_{x=0}^{n}\binom{n}{x}(p s)^{x} q^{n-x}=(p s+q)^{n}
\end{aligned}
$$

Then

$$
\begin{gathered}
G_{X}^{(1)}(s)=n(p s+q)^{n-1} \cdot p \quad \text { so } \quad \mathrm{E}(X)=G_{X}^{(1)}(1)=n p . \\
G_{X}^{(2)}(s)=n(n-1)(p s+q)^{n-2} \cdot p^{2} \quad \text { so } \quad G_{X}^{(2)}(1)=n(n-1) p^{2} .
\end{gathered}
$$

So

$$
\begin{aligned}
\operatorname{Var}(X) & =G_{X}^{(2)}(1)+G_{X}^{(1)}(1)-\left[G_{X}^{(1)}(1)\right]^{2} \\
& =n(n-1) p^{2}+n p-n^{2} p^{2} \\
& =-n p^{2}+n p=n p(1-p)=n p q .
\end{aligned}
$$

Now

$$
\begin{aligned}
G_{X+Y}(s) & =G_{X}(s) \cdot G_{Y}(s) \quad \text { when } \mathrm{X}, \mathrm{Y} \text { are independent } \\
& =(p s+q)^{n} \cdot(p s+q)^{m} \\
& =(p s+q)^{m+n} \quad-\text { the } \mathrm{PGF} \text { of } \operatorname{Bin}(m+n, p) .
\end{aligned}
$$

So $\quad X+Y \sim \operatorname{Bin}(m+n, p)$.

Alternative argument:

Consider n independent Bernoulli trials, each with probability p, followed by m independent Bernoulli trials, also each with probability p.
Then
number of successes in first n trials

+ number of successes in last m trials $=$ number of successes in $(n+m)$ trials.
Hence $\quad X+Y=Z \sim \operatorname{Bin}(n+m, p)$.
(ii) $\quad G_{X}(s)=\frac{1-s^{M+1}}{(M+1)(1-s)}$.

Since $\quad G_{X}(s)=\sum_{x=0}^{\infty} \mathrm{P}(X=x) s^{x}$,
$\mathrm{P}(X=x)$ is the coefficient of s^{x} in the power series expansion of the r.h.s.
Now

$$
\begin{aligned}
G_{X}(s) & =\frac{1}{M+1}\left(1-s^{M+1}\right)\left(1+s+s^{2}+\cdots\right), \quad|s|<1 \\
& =\frac{1}{M+1}\left(1+s+s^{2}+\cdots-s^{M+1}-s^{M+2}-\cdots\right) \\
& =\frac{1}{M+1}\left(1+s+\cdots+s^{M}\right) .
\end{aligned}
$$

So

$$
\mathrm{P}(X=x)=\frac{1}{M+1}, \quad x=0,1, \ldots, M \quad \text { (discrete uniform distribution.) }
$$

(iii) The total sum of the scores is

$$
S_{N}=X_{1}+\cdots+X_{N}
$$

where X_{i} is the score in the $i^{\text {th }}$ game and the $\left\{X_{i}\right\}$ are independent, identically distributed random variables; the random variable N is the value obtained from throwing the die. Then the PGF of S_{N} is $G_{N}\left(G_{X}(s)\right)$, where $G_{N}(u)$ is the PGF of N and $G_{X}(s)$ is the PGF of (any) game score.
Now

$$
\begin{aligned}
G_{N}(u) & =\sum_{n=1}^{6} \mathrm{P}(N=n) u^{n} \\
& =\sum_{n=1}^{6} \frac{1}{6} u^{n}=\frac{1}{6} \cdot \frac{u\left(1-u^{6}\right)}{1-u} ; \\
G_{X}(s) & =\sum_{x=0}^{2} \mathrm{P}(X=x) s^{x} \\
& =\frac{1}{10}+\frac{6}{10} s+\frac{3}{10} s^{2} .
\end{aligned}
$$

