THE QUEEN'S UNIVERSITY OF BELFAST

Level 2 Examination
 Statistics and Operational Research 201

Probability and Distribution Theory
Wednesday 15 August $2001 \quad 14.30 \mathrm{pm}-17.30 \mathrm{pm}$

Examiners $\left\{\begin{array}{l}\text { Professor R M Loynes } \\ \text { and the internal examiners }\end{array}\right.$

Answer FIVE questions

All questions carry equal marks

Approximate marks for parts of questions are shown in brackets

Write on both sides of the answer paper

1. (i) (a) State a set of fundamental axioms concerning the probability measure P in a probability space $(\mathcal{S}, \mathcal{F}, \mathrm{P})$. Indicate (without proof) any redundancy in the stated axioms.
(b) Using the axioms, together with the addition law of probability for two events (which can be derived from the axioms), show by induction that, for n events $A_{1}, \ldots, A_{n} \in \mathcal{F}$,

$$
\begin{equation*}
\mathrm{P}\left(A_{1} \cup \cdots \cup A_{n}\right) \leq \sum_{i=1}^{n} \mathrm{P}\left(A_{i}\right) \tag{5}
\end{equation*}
$$

(c) Write down (without proof) an exact expression for $\mathrm{P}\left(A_{1} \cup \cdots \cup A_{n}\right)$ in terms of the probabilities of the events A_{1}, \ldots, A_{n} and their intersections.
(ii) A janitor hangs n keys, numbered $1, \ldots, n$, at random on n similarly numbered hooks, one key to each hook. Explaining your reasoning carefully, obtain an expression for the probability that no key is hung on a hook with the same number, and deduce a good approximation to this probability when n is large.
2. (i) (a) Given a probability space $(\mathcal{S}, \mathcal{F}, \mathrm{P})$, explain what is meant by the assertion that two events $A, B \in \mathcal{F}$ are independent. Show that, if A, B are independent, then so too are the complementary events \bar{A}, \bar{B}.
(b) For events $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{F} \quad(n \geq 3)$, explain the distinction between the property of pairwise independence and that of mutual (or complete) independence.
(ii) State carefully, and prove, the law of total probability (or partition rule).
(iii) A biased coin is such that the probability of getting a head in a single toss is p. Suppose that the coin is tossed n times.
(a) Let u_{n} denote the probability that an even number of heads is obtained (0 being regarded as an even number). Obtain a recurrence relation for u_{n} and show, by induction or otherwise, that

$$
\begin{equation*}
u_{n}=\frac{1}{2}\left[1+(1-2 p)^{n}\right], \quad n \geq 1 \tag{5}
\end{equation*}
$$

(b) Let v_{n} denote the probability that two successive heads are not obtained, and define the events

$$
T_{i} \text { : first tail obtained on the } i^{\text {th }} \text { toss }(i=1,2, \ldots)
$$

By conditioning on the $\left\{T_{i}\right\}$, or otherwise, show that

$$
v_{n}=(1-p) v_{n-1}+p(1-p) v_{n-2}, \quad n \geq 2
$$

and indicate how v_{n} can be determined for given n and p.
3. (i) The discrete random variables X, Y are independent, and each has the geometric distribution with parameter p, i.e.

$$
\mathrm{P}(X=k)=\mathrm{P}(Y=k)=p q^{k-1}, \quad k=1,2, \ldots ; \quad p+q=1 .
$$

(a) Determine the distribution of the random variable $Z=X+Y$.
(b) Let $V=\max (X, Y)$. By first considering $\mathrm{P}(V \leq v)$, or otherwise, determine the distribution $\mathrm{P}(V=v), v=1,2, \ldots$
(ii) (a) Let (X, Y) be discrete random variables with joint probability function $\left\{\mathrm{P}(X=x, Y=y): x=x_{1}, x_{2}, \ldots ; y=y_{1}, y_{2}, \ldots\right\}$. Define $\mathrm{E}\left(X \mid Y=y_{j}\right)$, and prove that

$$
\begin{equation*}
\mathrm{E}[\mathrm{E}(X \mid Y)]=\mathrm{E}(X) \tag{5}
\end{equation*}
$$

(b) Consider a sequence of independent Bernoulli trials, each with probability of success p. Let

$$
\begin{aligned}
X_{r} & =\text { number of trials required to obtain } r \text { successes; } \\
Y & = \begin{cases}1 & \text { if the first trial yields a success } \\
0 & \text { if the first trial yields a failure. }\end{cases}
\end{aligned}
$$

