1. (i) The possible states are: $0,1,2,3$.

The times are: $n=0,1,2, \ldots$

Other transitions have zero probabilities. The state of the system at time n depends on the state at time $(n-1)$ but not on the states at times $0,1, \ldots,(n-2)$. Hence $\left\{X_{n}\right\}$ is a Markov chain: it is also homogeneous, since the transition probabilities are not functions of n.
The transition probability matrix is

$$
\left.\boldsymbol{P}=\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 \\
1 \\
2 \\
3 & \left(\begin{array}{cc}
1 & 0 \\
3 & 0 \\
0 & \frac{1}{3} \\
\frac{2}{3} & 0 \\
0 & 0 \\
\frac{2}{3} & \frac{1}{3} \\
0 & 0
\end{array}\right. & 0 & 1
\end{array}\right) .
$$

Let $\boldsymbol{p}^{(n)}$ denote the row vector of absolute probabilities at time n, i.e.

$$
\boldsymbol{p}^{(n)}=\left(\mathrm{P}\left(X_{n}=0\right), \mathrm{P}\left(X_{n}=1\right), \mathrm{P}\left(X_{n}=2\right), \mathrm{P}\left(X_{n}=3\right)\right)
$$

Then

$$
\begin{aligned}
\boldsymbol{p}^{(2)}=\boldsymbol{p}^{(0)} \boldsymbol{P}^{2} & =(1,0,0,0)\left(\begin{array}{cccc}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & \frac{1}{9} & \frac{6}{9} & \frac{2}{9} \\
0 & 0 & \frac{4}{9} & \frac{5}{9} \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(0, \frac{1}{3}, \frac{2}{3}, 0\right) .
\end{aligned}
$$

(ii) $X_{n}=Y_{1}+Y_{2}+\cdots+Y_{n}=X_{n-1}+Y_{n}$.

Given $X_{n-1}=i$, then $X_{n}=i+k=j$ with probability a_{k}, so we only need to know the state at time $(n-1)$ to make a conditional probability statement about X_{n}. Hence $\left\{X_{n}\right\}$ is a Markov chain: it is also homogeneous, since the transition probabilities are not functions of n. We have

$$
\boldsymbol{P}=\begin{gathered}
\\
0 \\
1 \\
2 \\
3 \\
\vdots \\
\vdots \\
0 \\
0
\end{gathered}\left(\begin{array}{cccccc}
0 & 1 & 2 & 3 & \cdots & \cdots \\
a_{0} & a_{1} & a_{2} & a_{3} & \cdots & \cdots \\
0 & a_{0} & a_{1} & a_{2} & \cdots & \cdots \\
\vdots & a_{0} & a_{1} & \cdots & \cdots \\
\vdots & 0 & a_{0} & \cdots & \cdots \\
\vdots & \vdots & \vdots & &
\end{array}\right)
$$

(iii) Ehrenfest model for diffusion

Other transitions have zero probabilities. Once again, we only need to know X_{n-1} to make a conditional probability statement about X_{n}, and the transition probabilities are not functions of n. So $\left\{X_{n}\right\}$ is a homogeneous Markov chain, with

$$
\boldsymbol{P}=\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& \vdots \\
& M-1 \\
& \\
& M
\end{aligned}\left(\begin{array}{cccccccc}
0 & 1 & 2 & 3 & \cdots & M-2 & M-1 & M \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\frac{1}{M} & 0 & \frac{M-1}{M} & 0 & \cdots & 0 & 0 & 0 \\
0 & \frac{2}{M} & 0 & \frac{M-2}{M} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \frac{M-1}{M} & 0 & \frac{1}{M} \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right) .
$$

2. (i) (a) Since the transition probabilities are homogeneous, we have

$$
\begin{array}{lll}
\mathrm{P}\left(X_{n}=1 \mid X_{n-1}=0\right) & =p_{01} & - \text { element }(0,1) \text { in } \boldsymbol{P} \\
\mathrm{P}\left(X_{m}=0 \mid X_{m-2}=1\right) & =p_{10}^{(2)} & - \text { element }(1,0) \text { in } \boldsymbol{P}^{2} \\
\mathrm{P}\left(X_{r+3}=1 \mid X_{r}=1\right) & =p_{11}^{(3)} & - \text { element }(1,1) \text { in } \boldsymbol{P}^{3}
\end{array}
$$

