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We discuss a parity nonconserving asymmetry in the cross section of KLL dielectronic recombination of
polarized electrons on the hydrogenlike ions with Z�60. This effect is strongly enhanced because of the near
degeneracy of doubly excited 2l2l� states of opposite parity in He-like ions. For ions with Z�30 the asym-
metry is of the order of 10−9. For Z�48 a level crossing takes place, leading to the PNC asymmetry of
−1.3�10−8, which is 108 times greater than the basic strength of the weak interaction in atoms.
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I. INTRODUCTION

Parity nonconservation �PNC� is caused by the weak in-
teraction. According to the standard model this interaction is
described in terms of charged and neutral currents. The
charged currents play a dominant role in nuclei, e.g., in �
decay. The neutral currents lead to the PNC electron-nuclear
interaction and can be observed in atomic experiments �1�. In
this paper we propose that enhanced PNC effects can be seen
in electron recombination of multiply charged ions �MCI�.

The first suggestions and estimates of PNC effects in MCI
were made in 1974 by Gorshkov and Labzovskii �2�. A suc-
cessful observation of PNC effects in optical experiments
with heavy neutral atoms �see the recent review �3� for ref-
erences� has renewed the interest in PNC effects in MCI
�4–10�. The obvious advantage of MCI is the Z5 scaling of
the PNC matrix elements with the nuclear charge Z, as op-
posed to Z3 scaling in neutral atoms �1�.

However, this advantage is usually compensated for by
larger energy differences between the levels of opposite par-
ity. Indeed, PNC effects in atoms and ions appear because of
the mixing of the levels of opposite parity. This mixing leads,
for example, to an admixture of a negative-parity state �− to
a positive-parity state �+ due to the parity nonconserving
weak interaction HPNC,�++ i��−, as determined by the first-
order perturbation expression

i� =
�− �HPNC� + 	

E+ − E− +
i

2
�−

. �1�

The mixing coefficient � is real when the level width �− is
negligible compared to the level spacing E+−E−. In neutral
atoms the valence energies are roughly independent of Z, and
� scales as Z3. In MCI the level energies E± are proportional
to Z2 and a typical PNC mixing � again scales as Z3.

In some special cases the levels of opposite parity in MCI
can be anomalously close. For example, levels of the con-
figurations 1s2s and 1s2p in He-like ions cross several times
as Z varies �2�. Their proximity leads to a strong enhance-
ment of the PNC effects. At the crossing point �E−=E+� the
maximal size of the mixing parameter is limited by the level
widths and can be estimated as

�� �− �HPNC� + 	/�±. �2�

According to Ref. �2�, a crossing of the 1s2p 3P1 and 1s2s
1S0 levels takes place at Z�32. Because of the difference in
the total electronic angular momentum, these levels can only
be mixed by the nuclear-spin-dependent �NSD� part of the
PNC interaction �9�. Two opposite-parity levels with the total
angular momentum J=0, 1s2s 1S0 and 1s2p 3P0, cross twice
at larger Z, around 65 and 90 �11�. For such ions one can
expect enhanced nuclear-spin-independent �NSI� PNC ef-
fects. In both cases the detection schemes involve radiative
transitions.

In this paper we propose to study PNC mixing in He-like
ions by looking at the parity-violating asymmetry in KLL
dielectronic recombination �DR� of electrons with H-like
ions. Here the PNC interaction manifests itself as a differ-
ence between the recombination cross sections for electrons
with positive and negative helicities. The observation of such
difference means a correlation between the spin and momen-
tum of the incident electron of the form � ·p, which does
violate parity, since p is a vector and � is a pseudovector
�p→−p, while �→� under spatial inversion�.

The PNC interaction in DR mixes the intermediate doubly
excited 2s2 and 2s2p states of the He-like ion, which decay
by the emission of a photon. In this respect PNC effects in
DR are similar to those in neutron scattering from heavy
nuclei. PNC asymmetries of up to 10% have been observed
in nuclei by tuning the neutron energy to the p-wave com-
pound nuclear resonances. This enhancement over the typical
size of the nuclear weak interaction �10−7� is caused by the
proximity of s- and p-wave resonances, and by the large ratio
of the s- to p-wave neutron capture amplitudes �see, e.g.,
review �12� and references therein�.
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KLL dielectronic recombination can be observed in ex-
periments with Electron Beam Ion Traps �EBITs� or ion stor-
age rings �see, e.g., �13��. However, these device do not have
a polarized ion target or electron beam, as is required. Fur-
thermore, the present generation of devices do not achieve
the sensitivity required to observe the PNC effect. Criteria
for the sensitivity requirements are outlined in Sec. VI from
which the feasibility can be established for any future experi-
mental devices.