Explain why

$$
\mathrm{E}\left(X_{r} \mid Y=0\right)=\mathrm{E}\left(X_{r}\right)+1, \quad r \geq 1,
$$

and give a similar relation for $\mathrm{E}\left(X_{r} \mid Y=1\right)$. Hence obtain a simple recurrence relation for $\mathrm{E}\left(X_{r}\right)$ and deduce that $\mathrm{E}\left(X_{r}\right)=\frac{r}{p}$.
(iii) A supermarket issues N different types of prize coupons to customers: each coupon issued is equally likely to be one of the N types. Suppose that a customer has collected n coupons. Let

$$
\begin{aligned}
X_{i} & = \begin{cases}1, & \text { if there is at least one type } i \text { coupon in the set } \\
0, & \text { otherwise; }\end{cases} \\
X & =\text { number of different types of coupon in the set. }
\end{aligned}
$$

Find $\mathrm{E}\left(X_{i}\right)$ and hence $\mathrm{E}(X)$.
4. (i) Define the P generating function (PGF) $G_{X}(s)$ of a count random variable X. If $G_{X}(s)$ is known, indicate how $\mathrm{E}(X)$ and $\operatorname{Var}(X)$ can be found. If $Y=a+b X$, express the PGF of Y in terms of G_{X}.
(ii) If $X=\sum_{i=1}^{n} X_{i}$, where the $\left\{X_{i}\right\}$ are independent count random variables, state how $G_{X}(s)$ is related to the PGFs $G_{1}(s), \ldots, G_{n}(s)$ of X_{1}, \ldots, X_{n}.
Let X be the total score obtained in 3 rolls of a fair die. Show that

$$
G_{X}(s)=\frac{s^{3}\left(1-s^{6}\right)^{3}}{6^{3}(1-s)^{3}}
$$

and derive the value of $\mathrm{P}(X=14)$.
[Note: $\left.\quad(1-a)^{-r}=\sum_{i=0}^{\infty}\binom{i+r-1}{i} a^{i}, \quad|a|<1 . \quad\right]$
(iii) Let X_{n} denote the size of the $n^{\text {th }}$ generation in a branching process in which the family sizes are independent and identically distributed random variables, each with mean μ and PGF $G(s)$, and suppose that $X_{0}=1$.
(a) Explain why $G_{n}(s)$, the PGF of X_{n}, satisfies the recurrence relation

$$
G_{n}(s)=G_{n-1}(G(s)), \quad n \geq 1
$$

and deduce that

$$
\begin{equation*}
\mathrm{E}\left(X_{n}\right)=\mu^{n}, \quad n \geq 1 \tag{6}
\end{equation*}
$$

(b) It can be shown that

$$
e \equiv \lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=0\right)
$$

is the smallest non-negative root of the equation $e=G(e)$. Using the properties of G, deduce that

$$
\begin{equation*}
e=1 \quad \text { if and only if } \quad \mu \leq 1 \tag{3}
\end{equation*}
$$

5. (i) Given a sequence of random variables X_{0}, X_{1}, \ldots defined on a state space $\{0,1, \ldots\}$, explain what is meant by the assertion that $\left\{X_{n}: n=0,1, \ldots\right\}$ is a homogeneous Markov chain, and define the transition probability matrix \mathbf{P}.
Show that

$$
\mathbf{p}^{(n)}=\mathbf{p}^{(0)} \mathbf{P}^{n}
$$

where $\mathbf{p}^{(r)}$ denotes the row vector $\left(\mathbf{P}\left(X_{r}=0\right), \mathrm{P}\left(X_{r}=1\right), \ldots\right)$, and that

$$
\mathrm{P}\left(X_{n}=j \mid X_{0}=i\right)=p_{i j}^{(n)}
$$

the (i, j) element of \mathbf{P}^{n}.
(ii) A homogeneous Markov chain $\left\{X_{n}: n=0,1, \ldots\right\}$ has states $\{0,1,2\}$ and transition probability matrix

$$
\mathbf{P}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{3}{4} & 0 & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right) .
$$