Now

$$
\left.\boldsymbol{P}=\begin{array}{cc}
0 & 1 \\
0 \\
1 & \left(\frac{1}{3}\right. \\
\frac{2}{3} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) .
$$

So $\quad \mathrm{P}\left(X_{n}=1 \mid X_{n-1}=0\right)=\frac{2}{3}$.

$$
\boldsymbol{P}^{2}=\left(\begin{array}{cc}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{4}{9} & \frac{5}{9} \\
\frac{5}{12} & \frac{7}{12}
\end{array}\right) .
$$

So $\quad \mathrm{P}\left(X_{m}=0 \mid X_{m-2}=1\right)=\frac{5}{12}$.

$$
\boldsymbol{P}^{3}=\left(\begin{array}{cc}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{4}{9} & \frac{5}{9} \\
\frac{5}{12} & \frac{7}{12}
\end{array}\right)=\left(\begin{array}{ll}
\frac{23}{54} & \frac{31}{54} \\
\frac{31}{72} & \frac{41}{72}
\end{array}\right) .
$$

So $\quad \mathrm{P}\left(X_{r+3}=1 \mid X_{r}=1\right)=\frac{41}{72}$.
(b) $\boldsymbol{p}^{(n)}=\boldsymbol{p}^{(0)} \boldsymbol{P}^{n}, \quad$ where $\quad \boldsymbol{p}^{(n)}=\left(\mathrm{P}\left(X_{n}=0\right), \mathrm{P}\left(X_{n}=1\right)\right)$.

Initially, the system is equally likely to be in state 0 or state 1 : this means that

$$
\boldsymbol{p}^{(0)}=\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

Then

$$
\boldsymbol{p}^{(1)}=\left(\frac{1}{2}, \frac{1}{2}\right)\left(\begin{array}{cc}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)=\left(\frac{5}{12}, \frac{7}{12}\right) .
$$

So

$$
\mathrm{P}\left(X_{1}=1\right)=\frac{7}{12} \approx 0.583
$$

$$
\boldsymbol{p}^{(2)}=\left(\frac{1}{2}, \frac{1}{2}\right)\left(\begin{array}{cc}
\frac{4}{9} & \frac{5}{9} \\
\frac{5}{12} & \frac{7}{12}
\end{array}\right)=\left(\frac{31}{72}, \frac{41}{72}\right) .
$$

So

$$
\mathrm{P}\left(X_{2}=1\right)=\frac{41}{72} \approx 0.569
$$

$$
\boldsymbol{p}^{(3)}=\left(\frac{1}{2}, \frac{1}{2}\right)\left(\begin{array}{ll}
\frac{23}{54} & \frac{31}{54} \\
\frac{31}{72} & \frac{41}{72}
\end{array}\right)=\left(\frac{185}{432}, \frac{247}{432}\right) .
$$

So

$$
\mathrm{P}\left(X_{3}=1\right)=\frac{247}{432} \approx 0.572
$$

(c) The given Markov chain is finite, aperiodic and irreducible (states 0 and 1 form a closed set). Hence we can use Markov's theorem to calculate $\lim _{n \rightarrow \infty} \boldsymbol{P}^{n}$. This limiting matrix will be an approximation to \boldsymbol{P}^{n} when n is large. Thus

$$
\lim _{n \rightarrow \infty} \boldsymbol{P}^{n}=\left(\begin{array}{cc}
\pi_{0} & \pi_{1} \\
\pi_{0} & \pi_{1}
\end{array}\right)
$$

where π_{0}, π_{1} satisfy

$$
\begin{gathered}
\left(\pi_{0}, \pi_{1}\right)=\left(\pi_{0}, \pi_{1}\right)\left(\begin{array}{cc}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
\pi_{0}+\pi_{1}=1, \quad \pi_{0}>0, \pi_{1}>0
\end{gathered}
$$

i.e.

