THE QUEEN'S UNIVERSITY OF BELFAST

Level 2 Examination
Statistics and Operational Research 201
Probability and Distribution Theory
Monday 21 August $2000 \quad 9.30 \mathrm{am}-12.30 \mathrm{pm}$
Examiners $\left\{\begin{array}{l}\text { Professor R M Loynes } \\ \text { and the internal examiners }\end{array}\right.$
Answer FIVE questions

All questions carry equal marks

Approximate marks for parts of questions are shown in brackets

1. (i) State three fundamental axioms concerning P in a probability space $(\mathcal{S}, \mathcal{F}, \mathrm{P})$. Given two events $A, B \in \mathcal{F}$, show from the axioms that the probability that exactly one of the events occurs is

$$
\begin{equation*}
\mathrm{P}(A)+\mathrm{P}(B)-2 \mathrm{P}(A \cap B) \tag{6}
\end{equation*}
$$

(ii) Express the probability $\mathrm{P}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)$ in terms of the probabilities of the events $A_{1}, \ldots, A_{n} \in \mathcal{F}$ and their intersections.
Each packet of a certain breakfast cereal contains one of a set of 5 distinct tokens, and a given packet is equally likely to contain any token. Find the probability that a consignment of 10 packets will contain at least one complete set of tokens (do not simplify your answer).
[10]
(iii) Prove by induction, or otherwise, that for n general events $A_{1}, \ldots, A_{n} \in \mathcal{F}$,

$$
\begin{equation*}
\mathrm{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right) \geq \sum_{i=1}^{n} \mathrm{P}\left(A_{i}\right)-(n-1) \tag{4}
\end{equation*}
$$

2. (i) Prove that if two events $A, B \in \mathcal{F}$ are independent, then A and \bar{B} are independent.
(ii) A random number N of fair dice is thrown, where

$$
\mathrm{P}(N=n)=2^{-n}, \quad n \geq 1
$$

Let S denote the sum of the scores on the dice. Find the probability that
(a) $N=2$, given $S=3$;
(b) $S=3$, given N is odd.
(iii) In a series of independent games, a player has probabilities $\frac{4}{9}, \frac{1}{3}, \frac{2}{9}$ of scoring $0,1,2$ points respectively in any game. The series ends when the player scores 0 in a game, and the scores in individual games are then added to give a total score.
(a) By conditioning on the result of the first game, find the probability that the total score is an odd number.
(b) Let p_{n} denote the probability that the total score is exactly n points. Obtain a recurrence relation for p_{n}, and give the values of p_{0}, p_{1}.
3. (i) Suppose that X and Y are independent count random variables. Express the probability distribution of $Z=X+Y$ in terms of the probability distributions of X and Y.
(a) If X and Y are Poisson distributed with parameters λ_{1} and λ_{2} respectively,i.e.

$$
\mathrm{P}(X=x)=\frac{\lambda_{1}{ }^{x} e^{-\lambda_{1}}}{x!} ; \quad \mathrm{P}(Y=y)=\frac{\lambda_{2}{ }^{y} e^{-\lambda_{2}}}{y!}
$$

show that Z is also Poisson distributed.
(b) If X and Y have the same distribution

$$
\mathrm{P}(X=k)=\mathrm{P}(Y=k)=p q^{k}, \quad k=0,1, \ldots ; \quad p+q=1
$$

show that the conditional distribution $\mathrm{P}(X=x \mid Z=n)$ is uniform. Also, show that

$$
\mathrm{P}(X>n)=q^{n+1}
$$

and hence, or otherwise, determine $\mathrm{P}(X>Y)$.
(ii) Suppose that $\left(X_{1}, \ldots, X_{k}\right)$ has the multinomial distribution

$$
\mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\frac{n!}{x_{1}!\ldots x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}
$$

where $\sum_{i=1}^{k} x_{i}=n, \sum_{i=1}^{k} p_{i}=1$ and X_{i} denotes the number of times outcome i occurs in a sequence of n independent trials. Let

$$
I_{r i}= \begin{cases}1, & \text { if the } r^{\text {th }} \text { trial results in outcome } i \\ 0, & \text { otherwise }\end{cases}
$$

How are X_{i} and $I_{1 i}, \ldots, I_{n i}$ related? Determine $\mathrm{E}\left(I_{r i}\right)$ and $\operatorname{Cov}\left(I_{r i}, I_{r j}\right), i \neq j$ and deduce that

$$
\begin{equation*}
\operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}, \quad i \neq j . \tag{7}
\end{equation*}
$$