So the PGF of S_{N} is

$$
\frac{1}{6} \cdot \frac{\left\{\frac{1}{10}+\frac{6}{10} s+\frac{3}{10} s^{2}\right\}\left\{1-\left(\frac{1}{10}+\frac{6}{10} s+\frac{3}{10} s^{2}\right)^{6}\right\}}{1-\left(\frac{1}{10}+\frac{6}{10} s+\frac{3}{10} s^{2}\right)} .
$$

We have that $\quad \mathrm{E}\left(S_{N}\right)=\mathrm{E}(N) \mathrm{E}(X)$.
But

$$
\begin{aligned}
& \mathrm{E}(N)=\sum_{n=1}^{6} n \cdot \mathrm{P}(N=n)=\frac{1}{6} \sum_{n=1}^{6} n=\frac{7}{2} ; \\
& \mathrm{E}(X)=\left[G_{X}^{(1)}(s)\right]_{s=1}=\frac{12}{10} .
\end{aligned}
$$

So $\quad \mathrm{E}\left(S_{N}\right)=\frac{7}{2} \times \frac{12}{10}=4.2$.
3. (i) We have

$$
\begin{aligned}
G_{X}(s) & =\sum_{x=1}^{\infty} \mathrm{P}(X=x) s^{x}=\sum_{x=1}^{\infty} p q^{x-1} s^{x} \\
& =p s \sum_{x=1}^{\infty}(q s)^{x-1}=p s \sum_{r=0}^{\infty}(q s)^{r} \quad[r=x-1] \\
& =\frac{p s}{1-q s}, \quad|q s|<1 . \\
G_{X}^{(1)}(s) & =\frac{p}{1-q s}-\frac{p s(-q)}{(1-q s)^{2}}, \\
G_{X}^{(2)}(s) & =-\frac{p(-q)}{(1-q s)^{2}}+\frac{p q}{(1-q s)^{2}}-\frac{2 p q s(-q)}{(1-q s)^{3}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{E}(X)=G_{X}^{(1)}(1) & =\frac{p}{1-q}+\frac{p q}{(1-q)^{2}}=1+\frac{q}{p}=\frac{1}{p} ; \\
\mathrm{E}[X(X-1)]=G_{X}^{(2)}(1) & =\frac{2 p q}{(1-q)^{2}}+\frac{2 p q^{2}}{(1-q)^{3}} \\
& =\frac{2 q}{p}+\frac{2 q^{2}}{p^{2}}=\frac{2 p q+2 q^{2}}{p^{2}}=\frac{2 q}{p^{2}} .
\end{aligned}
$$

So $\quad \operatorname{Var}(X)=\frac{2 q}{p^{2}}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{2 q+p-1}{p^{2}}=\frac{q}{p^{2}}$.
(ii) (a) A sequence of successes and failures ending with the $r^{\text {th }}$ success may be divided into r sub-sequences each consisting of a number of failures followed by a single success, e.g.

$$
\underset{1}{\mathrm{FF} \ldots \mathrm{~F} \text { S }}|\underset{2}{\mathrm{~F} \ldots \mathrm{FS}} \underset{3}{\mathrm{~S}}| \underset{4}{\mathrm{~F} \ldots \mathrm{~F} S}|\ldots \underset{r}{\ldots}|
$$

Let X_{i} be the number of trials in the $i^{\text {th }}$ sub-sequence. Then X_{1}, \ldots, X_{r} are independent random variables, each distributed with the geometric distribution defined in part (i). If Z denotes the number of trials required for r successes to occur,

$$
Z=X_{1}+X_{2}+\cdots+X_{r}
$$

(b) Since X_{1}, \ldots, X_{r} are independent random variables,

$$
G_{Z}(s)=G_{X_{1}}(s) \ldots G_{X_{r}}(s)=\left\{\frac{p s}{1-q s}\right\}^{r}, \quad|q s|<1
$$

$\mathrm{P}(Z=z)$ is the coefficient of s^{z} in the power series expansion of $G_{Z}(s)$, where $z=r, r+1, \ldots$ Using the binomial expansion for negative integer index (see Appendix to Lecture Notes), we have

$$
G_{Z}(s)=p^{r} s^{r} \sum_{i=0}^{\infty}\binom{i+r-1}{i}(q s)^{i}, \quad|q s|<1
$$