$$
\begin{array}{llll}
\pi_{0}=\frac{1}{3} \pi_{0}+\frac{1}{2} \pi_{1} & \rightarrow & \frac{2}{3} \pi_{0}=\frac{1}{2} \pi_{1} & \rightarrow \\
\pi_{1}=\frac{4}{3} \pi_{0} \\
\pi_{1}=\frac{2}{3} \pi_{0}+\frac{1}{2} \pi_{1} & \rightarrow & \frac{2}{3} \pi_{0}=\frac{1}{2} \pi_{1} & \rightarrow \\
\pi_{1}=\frac{4}{3} \pi_{0}
\end{array}
$$

(note that one equation is redundant).
Normalizing: $\quad \pi_{0}+\frac{4}{3} \pi_{0}=1 \rightarrow \pi_{0}=\frac{3}{7} \rightarrow \pi_{1}=\frac{4}{7}$.
So

$$
\lim _{n \rightarrow \infty} \boldsymbol{P}^{n}=\left(\begin{array}{cc}
\frac{3}{7} & \frac{4}{7} \\
\frac{3}{7} & \frac{4}{7}
\end{array}\right)
$$

Hence $\quad \mathrm{P}\left(X_{n}=1\right) \approx 0.571 \quad$ when n is large.
(ii) We have

$$
\begin{aligned}
\boldsymbol{P}^{2} & =\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{2}{3} & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{2}{3} & 0 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{6} & \frac{5}{6} & 0 \\
\frac{2}{9} & \frac{11}{18} & \frac{1}{6} \\
\frac{1}{3} & \frac{2}{3} & 0
\end{array}\right) \\
\boldsymbol{p}^{(0)} & =(1,0,0) .
\end{aligned}
$$

Then
(a)

$$
\begin{aligned}
\mathrm{P}\left(X_{0}=0, X_{1}=1, X_{2}=1\right) & =\mathrm{P}\left(X_{2}=1 \mid X_{0}=0, X_{1}=1\right) \cdot \mathrm{P}\left(X_{0}=0, X_{1}=1\right) \\
= & \mathrm{P}\left(X_{2}=1 \mid X_{1}=1\right) \cdot \mathrm{P}\left(X_{1}=1 \mid X_{0}=0\right) \cdot \mathrm{P}\left(X_{0}=0\right) \\
& \quad \text { using the Markov property in the first term] } \\
= & p_{11} \cdot p_{01} \cdot \mathrm{P}\left(X_{0}=0\right) \\
= & \frac{2}{3} \cdot \frac{1}{2} \cdot 1=\frac{1}{3} .
\end{aligned}
$$

(b) $\mathrm{P}\left(X_{n}=1 \mid X_{n-2}=0\right)=p_{01}^{(2)}=\frac{5}{6}$.
(c) $\left(\mathrm{P}\left(X_{2}=0\right), \mathrm{P}\left(X_{2}=1\right), \mathrm{P}\left(X_{2}=2\right)\right)=\boldsymbol{p}^{(2)}$

$$
=p^{(0)} \boldsymbol{P}^{2}=(1,0,0) \boldsymbol{P}^{2}=\left(\frac{1}{6}, \frac{5}{6}, 0\right) .
$$

3. (i) (a) The \boldsymbol{P} matrix and possible transitions are:

$$
\left.\begin{array}{llll}
0 \\
0 \\
1 \\
2 \\
2 & 1 & 2 & 3 \\
3 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \begin{aligned}
& 0 \rightarrow 3 \\
& 1 \rightarrow 3 \\
& 2 \rightarrow 0,1 \\
& 3 \rightarrow 2
\end{aligned}
$$

The chain is irreducible, implying that all states are recurrent.

$$
p_{00}^{(1)}=0, p_{00}^{(2)}=0, p_{00}^{(3)}>0, p_{00}^{(4)}=0, p_{00}^{(5)}=0, p_{00}^{(6)}>0, \ldots
$$

So state 0 has period 3: hence all states are periodic with period 3 .
(b) The \boldsymbol{P} matrix and possible transitions are:

$$
\left.\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & \\
0 \\
1 \\
2 \\
2 \\
3 \\
3 \\
4 & 0 & \frac{1}{2} & 0 & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad \begin{aligned}
& 1 \rightarrow 0,2 \\
& 2 \rightarrow 0,1,2 \\
& 3 \rightarrow 3,4 \\
& 4 \rightarrow 3,4
\end{aligned}
$$

