THE QUEEN'S UNIVERSITY OF BELFAST

Level 2 Examination
Statistics and Operational Research 201Probability and Distribution Theory
Wednesday 10 January 2001 $9.30 \mathrm{am}-12.30 \mathrm{pm}$
Examiners $\left\{\begin{array}{l}\text { Professor R M Loynes } \\ \text { and the internal examiners }\end{array}\right.$
Answer FIVE questions

All questions carry equal marks

Approximate marks for parts of questions are shown in brackets

1. (i) State a minimal set of axioms concerning the probability measure P in a probability space $(\mathcal{S}, \mathcal{F}, \mathrm{P})$.
Deduce from the axioms that, if $A, B \in \mathcal{F}$, then
(a) $\mathrm{P}(\bar{A})=1-\mathrm{P}(A)$;
(b) the probability that exactly one of the events occurs is

$$
\begin{equation*}
\mathrm{P}(A)+\mathrm{P}(B)-2 \mathrm{P}(A \cap B) . \tag{4}
\end{equation*}
$$

(ii) If $A_{1}, \ldots, A_{n} \in \mathcal{F}$, use the axioms (together with the addition law for two events, which can be derived from the axioms) to show by induction that

$$
\mathrm{P}\left(A_{1} \cup \cdots \cup A_{n}\right) \leq \sum_{i=1}^{n} \mathrm{P}\left(A_{i}\right)
$$

Write down (without proof) an exact expression for $\mathrm{P}\left(A_{1} \cup \cdots \cup A_{n}\right)$ in terms of the probabilities of the events A_{1}, \ldots, A_{n} and their intersections.
(iii) In a special promotion, a garage issues a token for every $£ 10$ worth of petrol purchased. Each token bears one of 6 symbols, with equal likelihood, and any customer who acquires a complete set of the 6 symbols wins a prize. Find the probability that a customer who acquires 12 tokens on visits to the garage will win a prize. (Do not reduce your answer.)
2. (i) Given a probability space $(S, \mathcal{F}, \mathrm{P})$ and an event $B \in \mathcal{F}$ with $\mathrm{P}(B)>0$, define the conditional probability $\mathrm{P}(A \mid B)$ for an event $A \in \mathcal{F}$. If $A_{1}, \ldots, A_{n} \in \mathcal{F}$, prove that, under a certain condition (to be carefully stated),
$\mathrm{P}\left(A_{1} \cap \cdots \cap A_{n}\right)=\mathrm{P}\left(A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right) . \mathrm{P}\left(A_{n-1} \mid A_{1} \cap \cdots \cap A_{n-2}\right) \ldots \mathrm{P}\left(A_{2} \mid A_{1}\right) \mathrm{P}\left(A_{1}\right)$.
How does this simplify if the events A_{1}, \ldots, A_{n} are independent? Show that in this case

$$
\begin{equation*}
\mathrm{P}\left(\bar{A}_{1} \cup \cdots \cup \bar{A}_{n}\right)=1-\prod_{i=1}^{n} \mathrm{P}\left(A_{i}\right) . \tag{7}
\end{equation*}
$$

(ii) Suppose that a fair die is thrown repeatedly.
(a) Find the probability that a six is thrown before an odd number is thrown.
(b) Let u_{n} denote the probability that, in the first n throws, an odd number of sixes is obtained. Derive an expression for u_{n} in terms of u_{n-1}, and show, by induction or otherwise, that

$$
\begin{equation*}
u_{n}=\frac{1}{2}\left[1-\left(\frac{2}{3}\right)^{n}\right], \quad n \geq 0 \tag{5}
\end{equation*}
$$

(c) Let v_{n} denote the probability that, during the first n throws, a run of even numbers in 3 successive throws is not obtained. By conditioning on the first occurrence of an odd number, derive the recurrence relation

$$
v_{n}=\frac{1}{2} v_{n-1}+\frac{1}{4} v_{n-2}+\frac{1}{8} v_{n-3}, \quad n \geq 3,
$$

and use it to compute v_{5}.
3. (i) The numbers X and Y of male and female customers entering a certain store are independent and Poisson distributed with means λ_{1} and λ_{2} respectively, i.e.

$$
\mathrm{P}(X=x)=\frac{\lambda_{1}^{x} e^{-\lambda_{1}}}{x!}, \quad x=0,1, \ldots \quad ; \quad \mathrm{P}(Y=y)=\frac{\lambda_{2}^{y} e^{-\lambda_{2}}}{y!}, \quad y=0,1, \ldots
$$