Let $z=r+j$, where $j=0,1, \ldots$ Then the coefficient of $s^{z}=s^{r+j}$ in $G_{Z}(s)$ is

$$
p^{r}\binom{j+r-1}{j} q^{j}=\binom{z-1}{z-r} p^{r} q^{z-r}, \quad z=r, r+1, \ldots
$$

i.e.

$$
\mathrm{P}(Z=z)=\binom{z-1}{r-1} p^{r} q^{z-r}, \quad z=r, r+1, \ldots
$$

(c) $Z=\sum_{i=1}^{r} X_{i}, \quad$ so $\quad \mathrm{E}(Z)=\sum_{i=1}^{r} \mathrm{E}\left(X_{i}\right)=\frac{r}{p}$.

Since the X_{i} 's are independent,

$$
\operatorname{Var}(Z)=\sum_{i=1}^{r} \operatorname{Var}\left(X_{i}\right)=\frac{r q}{p^{2}}
$$

Alternatively:
Determine $G_{Z}^{(1)}(s)$; then $\quad \mathrm{E}(X)=G_{Z}^{(1)}(1)=\frac{r}{p}$.
Determine $G_{Z}^{(2)}(s)$; then $\quad \mathrm{E}[X(X-1)]=G_{Z}^{(2)}(1)=\frac{r(r-1)}{p^{2}}+\frac{2 r q}{p^{2}}$.
So

$$
\begin{aligned}
\operatorname{Var}(Z) & =\frac{r(r-1)}{p^{2}}+\frac{2 r q}{p^{2}}+\frac{r}{p}-\frac{r^{2}}{p^{2}} \\
& =\frac{r}{p}\left(-\frac{1}{p}+\frac{2 q}{p}+1\right)^{\quad} \quad[-1+2 q+p=q] \\
& =\frac{r q}{p^{2}} .
\end{aligned}
$$

4. (a) Since $X_{0}=1, \mathrm{P}\left(X_{0}=k\right)= \begin{cases}1, & k=1 \\ 0, & k \neq 1 .\end{cases}$

So $\quad G_{0}(s)=\sum_{k} \mathrm{P}\left(X_{0}=k\right) s^{k}=s$.
The PGF of the random variable C is

$$
\begin{aligned}
G(s) & =\sum_{k=0}^{\infty} \mathrm{P}(C=k) s^{k} \\
& =\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k+1} s^{k}=\frac{1}{2} \sum_{k=0}^{\infty}\left(\frac{1}{2} s\right)^{k} \\
& =\frac{1}{2} \cdot \frac{1}{1-\frac{1}{2} s}, \quad\left|\frac{1}{2} s\right|<1 \\
& =\frac{1}{2-s}, \quad|s|<2 .
\end{aligned}
$$

So

$$
G_{1}(s)=G(s)=\frac{1}{2-s}, \quad|s|<2
$$

Then

$$
\begin{aligned}
& G_{2}(s)=G_{1}(G(s))=\frac{1}{2-\left(\frac{1}{2-s}\right)}=\frac{2-s}{3-2 s} \\
& G_{3}(s)=G_{2}(G(s))=\frac{2-\left(\frac{1}{2-s}\right)}{3-2\left(\frac{1}{2-s}\right)}=\frac{3-2 s}{4-3 s} .
\end{aligned}
$$