$\{3,4\}$ is an irreducible closed set: its states are recurrent and aperiodic.
Similarly for $\{0,2\}$.
State 1 is transient and aperiodic.
(c) The \boldsymbol{P} matrix and possible transitions are:

$$
\left.\begin{array}{llllll}
\\
0 \\
1 \\
2 \\
2 & 1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 \\
4 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \begin{aligned}
& \\
& 0 \rightarrow 1 \\
& 1 \rightarrow 2 \\
& 2 \rightarrow 0 \\
& 3 \rightarrow 3 \\
& 4 \rightarrow 4
\end{aligned}
$$

States 3 and 4 are absorbing.
$\{0,1,2\}$ is an irreducible closed set: its states are recurrent with period 3 .
(d) The \boldsymbol{P} matrix and possible transitions are:

$$
\left.\begin{array}{llllll}
\\
0 \\
0 \\
1 \\
2 \\
3 \\
4 & 1 & 2 & 3 & 4 & \\
4 & \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{3} & \frac{2}{3} & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
& 0 \rightarrow 0,1 \\
& 1 \rightarrow 0,1 \\
& 2 \rightarrow 2 \\
& 3 \rightarrow 2,3 \\
& 4 \rightarrow 0 .
\end{aligned}
$$

$\{0,1\}$ is an irreducible closed set with recurrent, aperiodic states.
State 2 is absorbing.
States 3 and 4 are transient, aperiodic states.
(ii) The \boldsymbol{P} matrix and possible transitions are:

$$
\begin{aligned}
& \begin{array}{lll}
0 & 1 & 2
\end{array} \\
& \begin{array}{lll}
0 \\
1 \\
2 & \left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4}
\end{array}\right) & 0 \rightarrow 1 \\
& 1 \rightarrow 0,2 \\
2 \rightarrow 0,1,2 .
\end{array}
\end{aligned}
$$

This Markov chain is finite, aperiodic and irreducible. So by Markov's theorem, $\boldsymbol{P}^{n} \rightarrow\left(\begin{array}{ccc}\pi_{0} & \pi_{1} & \pi_{2} \\ \pi_{0} & \pi_{1} & \pi_{2} \\ \pi_{0} & \pi_{1} & \pi_{2}\end{array}\right)$ as $n \rightarrow \infty$,
where $\left(\pi_{0}, \pi_{1}, \pi_{2}\right)=\left(\pi_{0}, \pi_{1}, \pi_{2}\right) \boldsymbol{P}$ and $\pi_{0}+\pi_{1}+\pi_{2}=1, \pi_{0}, \pi_{1}, \pi_{2}>0$, i.e.

$$
\left.\begin{array}{rlll}
\pi_{0}= & & \frac{1}{2} \pi_{1} & +\frac{1}{2} \pi_{2} \\
\pi_{1} & = & \pi_{0} & \\
\pi_{2} & = & \frac{1}{4} \pi_{2} \\
\pi_{1} & +\frac{1}{4} \pi_{2}
\end{array}\right\} \text { one of these is redundant. }
$$

The normalized solution is $\quad \pi_{0}=\frac{5}{15}, \pi_{1}=\frac{6}{15}, \pi_{2}=\frac{4}{15}$.
4. (a) $r=1$

$\left\{X_{n}\right\}$ is a Markov chain since the state at time n is influenced only by the state at time $n-1$, not by the states at earlier times. The transition probabilities are not functions of n, so the chain is homogeneous.

$$
\boldsymbol{P}=\left(\begin{array}{cc}
q & p \\
0 & 1
\end{array}\right)
$$

$r>1$

$$
\begin{array}{ll}
X_{n-1}=i \longleftrightarrow X_{n}=i & \text { Conditional prob. } q \\
X_{n}=i+1 & \text { Conditional prob. } p
\end{array} \text { for } i=0, \ldots, r-1
$$

Other transition probabilities are zero. For the reasons given above, $\left\{X_{n}\right\}$ is again a homogeneous Markov chain.

$$
\boldsymbol{P}=\begin{gathered}
\\
0 \\
1 \\
2 \\
\vdots \\
r-1 \\
r
\end{gathered}\left(\begin{array}{ccccccc}
0 & 1 & 2 & 3 & \cdots & r-1 & r \\
q & p & 0 & 0 & \cdots & 0 & 0 \\
0 & q & p & 0 & \cdots & 0 & 0 \\
0 & 0 & q & p & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & q & p \\
0 & 0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right) .
$$