4. (i) Define the probability generating function (PGF) $G_{X}(s)$ of a count random variable X, and indicate how $\mathrm{E}(X)$ can be derived from it. If X is binomially distributed with parameters (n, p), show that

$$
G_{X}(s)=(q+p s)^{n} \quad(q=1-p)
$$

and deduce $\mathrm{E}(X)$.
(ii) Given a sequence X_{1}, X_{2}, \ldots of independent, identically distributed random variables, each with mean μ and $\operatorname{PGF} G(s)$, write down (without proof) expressions for the PGFs of the random variables $\sum_{i=1}^{n} X_{i}$ (where n is known) and $\sum_{i=1}^{N} X_{i}$ (where N is a further independent count random variable with $\operatorname{PGF} G_{N}(s)$).
Suppose that each X_{i} has the following distribution:

$$
\mathrm{P}(X=k)=\left\{\begin{array}{ll}
p q, & k=0,2 \\
p^{2}+q^{2}, & k=1 \\
0, & \text { otherwise }
\end{array} ; \quad p+q=1\right.
$$

Find the PGF of $S=\sum_{i=1}^{n} X_{i}$ and deduce that S has the same distribution as $U+V$, where U and V are independent binomially distributed random variables with parameters (n, p) and (n, q) respectively.
(iii) Let X_{n} denote the size of the $n^{\text {th }}$ generation in a branching process in which the family sizes are independent and identically distributed random variables, each with mean μ and PGF $G(s)$, and suppose that $X_{0}=1$.
(a) Explain why $G_{n}(s)$, the PGF of X_{n}, satisfies the recurrence relation

$$
G_{n}(s)=G_{n-1}(G(s)), \quad n \geq 1
$$

and deduce that

$$
\begin{equation*}
\mathrm{E}\left(X_{n}\right)=\mu^{n}, \quad n \geq 1 \tag{6}
\end{equation*}
$$

(b) It can be shown that

$$
e \equiv \lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=0\right)
$$

is the smallest non-negative root of the equation $e=G(e)$. Using the properties of G, deduce that

$$
\begin{equation*}
e=1 \quad \text { if and only if } \quad \mu \leq 1 . \tag{3}
\end{equation*}
$$

5. (i) In a population of constant size N, each individual is of type A or not. Let $X_{n}=i$ if i individuals are of type A at time $n \quad(n=0,1,2, \ldots)$. During each unit time interval an individual is chosen at random from the population and replaced by a new individual : the probability of the new individual being of type A is i / N when there were i individuals of type A in the population at the beginning of the time interval.
Explain why this system is a homogeneous Markov chain, and give its transition probability matrix. Classify the states of the chain.
(ii) A homogeneous Markov chain $\left\{X_{n}: n=0,1, \ldots\right\}$ has states $\{0,1,2\}$ and transition probability matrix

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{3}{4} & 0 & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right) .
$$

At time $n=0$, the system is equally likely to be in state 0 or state 1 .
Quoting any standard results used, determine
(a) $\mathrm{P}\left(X_{2}=1\right)$;
(b) $\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=1\right)$.
(iii) In a finite absorbing Markov chain with transition probability matrix $\boldsymbol{P}=\left(p_{i j}\right)$, let T and A denote the sets of transient and absorbing states respectively, and $f_{i k}$ the probability of eventual absorption in state $k \in A$ if starting from state $i \in T$. Write down (and briefly justify) a set of linear equations satisfied by the absorption probabilities $\left\{f_{i k}: i \in T\right\}$.
6. (i) The lifetime X of a certain device has c.d.f.

$$
F(x)=1-e^{-\lambda x^{2}}, \quad x \geq 0, \quad \lambda>0 .
$$

Derive the p.d.f. of $X, f(x)$, and determine its mean, variance and mode.
Also determine the hazard rate function $r(x)=f(x) /[1-F(x)]$, and briefly explain its significance.
(Hint: the function

$$
\Gamma(p)=\int_{0}^{\infty} t^{p-1} e^{-t} d t, \quad p>0
$$

has the properties

$$
\Gamma(p+1)=p \Gamma(p): \quad \Gamma(1 / 2)=\sqrt{\pi}: \quad \Gamma(n+1)=n!, \quad n \text { integer } \geq 0 .)
$$

[10]
(ii) If the random variable X is uniformly distributed over $[0,1]$, i.e. its p.d.f. is

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

find the p.d.f. and c.d.f. of

$$
Y=X^{\alpha}
$$

where α may be positive or negative. Sketch the p.d.f. of Y when $\alpha=-1, \frac{1}{2}, 2$.
7. (i) Let X and Y be independent continuous random variables, each distributed uniformly on $[0,1]$, and let

$$
U=X Y, V=X
$$

Show that the joint p.d.f. of U, V is

$$
f_{U, V}(u, v)= \begin{cases}1 / v, & 0 \leq u \leq v \leq 1 \\ 0, & \text { otherwise },\end{cases}
$$

and deduce the p.d.f. of U.
(ii) Let Z_{1}, \ldots, Z_{n} be independent $N(0,1)$ random variables, and let

$$
Y=C Z
$$

where $\boldsymbol{Y}, \boldsymbol{Z}$ are $(n \times 1)$ vectors with components $\left(Y_{1}, \ldots, Y_{n}\right),\left(Z_{1}, \ldots, Z_{n}\right)$ respectively, and \boldsymbol{C} is an orthogonal $(n \times n)$ matrix, so that