The doubly excited 2l2l� configurations contain a larger
number of closely spaced levels than the singly excited 1s2l
configurations. In Sec. II we calculate the energies of the
doubly excited 2l2l� states for 10�Z�60 and identify
crossings between levels of opposite parity with �J=0 and 1.
We then estimate the widths of the close levels of opposite
parity and the PNC mixing coefficients �. In Sec. IV we
evaluate the DR cross section and PNC asymmetries. The
paper concludes with a short feasibility analysis of PNC
measurements in recombination of MCI.

The main aim of our work is to present the first analysis
of PNC effects in the DR on H-like ions, to obtain a reliable
estimate of the size of the PNC effects and to find the reso-
nances and nuclear charges where these effects are largest. At
the next stage it should be possible to improve significantly
the accuracy of the calculations by using the well developed
theory of the H-like and He-like ions.

II. ENERGY LEVELS FOR THE 2l2l� SHELL

The energies of the 2l2l� states are determined by diago-
nalization of the effective Hamiltonian in the n=2 subspace.
The eigenstates are obtained as 
Clj,l�j��lj , l�j�	, where lj and
l�j� define the hydrogenlike orbitals with n=2. The single-
electron part of this Hamiltonian includes hydrogenic Dirac
orbital energies and the Lamb shift. The two-electron part of
the Hamiltonian matrix for the configurations 2s2, 2p2, and
2s2p is taken from Ref. �14�. This work presents it as a
double expansion in parameters 1 /Z and 	Z and we use
three terms of this expansion of order Z, Z�	Z�2, and Z0

�atomic units are used throughout the paper and 	�1/137 is
the fine structure constant�. In particular, the first term ac-
counts for the Coulomb interaction between the electrons.
The term Z�	Z�2 accounts for the Breit interaction and for
the relativistic corrections to the wave functions. The last
term �Z0� corresponds to the second order in the Coulomb
interaction.

The Lamb shift appears in the higher order, Z�	Z�3, but it
is known to be essential for the level crossings within the
1s2l� manifold �2�. Below we show that this is also true for
the 2l2l� states. By factoring out the main dependence on Z
and the principal quantum number n, the Lamb shift for the
hydrogenic orbital nlj is written as


Enlj =
Z�	Z�3

�n3 Fnlj�	Z� . �3�

The values of Fnlj calculated for n=1,2 and Z up to 95 by
Johnson and Soff �15� are shown in Fig. 1. They account for
the self-energy correction, vacuum polarization, and finite
nuclear size effects.

The results of the diagonalization of the Hamiltonian ma-
trix are shown in Fig. 2. The eigenstates are labeled as
�2l2l��J and additional superscripts a ,b are added to distin-
guish levels with identical quantum numbers. One can see
two crossings of the levels of opposite parity: a pair of levels
with �J=1 cross at Z�17 and another pair with �J=0 cross
at Z�48. The latter crossing between �2s2�0 and �2s2p�0

levels is entirely due to the Lamb shift. This crossing disap-
pears if the Lamb shift is neglected. Instead, another crossing
with �J=1 appears near Z=42 between the levels �2p2�2

a and
�2s2p�1

b. As seen in Fig. 2, their energies are very close for
Z�40.

Of course, the exact position of the level crossings may
depend on the higher terms of the 	Z expansion, which are
neglected here. The first crossing at Z�17 is rather sharp
and takes place at relatively small Z, where radiative correc-
tions are still small. Therefore, this crossing is known rather
accurately. The crossing between the levels �2s2�0 and

FIG. 1. The Lamb shift for the 1s, 2s, and 2pj orbitals of the
H-like ions. Solid circles show the values of Fnlj from Eq. �3�
calculated by Johnson and Soff �15�. The curves correspond to
5-parameter fits used in our calculations for He-like ions.
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�2s2p�0 is more sensitive. However, it should not disappear
when higher-order terms are included because of the Z4 scal-
ing of the Lamb shift �3�. Finally, the relative position of the
�2p2�2

a and �2s2p�1
b levels is most sensitive to the higher order

terms and they may still cross at high Z.
The crossing at Z�17 leads to enhanced NSD PNC ef-

fects. The crossing at Z�48 is favorable for the observation
of the NSI part of the PNC interaction. Here much larger
PNC effects can be expected due to their scaling with Z. In
addition, NSI interaction is roughly Z times stronger than
NSD interaction, see Sec. III A. Because of that we focus on
the effects due to PNC mixing of the �2s2�0 and �2s2p�0

levels.
According to Eq. �2� the PNC mixing near the crossing

points depends on the line widths. For autoinizing states the
total width is the sum of the radiative and autoionizing
widths, �=��r�+��a�. In the nonrelativistic hydrogenic ap-
proximation the radiative widths of the states �2s2p�0