(b) $\underline{r=1}$ State 1 is absorbing, state 0 is transient. Let f_{01} be the probability of eventually entering state 1 , starting from state 0 , i.e. the probability of absorption. Then

$$
f_{01}=p_{01}+p_{00} f_{01}=p+q f_{01}
$$

Hence $f_{01}=1$, i.e. absorption is certain.
Let μ_{0} denote the mean time to absorption. Then

$$
\mu_{0}=1+p_{00} \mu_{0}=1+q \mu_{0} .
$$

Hence $\mu_{0}=\frac{1}{1-q}=\frac{1}{p} \quad$ (cf. geometric distribution).
(c) $\underline{r>1}$ State r is absorbing, states $0,1, \ldots,(r-1)$ are transient.

Let $T=\{0,1, \ldots,(r-1)\}$. Let $f_{i r}$ be the probability of eventual absorption in state r, starting from state $i, i \in T$. Then

$$
f_{i r}=p_{i r}+\sum_{j \in T} p_{i j} f_{j r}, \quad i \in T
$$

Now

$$
\begin{array}{lll}
p_{r-1, r}=p, & \text { otherwise } p_{i r}=0 & \text { for } i \in T \\
p_{i, i}=q, p_{i, i+1}=p, & \text { otherwise } p_{i j}=0 & \text { for } i, j, \in T
\end{array}
$$

So

$$
\begin{aligned}
& f_{0 r}=q f_{0 r} \\
& f_{1 r}=q f_{1 r} \\
& \ldots+p f_{2 r} \\
& \ldots \\
& f_{r-2, r}=q f_{r-2, r} \\
& f_{r-1, r}=p f_{r-1, r} \\
& f_{r}+q f_{r-1, r} .
\end{aligned}
$$

[Solution(not required): working backwards, $f_{r-1, r}=1, f_{r-2, r}=1, \ldots, f_{0, r}=1$.] Let μ_{i} be the mean time to absorption, starting from state i. Then

$$
\mu_{i}=1+\sum_{j \in T} p_{i j} \mu_{j}, \quad i \in T
$$

i.e.

$$
\begin{aligned}
\mu_{0} & =1+q \mu_{0}+p \mu_{1} \\
\mu_{1} & =1+q \mu_{1}+p \mu_{2} \\
& \ldots \mu_{r-1} \\
\mu_{r-2} & =1+q \mu_{r-2}+p \mu_{r-1} \\
\mu_{r-1} & =1+q \mu_{r-1}
\end{aligned}
$$

[Solution (not required): Working backwards, $\mu_{r-1}=\frac{1}{p}, \mu_{r-2}=\frac{2}{p}, \ldots, \mu_{0}=\frac{r}{p}$.
Usually the system would be starting in state 0 .]
5. The system can be represented thus:

$$
\left.\begin{array}{cc}
& \\
i & \mathrm{~W} \\
N-i & \mathrm{R}
\end{array} \right\rvert\,
$$

Cell 1

$$
\begin{array}{cc}
& \\
N-i & \mathrm{~W} \\
i & \mathrm{R} \\
& \\
\hline
\end{array}
$$

Cell 2

The possible transitions are:

$$
X_{n-1}=i<\begin{array}{ll}
X_{n}=i+1 & \begin{array}{l}
\text { if } \mathrm{R} \text { from } 1 \text { and } \mathrm{W} \text { from 2: } \\
\\
\text { for } 0 \leqslant i \leqslant N-1, \text { cond. prob. is }\left(\frac{N-i}{N}\right)^{2} \\
X_{n}=i
\end{array} \\
\begin{array}{l}
\text { if (W from } 1 \text { and W from 2) } O R(\mathrm{R} \text { from } 1 \text { and } \mathrm{R} \text { from 2): } \\
\text { for } 1 \leqslant i \leqslant N-1, \text { cond. prob. is } 2\left(\frac{i}{N}\right)\left(\frac{N-i}{N}\right) \\
X_{n}=i-1
\end{array} & \text { if } \mathrm{W} \text { from } 1 \text { and } \mathrm{R} \text { from 2: } \\
\text { for } 1 \leqslant i \leqslant N, \text { cond. prob. is }\left(\frac{i}{N}\right)^{2}
\end{array}
$$