$$
\sum_{i=1}^{n} Y_{i}^{2}=\sum_{i=1}^{n} Z_{i}^{2} .
$$

Show that Y_{1}, \ldots, Y_{n} are independent $N(0,1)$ random variables. Then, by choosing the first row of \boldsymbol{C} to be $\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$, show that, for a random sample from $N(0,1)$, the sample mean \bar{Z} and the sample variance S^{2} are independent random variables. State the distributions of \bar{Z} and $(n-1) S^{2}$.
(iii) Let $X_{(n)}$ denote the largest observation in a random sample of size n from a distribution with p.d.f. $f(x)$ and c.d.f. $F(x),-\infty<x<\infty$. By considering the c.d.f. of $X_{(n)}$, or otherwise, obtain an expression for $f_{(n)}(x)$, the p.d.f. of $X_{(n)}$. For the uniform distribution with

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise },\end{cases}
$$

show that

$$
\begin{equation*}
\operatorname{Var}\left(X_{(n)}\right)=\frac{n}{(n+1)^{2}(n+2)} . \tag{6}
\end{equation*}
$$

8. (i) Define the moment generating function (MGF) $M_{X}(\theta)$ of a continuous random variable X, and explain why it is so called. Write down (without proof)
(a) the MGF of $a X+b$ in terms of $M_{X}(\theta)$;
(b) the MGF of the sum of n independent random variables X_{1}, \ldots, X_{n} in terms of their individual MGFs.
(ii) If $Z \sim N(0,1)$ and $X \sim N\left(\mu, \sigma^{2}\right)$, show that

$$
M_{Z}(\theta)=\exp \left(\frac{1}{2} \theta^{2}\right)
$$

and deduce the MGF of X.
(iii) If X is uniformly distributed on [0,1], i.e.

$$
f_{X}(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

show that

$$
M_{X}(\theta)=\left(e^{\theta}-1\right) / \theta
$$

and hence find the mean and variance of X.
(iv) If $X_{i}(i=1, \ldots, n)$ are independent random variables, each uniformly distributed on $[0,1]$, write down the MGF of

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and show that, for large n,

$$
\log _{e} M_{\bar{X}}(\theta)=\frac{1}{2} \theta+\frac{1}{24} \theta^{2} \cdot \frac{1}{n}+o\left(\frac{1}{n}\right) .
$$

Hence find an approximation to the distribution of \bar{X} when n is large.
(Hint: $\log _{e}(1+a)=a-\frac{1}{2} a^{2}+\frac{1}{3} a^{3}-\cdots$ provided $\left.|a|<1\right)$.
9. (i) State the conditions under which a counting process $\{N(t), t \geq 0\}$ is a Poisson process with rate λ. Show that in a Poisson process the probabilities

$$
p_{n}(t)=\mathrm{P}[N(t)=n], \quad n=0,1, \ldots
$$

satisfy the equations

$$
\begin{aligned}
& \frac{d p_{0}(t)}{d t}=-\lambda p_{0}(t) \\
& \frac{d p_{n}(t)}{d t}=\lambda p_{n-1}(t)-\lambda p_{n}(t), \quad n=1,2, \ldots
\end{aligned}
$$

and prove by induction, or otherwise, that

$$
\begin{equation*}
p_{n}(t)=\frac{(\lambda t)^{n} e^{-\lambda t}}{n!}, \quad n=0,1, \ldots \tag{11}
\end{equation*}
$$

(ii) (a) Consider a stationary Markov process $\{X(t), t \geq 0\}$ with transition probability functions $\left\{p_{i j}(t)\right\}$. What form does $p_{i j}(\delta t)$ take for a birth-and-death process with birth rates $\left\{\alpha_{i}: i=0,1, \ldots\right\}$ and death rates $\left\{\beta_{i}: i=1,2, \ldots\right\}$? Draw the corresponding transition rate diagram.
(b) For the birth-and-death process in (a), it can be shown that the probabilities

$$
p_{n}(t)=\mathrm{P}(X(t)=n), \quad n=0,1, \ldots
$$

satisfy the equations

$$
\frac{d p_{n}(t)}{d t}=-\left(\alpha_{n}+\beta_{n}\right) p_{n}(t)+\alpha_{n-1} p_{n-1}(t)+\beta_{n+1} p_{n+1}(t), \quad n=0,1, \ldots
$$

where $\alpha_{-1}=\beta_{0}=0$. Deduce that if a steady-state distribution $\left\{\pi_{m}: m=0,1, \ldots\right\}$ exists, then

$$
\alpha_{m} \pi_{m}=\beta_{m+1} \pi_{m+1}, \quad m=0,1, \ldots
$$

In a simple (M/M/1) queue, arrivals follow a Poisson process with rate λ and the service time is negative exponential with mean μ^{-1}, where $\lambda<\mu$. Show that

$$
\pi_{n}=(1-\rho) \rho^{n}, \quad n=0,1, \ldots
$$

where $\rho=\lambda / \mu$.