At time $n=0$, the system is equally likely to be in states 0,1 or 2 .
(a) Find $\mathrm{P}\left(X_{2}=2\right)$.
(b) Quote a theoretical result which confirms that a limiting distribution $\boldsymbol{\pi}$ exists in this case, and determine $\boldsymbol{\pi}$.
(iii) An absorbing Markov chain has states $\{0,1,2,3,4\}$ and transition P matrix

$$
\mathbf{P}=\left(\begin{array}{ccccc}
\frac{1}{2} & 0 & \frac{1}{4} & 0 & \frac{1}{4} \\
0 & 1 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & 0 \\
\frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right) .
$$

Let $f_{i 1}$ denote the probability that the system eventually enters the absorbing state 1 , given that it started in the transient state i. Write down (without proof) a set of equations for $\left\{f_{i 1}\right\}$, and hence determine f_{01}.
6. (i) Define the median of a continuous random variable X with p.d.f. $f(x),-\infty<x<\infty$. If $f(x)$ is symmetrical about $x=a$, i.e.

$$
f(a+y)=f(a-y), \quad y>0,
$$

show that the median is a.
(ii) Suppose that $Z \sim N(0,1)$, with p.d.f.

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}, \quad-\infty<z<\infty
$$

and let $V=Z^{2}$. Show that $V \sim \chi^{2}(1)$.
Determine $\mathrm{E}\left(V^{2}\right)$ and deduce the fourth moment about the mean of $N\left(\mu, \sigma^{2}\right)$.
[Note: the p.d.f. for the $\chi^{2}(r)$ distribution is

$$
f_{V}(v)=\frac{1}{2^{r / 2} \Gamma(r / 2)} v^{r / 2-1} e^{-v / 2}, \quad 0 \leq v<\infty, r \text { a positive integer, }
$$

and

$$
\Gamma(p)=\int_{0}^{\infty} t^{p-1} e^{-t} d t, \quad p>0
$$

has the properties

$$
\Gamma(p+1)=p \Gamma(p): \quad \Gamma(1 / 2)=\sqrt{\pi} . \quad]
$$

(iii) If $X \sim \operatorname{beta}(a, b)$, with p.d.f.

$$
f_{X}(x)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}, \quad 0 \leq x \leq 1 ; \quad a, b>0
$$

obtain expressions for $\mathrm{E}(X)$ and $\operatorname{Var}(X)$, and show that $Y=1-X$ is also beta distributed.
[Note: $\left.\quad B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} . \quad\right]$
7. (i) The random variables X, Y are independent and have the same negative exponential distribution:

$$
f_{X}(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x}, & x \geq 0 \\
0, & \text { otherwise; }
\end{array} \quad f_{Y}(y)= \begin{cases}\lambda e^{-\lambda y}, & y \geq 0 \\
0, & \text { otherwise }\end{cases}\right.
$$

(a) Show that the random variables $U=\frac{Y}{X}, V=X+Y$ are independent.
(b) Show that V has the $\operatorname{Erlang}(2, \lambda)$ distribution. [Note: the p.d.f. for the $\operatorname{Erlang}(n, \lambda)$ distribution is

$$
\left.f(x)=\frac{\lambda^{n} x^{n-1} \exp (-\lambda x)}{(n-1)!}, \quad x \geq 0 ; \quad \lambda>0, n \text { integer } \geq 1 .\right]
$$

(c) Find the distribution of U.
(ii) Suppose that X and Y are independent continuous random variables with p.d.f.s $f_{X}(x)$ and $f_{Y}(y)$ respectively. By considering a suitable bivariate transformation, show that the p.d.f. of $U=\frac{Y}{X}$ can be expressed as

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{X}(v) f_{Y}(u v)|v| d v
$$

If X and Y are both uniformly distributed on $[0,1]$, deduce that

$$
f_{U}(u)= \begin{cases}\frac{1}{2}, & 0 \leq u \leq 1 \tag{6}\\ \frac{1}{2 u^{2}}, & 1 \leq u<\infty\end{cases}
$$

(iii) Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order statistic random variables associated with random samples of size n from a distribution with p.d.f. $f(x)$ and c.d.f. $F(x)$, $-\infty<x<\infty$. Show that the p.d.f. of $X_{(n)}$ is

$$
f_{(n)}(x)=n\{F(x)\}^{n-1} f(x), \quad-\infty<x<\infty .
$$

Then indicate briefly how the argument you have used can be extended to yield the p.d.f. of $X_{(i)}(i=1, \ldots, n)$ and, as an illustration, show that

$$
\begin{equation*}
f_{(n-1)}(x)=n(n-1)\{F(x)\}^{n-2}\{1-F(x)\} f(x), \quad-\infty<x<\infty . \tag{6}
\end{equation*}
$$