��−,0� and �2s2�0��+,0� are given by

�−,0
�r� = �2

3
8

	3Z4 = 1.517� 10−8Z4, �4�

�+,0
�r� = 2�2

3
8

	3Z4�1 − Css
2 � , �5�

where the coefficient Css defines contribution of the configu-
ration 2s2 to the state �,0	:

� + ,0	 = Css�2s,2s	 + Cpp�2p1/2,2p1/2	 + Cp�p��2p3/2,2p3/2	 .

�6�

The autoionizing widths are evaluated in Appendix A.
They depend weakly on Z and for Z�30 are smaller than the
radiative widths. Hence, for Z�30 the size of the PNC mix-

ing �2� is limited largely by the radiative width, �±,0��±,0
�r� .

This means that the exact position of the level crossing is not
very important for calculation of the PNC effect.

III. PNC HAMILTONIAN AND MIXING

A. PNC Hamiltonian and one-electron PNC matrix element

The Hamiltonian of the PNC interaction consists of the
NSI and NSD parts and in relativistic notation has the form
�1�

HPNC = HNSI
PNC + HNSD

PNC =
GF

�2
�−

QW

2
�5 +

�

I
�0� · In�r� ,

�7�

where GF=2.2225�10−14 a.u. is the Fermi constant of the
weak interaction, �i are the Dirac matrices, I is the nuclear
spin, and n�r� is the nuclear density normalized as �n�r�dr
=1. The dimensionless constants QW and � characterize the
strength of the NSI and NSD parts, respectively. QW is
known as the weak charge of the nucleus. In the lowest order
the standard model yields

QW = − N + Z�1 − 4 sin2 �W� � − N , �8�

where N is the number of neutrons and �W is the Weinberg
angle, sin2 �W�0.23. Radiative corrections to Eq. �8� change
QW by few percent �16�.

The constant � includes contributions from the anapole
moment �a and from the electron-nucleon neutral currents
�eN���eN��1�. Flambaum and Khriplovich showed that �a

�	A2/3, where A=Z+N is the number of nucleons, and for
heavy nuclei dominates over the constant �eN �17�. One more
contribution to the constant � was calculated by Flambaum
and Khriplovich �17� and by Bouchiat and Piketty �18�. Ex-
cept for the very heavy nuclei, this contribution is signifi-
cantly smaller than that of the anapole moment.

Weak charges of the nuclei 203Tl and 133Cs were measured
with high accuracy by Vetter et al. �19� and by Wood et al.
�20�. These measurements played an important role in low-
energy tests of the standard model �see review �21��. Up to
now the only measurement of the NSD PNC amplitude was
made for 133Cs �20�. A detailed discussion of this matter and
a complete list of references can be found in the recent re-
view �3�.

Because of the short-range nature of the interaction in
Hamiltonian �7� it effectively mixes only one-electron states
with j=1/2, i.e., ns1/2 and ñp1/2. For a pointlike nucleus the
corresponding matrix element turns to infinity because of the
singular behavior of the Dirac orbitals at the origin. For a
finite nucleus of the radius Rnuc this matrix element can be
approximately given by the following expression �1,22�:

�ñp1/2�HPNC�ns1/2	 = − i
�2GF	Z4R

8��ñn�3/2

��QW +
4�1/2 + 2

3

2

I
�I · j�� , �9�

where R is the relativistic enhancement factor:

FIG. 2. Energies of the levels of the 2s2p and 2p2 configurations
relative to the �2s2�0 level for He-like ions. All energies are divided
by Z2 to account for the general scaling of energies in MCI. The
levels are labeled as �2l2l��J and additional superscripts a ,b are
added to distinguish levels with identical electron configurations
and J.
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R =
4�2ZRnuc/rBohr�2�1/2−2

�2�2�1/2 + 1�
, �10�

� j � ��j + 1/2�2 − �	Z�2�1/2, �11�

and the following approximation can be used for the nuclear
radius:

Rnuc = 1.2A1/3 Fm = 2.27� 10−5A1/3. �12�

The accuracy of these expressions is a few percent, at
least for the NSI part. A more accurate calculation can easily
be done using Dirac orbitals for the finite nucleus. At 1%
level of accuracy the details of the nuclear structure and ra-
diative corrections become important �see �10,23–25� and
references therein�.