(b) The result

$$
G_{n}(s)=\frac{n-(n-1) s}{(n+1)-n s}
$$

holds for $n=1$. Suppose it holds for $n=m$, i.e. that $G_{m}(s)=\frac{m-(m-1) s}{(m+1)-m s}$. Then

$$
\begin{aligned}
G_{m+1}(s) & =G_{m}(G(s)) \\
& =\frac{m-(m-1)\left(\frac{1}{2-s}\right)}{(m+1)-m\left(\frac{1}{2-s}\right)} \\
& =\frac{2 m-m s-m+1}{2 m+2-m s-s-m}=\frac{(m+1)-m s}{(m+2)-(m+1) s}
\end{aligned}
$$

i.e. the result holds for $n=m+1$. So, by induction, it holds for all $n \geqslant 1$.
(c) $\mathrm{P}\left(X_{n}=0\right)$ is the constant term in the power series expansion of $G_{n}(s)$; $\mathrm{P}\left(X_{n}=x\right), x \geqslant 1$ is the coefficient of s^{x}. Now

$$
\begin{aligned}
\frac{n-(n-1) s}{(n+1)-n s} & =\frac{n-(n-1) s}{(n+1)\left\{1-\frac{n}{n+1} s\right\}} \\
& =\frac{1}{n+1}\{n-(n-1) s\}\left\{1+\left(\frac{n}{n+1}\right) s+\left(\frac{n}{n+1}\right)^{2} s^{2}+\cdots\right\} \quad\left|\frac{n}{n+1} s\right|<1 .
\end{aligned}
$$

Hence $\quad \mathrm{P}\left(X_{0}=0\right)=\frac{n}{n+1} \longrightarrow 1$ as $n \longrightarrow \infty$ i.e. ultimate extinction is certain.

$$
\begin{aligned}
\mathrm{P}\left(X_{n}=x\right) & =\left(\frac{n}{n+1}\right)\left(\frac{n}{n+1}\right)^{x}-\left(\frac{n-1}{n+1}\right)\left(\frac{n}{n+1}\right)^{x-1} \quad x \geqslant 1 \\
& =\left(\frac{1}{n+1}\right)\left(\frac{n}{n+1}\right)^{x-1}\left\{n\left(\frac{n}{n+1}\right)-(n-1)\right\} \\
& =\left(\frac{1}{n+1}\right)\left(\frac{n}{n+1}\right)^{x-1}\left(\frac{1}{n+1}\right) \\
& =\frac{n^{x-1}}{(n+1)^{x+1}}, \quad x=1,2, \ldots
\end{aligned}
$$

5. (i) We have

$$
\begin{gathered}
\mathrm{E}\left(I_{A}\right)=\mathrm{P}(A), \quad \mathrm{E}\left(I_{B}\right)=\mathrm{P}(B) \\
\mathrm{E}\left(I_{A} I_{B}\right)=\mathrm{P}(A \cap B) .
\end{gathered}
$$

So

$$
\begin{aligned}
\operatorname{Cov}\left(I_{A}, I_{B}\right) & =\mathrm{E}\left(I_{A} I_{B}\right)-\mathrm{E}\left(I_{A}\right) \mathrm{E}\left(I_{B}\right) \\
& =\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B) \\
& =\mathrm{P}(A \mid B) \mathrm{P}(B)-\mathrm{P}(A) \mathrm{P}(B) \\
& =\mathrm{P}(B)[\mathrm{P}(A \mid B)-\mathrm{P}(A)] .
\end{aligned}
$$

The result follows immediately.
(ii) Let I_{i} be the indicator random variable for $A_{i}(i=1, \ldots, n)$.

Then $\quad X=\sum_{i=1}^{n} I_{i}$
and

$$
\mathrm{E}(X)=\sum_{i=1}^{n} \mathrm{E}\left(I_{i}\right)=\sum_{i=1}^{n} \mathrm{P}\left(A_{i}\right) .
$$

But $X \geqslant Y$, so

$$
\mathrm{E}(X) \geqslant \mathrm{E}(Y)=\mathrm{P}(Y=1)=\mathrm{P}(X \geqslant 1)=\mathrm{P}\left(A_{1} \cup \cdots \cup A_{n}\right),
$$

proving the result.
(iii) Combine the outcomes E_{i} and E_{j} into one outcome $E_{i j}$ (with probability $p_{i}+p_{j}$): we now have a multinomial situation with $k-1$ outcomes (and n trials), so the distribution of $X_{i j}=X_{i}+X_{j}$ is binomial with variance $n\left(p_{i}+p_{j}\right)\left(1-\left(p_{i}+p_{j}\right)\right)$. Using the quoted formula we have:

$$
\begin{aligned}
n\left(p_{i}+p_{j}\right)\left(1-p_{i}-p_{j}\right) & =\operatorname{Var}\left(X_{i}\right)+\operatorname{Var}\left(X_{j}\right)+2 \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =n p_{i}\left(1-p_{i}\right)+n p_{j}\left(1-p_{j}\right)+2 \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

which yields $\quad \operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j} \quad$ as before.
6. We have $X=1+\sum_{i=1}^{B} I_{i}$
so $\quad \mathrm{E}(X)=1+\sum_{i=1}^{B} \mathrm{E}\left(I_{i}\right)=1+\sum_{i=1}^{B} \mathrm{P}\left(I_{i}=1\right)$.
But $\left.\quad \mathrm{P}\left(I_{i}\right)=1\right)=\frac{1}{W+1}$,
since each ball from the set $\{$ black ball i, all W white balls $\}$ has the same probability of being drawn.
So $\quad \mathrm{E}(X)=1+\frac{B}{W+1}$.
[Comment A question such as
If cards are drawn at random from a standard pack, one by one, how many cards would one expect to draw before getting (a) a king; (b) a club;?
is just a special case of the above problem.]
7. Let $X_{i}=$ score on the $i^{\text {th }}$ roll. Then

$$
G_{i}(s)=\frac{1}{6} \sum_{x=1}^{6} s^{x}=\frac{5}{6} \sum_{y=0}^{5} s^{y}=\frac{s\left(1-s^{6}\right)}{6(1-s)}, \quad i=1,2,3 .
$$

Since $\quad X=\sum_{i=1}^{3} X_{i}, \quad G_{X}(s)=\frac{s^{3}\left(1-s^{6}\right)^{3}}{6^{3}(1-s)^{3}}$. Then $\mathrm{P}(X=14)$ is the coefficient of s^{14} in the series expansion of $G_{X}(s)$, i.e. the coefficient of s^{11} in the expansion of

$$
\frac{\left(1-s^{6}\right)^{3}}{6^{3}(1-s)^{3}}=\frac{1}{6}\left[1-3 s^{6}+3 s^{12}-s^{18}\right]\left[1+\binom{3}{1} s+\binom{4}{2} s^{2}+\ldots\right]
$$

i.e.

$$
\frac{1}{6^{3}}\left[\binom{13}{11}-3\binom{7}{5}\right]=\frac{1}{6^{3}}\left[\frac{13 \times 12}{12}-\frac{3 \times 7 \times 6}{2}\right]=\frac{5}{72} .
$$

8. The PGF of each X_{i} is

$$
G(s)=\sum_{k=1}^{\infty} \frac{\left(\frac{4}{5}\right)^{k} s^{k}}{k \log _{e} 5}=-\frac{\log _{e}\left(1-\frac{4}{5} s\right)}{\log _{e} 5} .
$$

Now $\quad T=\sum_{i=1}^{N} X_{i}$, so $\quad G_{T}(s)=G_{N}(G(s))$.
But $\quad G_{N}(s)=e^{\lambda(s-1)}=e^{\log _{e} 5(s-1)}$.
So

$$
\begin{aligned}
G_{T}(s) & =\exp \left[\log _{e} 5\left\{-\frac{\log _{e}\left(1-\frac{4}{5} s\right)}{\log _{e} 5}-1\right\}\right] \\
& =\exp \left[-\log _{e}\left(1-\frac{4}{5} s\right)\right] \exp \left[-\log _{e} 5\right] \\
& =\frac{\frac{1}{5}}{1-\frac{4}{5} s} .
\end{aligned}
$$

But the PGF of the modified geometric distribution is

$$
\sum_{k=0}^{\infty} p q^{k} s^{k}=p \sum_{k=0}^{\infty}(q s)^{k}=\frac{p}{1-q s}, \quad|q s|<1
$$

So T has the modified geometric distribution with parameter $p=\frac{1}{5}$.