All other transition probabilities are zero.
We have a Markov chain because we only require to know the state after step $n-1$ in order to make a conditional probability statement about the state of the system after step n. The chain is homogeneous since the transition probabilities are not functions of n. The \boldsymbol{P} matrix is
$\left.\begin{array}{l} \\ 0 \\ 1 \\ 1\end{array} \quad \begin{array}{cccccccc}0 & 1 & 2 & 3 & \cdots & N-2 & N-1 & N \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \left(\frac{1}{N}\right)^{2} & 2\left(\frac{1}{N}\right)^{2}\left(\frac{N-i}{N}\right) & \left(\frac{N-1}{N}\right)^{2} & 0 & \cdots & 0 & 0 & 0 \\ 0 & \left(\frac{2}{N}\right)^{2} & 2\left(\frac{2}{N}\right)^{\left(\frac{N-2}{N}\right)} & \left(\frac{N-2}{N}\right)^{2} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ N-1 \\ N & 0 & 0 & 0 & \cdots & \left(\frac{N-1}{N}\right)^{2} & 2\left(\frac{1}{N}\right)\left(\frac{N-1}{N}\right) & \left(\frac{1}{N}\right)^{2} \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0\end{array}\right)$.

Clearly the distribution of X_{0} is hypergeometric, viz.

$$
\mathrm{P}\left(X_{0}=i\right)=\binom{N}{i}\binom{N}{N-i} /\binom{2 N}{N} .
$$

Then $\boldsymbol{p}^{(n)}=\boldsymbol{p}^{(0)} \boldsymbol{P}^{n}, \quad$ where $\boldsymbol{p}^{(r)}=\left(\mathrm{P}\left(X_{r}=0\right), \ldots, \mathrm{P}\left(X_{r}=N\right)\right.$.
6. We have:

$$
\boldsymbol{P}^{2}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{3}{4} & 0 & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{3}{4} & 0 & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{8} & \frac{3}{8} \\
\frac{1}{16} & \frac{7}{16} & \frac{1}{2} \\
\frac{5}{16} & \frac{1}{4} & \frac{7}{16}
\end{array}\right)
$$

Then

$$
\left(\mathrm{P}\left(X_{2}=0\right), \mathrm{P}\left(X_{2}=1\right), \mathrm{P}\left(X_{2}=2\right)\right)=\boldsymbol{p}^{(2)}=\boldsymbol{p}^{(0)} \boldsymbol{P}^{2}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{8} & \frac{3}{8} \\
\frac{1}{16} & \frac{7}{16} & \frac{1}{2} \\
\frac{5}{16} & \frac{1}{4} & \frac{7}{16}
\end{array}\right)
$$

So

$$
\begin{aligned}
& \mathrm{P}\left(X_{2}=1\right)=\frac{1}{3}\left(\frac{1}{8}+\frac{7}{16}+\frac{1}{4}\right)=\frac{13}{48} \\
& \mathrm{P}\left(X_{2}=2\right)=\frac{1}{3}\left(\frac{3}{8}+\frac{1}{2}+\frac{7}{16}\right)=\frac{7}{16} .
\end{aligned}
$$

By Markov's theorem, a limiting distribution $\boldsymbol{\pi}$ exits because the chain is finite, aperiodic and irreducible. $\boldsymbol{\pi}$ satisfies $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$, with $\sum_{i} \pi_{i}=1$. Thus

$$
\begin{align*}
& \pi_{0}=\quad \frac{3}{4} \pi_{1}+\frac{1}{4} \pi_{2} \tag{1}\\
& \pi_{1}=\frac{1}{2} \pi_{0} \quad \frac{1}{4} \pi_{2} \\
& \pi_{2}=\frac{1}{2} \pi_{0}+\frac{1}{4} \pi_{1}+\frac{1}{2} \pi_{2} \\
& \text { and } \pi_{0}+\pi_{1}+\pi_{2}=1
\end{align*}
$$