8. (i) Define the moment generating function (MGF) $M_{X}(\theta)$ of a continuous random variable X, and state how the MGF of $Y=a+b X$ is related to M_{X}. Indicate concisely two methods whereby moments of X about the origin can be derived from $M_{X}(\theta)$. How can these procedures be modified to yield (directly) moments about the mean $\mathrm{E}(X)$?
(ii) If $Z \sim N(0,1)$, show that

$$
M_{Z}(\theta)=\exp \left(\frac{1}{2} \theta^{2}\right)
$$

and hence obtain $M_{X}(\theta)$, where $X=\mu+\sigma Z$. Use $M_{X}(\theta)$ to verify that $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
(iii) Show that if the distribution of X is negative exponential with parameter λ (see Question 7(i) for definition), then

$$
M_{X}(\theta)=\frac{\lambda}{\lambda-\theta}, \quad \theta<\lambda
$$

Hence obtain the MGF of

$$
S_{n}=\sum_{i=1}^{n} X_{i},
$$

where $X_{i}(i=1, \ldots, n)$ are independent random variables, each exponentially distributed with parameter λ.
Show that

$$
Z_{n}=\frac{S_{n}-n / \lambda}{\sqrt{n} / \lambda}
$$

is asymptotically normally distributed with mean 0 and variance 1 .
(Hint:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}+o(1 / n)\right)^{n}=e^{a} \text { for fixed } a \tag{8}
\end{equation*}
$$

9. (i) State the assumptions which characterize a counting process $\{N(t), t \geq 0\}$ as a Poisson process with rate λ.
Show from the assumptions that the probabilities

$$
p_{n}(t)=\mathrm{P}[N(t)=n]
$$

satisfy the equations

$$
\begin{aligned}
\frac{d p_{n}(t)}{d t} & =\lambda p_{n-1}(t)-\lambda p_{n}(t), \quad n \geq 1 \\
\frac{d p_{0}(t)}{d t} & =-\lambda p_{0}(t)
\end{aligned}
$$

Indicate briefly how these equations can be solved and quote the resulting expression for $p_{n}(t)$. Also state (without proof) the distribution of the inter-event times

$$
X_{n}=T_{n}-T_{n-1},
$$

where

$$
\begin{equation*}
T_{n}=\inf \{t: N(t)=n\} . \tag{11}
\end{equation*}
$$

(ii) (a) For a 'birth and death' process $\{X(t), \quad t \geq 0\}$ with 'birth' rates $\left\{\alpha_{i} ; i=0,1, \ldots\right\}$ and 'death' rates $\left\{\beta_{i} ; i=1,2, \ldots\right\}$, it can be shown that the probabilities

$$
p_{n}(t)=\mathrm{P}[X(t)=n], \quad n=0,1, \ldots
$$

satisfy the equations

$$
\frac{d p_{n}(t)}{d t}=-\left(\alpha_{n}+\beta_{n}\right) p_{n}(t)+\alpha_{n-1} p_{n-1}(t)+\beta_{n+1} p_{n+1}(t), \quad n=0,1, \ldots,
$$

where $\alpha_{-1}=\beta_{0}=0$. Show that, if a steady state distribution $\left\{\pi_{m} ; m=0,1, \ldots\right\}$ exists, then

$$
\alpha_{m} \pi_{m}=\beta_{m+1} \pi_{m+1}, \quad m=0,1, \ldots,
$$

and deduce that

$$
\begin{equation*}
\pi_{0}=\left(1+\frac{\alpha_{0}}{\beta_{1}}+\frac{\alpha_{0} \alpha_{1}}{\beta_{1} \beta_{2}}+\cdots\right)^{-1} \tag{5}
\end{equation*}
$$

(b) Consider a single-server queueing system in which the service time is negative exponential with mean μ^{-1} and customer arrivals form a Poisson process with rate λ, except that any customer arriving when there are already N customers in the system leaves without joining the queue. Show that the steady-state distribution of the number of customers in the system is

$$
\pi_{n}=\left(\frac{\lambda}{\mu}\right)^{n}\left(1-\frac{\lambda}{\mu}\right)\left\{1-\left(\frac{\lambda}{\mu}\right)^{N+1}\right\}^{-1}, \quad 0 \leq n \leq N
$$

Indicate briefly how your discussion would be affected if the single server were replaced by c similar servers working independently in parallel.