Any customer entering the store has a probability p of spending more than $£ 10$ on purchases.
(a) Show that N, the total number of people entering the store, is Poisson distributed with mean $\lambda=\lambda_{1}+\lambda_{2}$.
(b) Use the result

$$
\mathrm{E}(Z)=\mathrm{E}(\mathrm{E}(Z \mid N))
$$

to show that Z, the number of customers spending more than $£ 10$, has mean λp.
(c) Show that the distribution of Z is Poisson.
(ii) A bag contains N balls numbered 1 to N. Balls are drawn at random, one at a time, without replacement.
(a) Let X be the largest number selected after n balls have been withdrawn $(n \leq N)$. Find the probability distribution of X.
(b) A match A_{i} is said to occur if the $i^{\text {th }}$ ball drawn bears the number i. Let

$$
I_{i}= \begin{cases}1, & \text { if } A_{i} \text { occurs } \\ 0, & \text { otherwise },\end{cases}
$$

and let S denote the number of matches obtained by the time the bag is empty. Obtain expressions for $\mathrm{E}\left(I_{i}\right)$ and $\operatorname{Var}\left(I_{i}\right)$, and show that

$$
\operatorname{Cov}\left(I_{i}, I_{j}\right)=\frac{1}{N^{2}(N-1)}, \quad i \neq j
$$

Hence show that

$$
\mathrm{E}(S)=\operatorname{Var}(S)=1
$$

4. (i) Define the P generating function (PGF) $G_{X}(s)$ of a count random variable X. If X has the geometric distribution

$$
\begin{equation*}
\mathrm{P}(X=x)=p q^{x-1}, \quad x=1,2, \ldots ; \quad p+q=1 \tag{*}
\end{equation*}
$$

show that

$$
\begin{equation*}
G_{X}(s)=\frac{p s}{1-q s}, \quad|q s|<1 \tag{4}
\end{equation*}
$$

(ii) Consider a sequence of independent Bernoulli trials, each with probability of success p, and let Z be the number of trials required for r successes to occur. Explain why

$$
Z=X_{1}+X_{2}+\cdots+X_{r}
$$

where X_{1}, \ldots, X_{r} are independent random variables, each with the distribution (*) in part (i). Obtain an expression for $G_{Z}(s)$; then use it to obtain $\mathrm{E}(Z)$ and to show that

$$
\begin{gather*}
\mathrm{P}(Z=z)=\binom{z-1}{r-1} p^{r} q^{z-r}, \quad z=r, r+1, \ldots \\
\text { [Hint: } \left.\frac{1}{(1-a)^{r}}=\sum_{i=0}^{\infty}\binom{i+r-1}{i} a^{i}, \quad|a|<1 .\right] \tag{7}
\end{gather*}
$$

(iii) In a simple branching process, the family sizes are independent and identically distributed random variables, each with mean μ and $\operatorname{PGF} G(s), X_{n}$ denotes the size of the $n^{\text {th }}$ generation, and the initial population X_{0} is 1 .
Explain why $G_{n}(s)$, the PGF of X_{n}, satisfies the recurrence relation

$$
G_{n}(s)=G_{n-1}(G(s)), \quad n \geq 1
$$

and deduce that

$$
\mathrm{E}\left(X_{n}\right)=\mu \mathrm{E}\left(X_{n-1}\right)=\mu^{n} .
$$

Define the probability of ultimate extinction, e, and state (without proof) how e can be derived from $G(s)$. Determine e in the case where the family size distribution is

$$
\mathrm{P}(C=k)= \begin{cases}\frac{1}{5}, & k=0 \tag{9}\\ \frac{2}{5}, & k=1,2 \\ 0, & \text { otherwise } .\end{cases}
$$

5. (i) Balls are randomly distributed, one at a time, among N cells. The system is in state k at time n if exactly k cells are occupied after the $n^{\text {th }}$ ball has been distributed. Explain why this system is a homogeneous Markov chain, and give its transition probability matrix.
(ii) A homogeneous Markov chain $\left\{X_{n}: n=0,1, \ldots\right\}$ has states $\{0,1,2\}$ and transition probability matrix

$$
\mathbf{P}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{2}{3} & 0 & \frac{1}{3}
\end{array}\right) .
$$

At time $n=0$, the system is equally likely to be in state 0 or state 1 .
(a) Find $\mathrm{P}\left(X_{0}=1, X_{1}=2, X_{2}=0\right)$.
(b) Find the absolute probability distribution at time $n=2$.
(c) Say why a unique limiting distribution $\boldsymbol{\pi}$ exists, and determine it.
(iii) A finite Markov chain has a set A of absorbing states and a set T of transient states, and its transition probability matrix is $\mathbf{P}=\left(p_{i j}\right)$. When starting from the transient state i, let $f_{i k}$ denote the probability that the system eventually enters the absorbing state k, and μ_{i} the mean time for absorption to occur (in any $k \in A$).
Derive a set of linear equations satisfied by the $\left\{f_{i k}\right\}$. Write down (without derivation) a set of linear equations for the $\left\{\mu_{i}\right\}$.
6. (i) A continuous non-negative random variable X is distributed $\operatorname{Gamma}(\alpha, \lambda)$, with p.d.f.