Regard (3) as redundant. Then from (1) and (2) (by subtraction)
$\pi_{0}-\pi_{1}=-\frac{1}{2} \pi_{0}+\frac{3}{4} \pi_{1}$, i.e $\quad \frac{3}{2} \pi_{0}=\frac{7}{4} \pi_{1}, \quad$ i.e. $\quad \pi_{1}=\frac{6}{7} \pi_{0}$.
Then from (2): $\quad \pi_{2}=\frac{10}{7} \pi_{0}$.
π_{0} is found from the normalization requirement

$$
\pi_{0}+\pi_{1}+\pi_{2}=1=\pi_{0}+\frac{6}{7} \pi_{0}+\frac{10}{7} \pi_{0}
$$

This gives $\pi_{0}=\frac{7}{23}$ and then $\pi_{1}=\frac{6}{23}, \pi_{2}=\frac{10}{23}$.
[Check: from (3), $\frac{10}{23}=\frac{7}{46}+\frac{3}{46}+\frac{10}{46}=\frac{10}{23} . \sqrt{ } \quad$]
7. States 1 and 3 are absorbing, while states 0,2 and 4 are transient.

General form of equations for $\left\{f_{i k}\right\}$:

$$
f_{i k}=p_{i k}+\sum_{j \in T} p_{i j} f_{j k}, \quad i \in T .
$$

In this case:
$k=1$

$$
\begin{align*}
& f_{01}=\frac{1}{2} f_{01}+\frac{1}{4} f_{21}+\frac{1}{4} f_{41} \tag{1}\\
& f_{21}=\frac{1}{3}+\frac{1}{3} f_{01} \tag{2}\\
& f_{41}=\frac{1}{4} f_{01}+\frac{1}{4} f_{21}+\frac{1}{4} f_{41} .
\end{align*}
$$

Substituting (2) in (1) and (3) we get

$$
\begin{aligned}
\frac{5}{12} f_{01}-\frac{1}{4} f_{41} & =\frac{1}{12} \\
\frac{1}{3} f_{01}-\frac{3}{4} f_{41} & =-\frac{1}{12}
\end{aligned}
$$

Then $f_{01}=\frac{4}{11}, f_{41}=\frac{3}{11}$ and finally $f_{21}=\frac{5}{11}$.
$\underline{k=3}$

$$
\begin{align*}
& f_{03}=\frac{1}{2} f_{03}+\frac{1}{4} f_{23}+\frac{1}{4} f_{43} \tag{4}\\
& f_{23}=\frac{1}{3}+\frac{1}{3} f_{03} \tag{5}\\
& f_{43}=\frac{1}{4}+\frac{1}{4} f_{03}+\frac{1}{4} f_{23}+\frac{1}{4} f_{43} . \tag{6}
\end{align*}
$$

Substituting (5) in (4) and (6) we get

$$
\begin{aligned}
\frac{5}{12} f_{03}-\frac{1}{4} f_{43} & =\frac{1}{12} \\
\frac{3}{4} f_{43}-\frac{1}{3} f_{03} & =\frac{1}{3}
\end{aligned}
$$

whence $f_{43}=\frac{8}{11}, f_{03}=\frac{7}{11}$ and then $f_{23}=\frac{6}{11}$.
The general equations for the $\left\{\mu_{i}\right\}$ are

$$
\mu_{i}=1+\sum_{j \in T} p_{i j} \mu_{j}, \quad i \in T
$$

So here:

$$
\begin{aligned}
& \mu_{0}=1+\frac{1}{2} \mu_{0}+\frac{1}{4} \mu_{2}+\frac{1}{4} \mu_{4} \\
& \mu_{2}=1+\frac{1}{3} \mu_{0} \\
& \mu_{4}=1+\frac{1}{4} \mu_{0}+\frac{1}{4} \mu_{2}+\frac{1}{4} \mu_{4} .
\end{aligned}
$$

Proceeding as above, we deduce that

$$
\mu_{0}=\frac{60}{11}, \quad \mu_{2}=\frac{31}{11}, \quad \mu_{4}=\frac{45}{11} .
$$

8.

$$
\boldsymbol{P}=\left(\begin{array}{ccc|ccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{4} & 0 & \frac{1}{2} & \frac{1}{8} & \frac{1}{8} \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4}
\end{array}\right)
$$

$(0,1,2) \quad$ - closed irreducible set of periodic states (period =2)
(3) - absorbing state

(4,5) - irreducible set of transient, aperiodic states.