$$
f(x)=\frac{\lambda^{\alpha} x^{\alpha-1} \exp (-\lambda x)}{\Gamma(\alpha)}, \quad x \geq 0 ; \quad \alpha, \lambda>0
$$

(where the function

$$
\Gamma(p)=\int_{0}^{\infty} t^{p-1} e^{-t} d t, \quad p>0
$$

has the properties

$$
\Gamma(p+1)=p \Gamma(p): \quad \Gamma(1 / 2)=\sqrt{\pi}: \quad \Gamma(n+1)=n!, \quad n \text { integer } \geq 0) .
$$

(a) Describe how the shape of $f(x)$ depends on the value of α (four cases can be distinguished), and comment briefly on the modelling implications.
(b) Obtain an expression for $\mathrm{E}\left(X^{r}\right)$ and derive expressions for the mean μ and variance σ^{2} : also determine the mode for the case where $\alpha>1$. Deduce μ and σ^{2} for the χ^{2} distribution with r degrees of freedom, which has p.d.f.

$$
f(x)=\frac{1}{2^{r / 2} \Gamma(r / 2)} x^{\frac{1}{2} r-1} e^{-\frac{1}{2} x}, \quad x \geq 0 ; \quad r \text { a positive integer. }
$$

(ii) If X is a standard Cauchy random variable with p.d.f.

$$
f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)}, \quad-\infty<x<\infty
$$

show that $Y=1 / X$ is also a standard Cauchy random variable.
(iii) A continuous random variable X, defined over $(-\infty, \infty)$, has c.d.f. $F_{X}(x)$ and p.d.f. $f_{X}(x)$. If $Y=X^{2}$, describe briefly two methods whereby the p.d.f. $f_{Y}(y)$ may be derived. Using either method, obtain an expression for $f_{Y}(y)$ in terms of f_{X}. Hence show that, if $X \sim N(0,1)$, i.e.

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad-\infty<x<\infty
$$

then $Y \sim \chi^{2}(1)$.
7. (i) Let X and Y be independent continuous random variables, with p.d.f.s

$$
f_{X}(x)=\frac{1}{x^{2}} ; \quad x \geq 1 \quad: \quad f_{Y}(y)=\frac{1}{y^{2}}, \quad y \geq 1,
$$

and let $U=X Y, \quad V=X / Y . \quad$ Show that the joint p.d.f. of U, V is

$$
f_{U, V}(u, v)=\frac{1}{2 u^{2} v}, \quad \frac{1}{u} \leq v \leq u, \quad u \geq 1
$$

and derive the marginal p.d.f. of V.
(ii) Let Z_{1}, \ldots, Z_{n} be independent $N(0,1)$ random variables, and let

$$
Y=C Z
$$

where $\boldsymbol{Y}, \boldsymbol{Z}$ are $(n \times 1)$ vectors with components $\left(Y_{1}, \ldots, Y_{n}\right),\left(Z_{1}, \ldots, Z_{n}\right)$ respectively, and \boldsymbol{C} is an orthogonal $(n \times n)$ matrix, so that

$$
\sum_{i=1}^{n} Y_{i}^{2}=\sum_{i=1}^{n} Z_{i}^{2}
$$

Show that Y_{1}, \ldots, Y_{n} are independent $N(0,1)$ random variables. Then, by choosing the first row of \boldsymbol{C} to be $\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$, show that, for a random sample from $N(0,1)$, the sample mean \bar{Z} and the sample variance S^{2} are independent random variables.
(iii) Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order statistic random variables associated with random samples of size n from a distribution with p.d.f. $\quad f(x)$ and c.d.f. $F(x)$, where $-\infty<x<\infty$, and let $f_{(i)}(x)$ denote the p.d.f. of $X_{(i)}$. Outline one proof of the expression

$$
f_{(i)}(x)=\frac{n!}{(i-1)!(n-i)!}\{F(x)\}^{i-1}\{1-F(x)\}^{n-i} f(x), \quad-\infty<x<\infty .
$$

For a random sample of size 3 from the uniform distribution with

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

find the probability that the median $X_{(2)}$ is less than $\frac{1}{3}$.
8. (i) Define the moment generating function (MGF) $M_{X}(\theta)$ of a continuous random variable X in terms of its p.d.f. $f_{X}(x),-\infty<x<\infty$. State how moments of $f_{X}(x)$ about the origin can be derived from M_{X}. If $X \sim \chi_{r}^{2}$, i.e.

$$
f_{X}(x)=\frac{1}{2^{r / 2} \Gamma(r / 2)} x^{\frac{1}{2} r-1} e^{-\frac{1}{2} x}, \quad x \geq 0 ; \quad r \text { a positive integer },
$$

show that

$$
\begin{equation*}
M_{X}(\theta)=(1-2 \theta)^{-r / 2}, \quad \theta<1 / 2, \tag{**}
\end{equation*}
$$

and hence derive $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
[Note: see Question 6 for the definition and properties of $\Gamma(p)$. You may require the expansion

$$
\begin{equation*}
\left.(1-x)^{-q}=1+q x+\frac{q(q+1)}{2!} x^{2}+\cdots ; \quad|x|<1, q>0 .\right] \tag{6}
\end{equation*}
$$

(ii) If X and Y are independent continuous random variables, show how $M_{X+Y}(\theta)$ is related to $M_{X}(\theta)$ and $M_{Y}(\theta)$, and state the generalisation to n independent random variables X_{1}, \ldots, X_{n}.
The random variables Z_{1}, \ldots, Z_{n} are independent and

$$
Z_{i} \sim N(0,1), \quad i=1, \ldots, n
$$

Show that

$$
M_{Z_{i}^{2}}(\theta)=(1-2 \theta)^{-1 / 2}, \quad i=1, \ldots, n ; \quad \theta<1 / 2 .
$$

If

$$
V_{n}=Z_{1}^{2}+\cdots+Z_{n}^{2},
$$

obtain an expression for the MGF of V_{n}, and, using the result (${ }^{* *}$) in part (i), deduce the distribution of V_{n}.
By appeal to the central limit theorem, deduce a convenient approximation to the distribution of V_{n} when n is large.
9. (i) Explain what is meant by the assertion that a counting process $\{N(t), t \geq 0\}$ has independent and stationary (or time-homogeneous) increments.
State the conditions which characterise a Poisson process with rate λ. For such a process, state (without proof) the probability distributions of
(a) $N(u+t)-N(u)$ for $u \geq 0, t>0$;
(b) $X_{n}=T_{n}-T_{n-1}$ for $n \geq 1$, where T_{n} is the time at which the nth event after time $t=0=T_{0}$ occurs;
(c) $T_{n}-T_{n-r}$ for $r \geq 1, n \geq r$.
(ii) In a birth and death process $\{X(t), t \geq 0\}$, the transition probability functions $\left\{p_{i j}(t)\right\}$ are such that, for small δt,

$$
p_{i j}(\delta t)= \begin{cases}\alpha_{i} \delta t+o(\delta t), & i \geq 0, j=i+1 \\ \beta_{i} \delta t+o(\delta t), & i \geq 1, j=i-1 \\ 1-\left(\alpha_{i}+\beta_{i}\right) \delta t+o(\delta t), & i \geq 0, j=i \\ o(\delta t), & \text { otherwise }\end{cases}
$$

where $\beta_{0} \equiv 0$. Show that the probabilities $p_{n}(t) \equiv \mathrm{P}(X(t)=n)$ satisfy the equations

$$
\begin{aligned}
\frac{d p_{n}(t)}{d t} & =-\left(\alpha_{n}+\beta_{n}\right) p_{n}(t)+\alpha_{n-1} p_{n-1}(t)+\beta_{n+1} p_{n+1}(t), \quad n \geq 1 \\
\frac{d p_{0}(t)}{d t} & =-\alpha_{0} p_{0}(t)+\beta_{1} p_{1}(t)
\end{aligned}
$$

Assuming that $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are such that a steady-state solution $\left\{\pi_{m}: m=0,1, \ldots\right\}$ exists, show that

$$
\alpha_{m} \pi_{m}=\beta_{m+1} \pi_{m+1}, \quad m \geq 0
$$

and deduce that

$$
\begin{equation*}
\pi_{0}=\left(1+\frac{\alpha_{0}}{\beta_{1}}+\frac{\alpha_{0} \alpha_{1}}{\beta_{1} \beta_{2}}+\cdots\right)^{-1} \tag{9}
\end{equation*}
$$

(iii) Consider a single-server queue with discouragement, in which, if n is the number of customers in the system, the arrival and service rates are respectively

$$
\lambda_{n}=\frac{\lambda}{n+1}, \quad n \geq 0
$$

and

$$
\mu_{n}=\mu, \quad n \geq 1
$$

Using the results in part (ii), show that the steady-state distribution is Poisson with parameter λ / μ.