B. PNC mixings for He-like ions

Let us examine the enhancement of the PNC mixing due
to the proximity of the levels of opposite parity in He-like
ions. The mixing parameter � is estimated with the help of
Eqs. �1� and �9�. The NSI part of the PNC Hamiltonian
mixes only states with �J=0. Figure 2 shows that there is
only one pair of close levels of opposite parity which meets
this requirement, namely �2s2�0 and �2s2p�0. The first of
these states has admixtures of the configurations 2p1/2

2 and
2p3/2

2 �see Eq. �6��. For example, for Z=32 the weights of
these configurations are 0.19 and 0.02, respectively. Thus,
the interaction between configurations 2s2 and 2p2 should be
taken into account. Using Eqs. �6� and �9�, we obtain

�− ,0�HNSI
PNC� + ,0	 = − i

�2GF

64�
	Z4RQW�Css − Cpp� � ihPNC.

�13�

Results of the calculation of the PNC mixing for different
Z are presented in Table I. The resonant enhancement at the
level crossing is not very pronounced. First, the level cross-
ing is not sharp. Secondly, for Z�30 the radiative width,
which grows as Z4, becomes greater than the autoionizing
width and for Z�40 it exceeds the level spacing. As a result,
the absolute value of the PNC mixing grows steadily with Z.
However, the enhancement at the level crossing is clearly
seen when we consider the mixing strength divided by the
Z3R PNC scaling parameter. The real part of the mixing
changes sign at the resonance, where � is equal to

�Z=48 = �0 + 6.0i�� 10−9. �14�

IV. PNC EFFECT IN DIELECTRONIC RECOMBINATION

The formalism we use to calculate the PNC asymmetry in
DR is similar to that developed for PNC effects in neutron
scattering �see, e.g., review by Flambaum and Gribakin
�12��. DR is described by the diagrams in Fig. 3, where we
assume that the incident electron �p ,�	 has the energy �,
which is close to the transition energy between the ground
state of the H-like ion and the levels �i=1,2	 of the configu-
ration 2li2li� of the corresponding He-like ion. Then the con-
tribution of resonance 1 to the DR amplitude A is

A � APC + APNC =
i�2��/V�n�eq · r�1	

E1s + � − E1 +
i

2
�1 ��1�VC�p,�;1s1/2,M	

+
�1�HPNC�2	�2�VC�p,�;1s1/2,M	

E1s + � − E2 +
i

2
�2 � , �15�

where eq and � define the polarization and frequency of the
photon, 1s1/2,M describes the initial state of the target with
spin projection M, and VC is the Coulomb interaction. We
use dipole approximation for radiative transition and V is the
quantization volume for the electromagnetic field �26�. The
total width of the doubly excited states 1 and 2 is given by
the sum of the radiative and autoionizing widths, �i=�i

�r�

+�i
�a�.
As we have seen in Sec. III B, the strongest PNC effect is

expected for the crossing of two levels with J1=J2=0, which
simplifies the derivation. Hence we assume that the states 1
and 2 in Fig. 3 correspond to the levels �± ,0	 discussed in
Sec. III B.

The total DR cross section is given by the sum over the
final states of the ion and polarization of the photon:

TABLE I. PNC mixing � between levels �2s2�0 and �2s2p�0 and comparison of its scaling with typical scaling of the PNC mixing in
neutral atoms �Z3R�.

Z 10 15 20 25 30 35 40 45 50 55 60

Re � �units of 10−11� −0.068 −0.40 −1.59 −6.20 −19.5 −58.2 −159 −204 150 383 531

Im � �units of 10−11� 0.004 0.018 0.076 0.41 2.2 13.0 84.3 417 637 620 642

��� �Z3R �units of 10−15� 0.65 1.08 1.69 3.11 5.17 8.85 15.8 24.9 22.0 15.6 11.4

FIG. 3. Diagrammatic representation of the DR amplitude �15�:
�a� is the conventional contribution and �b� is the PNC correction.
The initial state p ,� describes the electron with momentum p and
helicity �=� ·p /2p= ±1/2 incident on the H-like ion in the 1s
ground state. The double lines 1 and 2 correspond to the doubly
excited states of the He-like ion which decay by emission of a
photon � to the final state n. The cross denotes PNC mixing of the
states 1 and 2.
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�� �PC + �PNC =
2�

p


q,n
� ��APC�2 + 2 Re�APC*APNC��

�
�E1s + � − � − En�Vd��, �16�

where d��=�2d�d� / �2�c�3 and we neglect the square of
the small PNC amplitude. When we substitute Eq. �15� in
�16�, both PC and PNC terms appear to be proportional to
the radiative width �1

�r�:

�1
�r� = 2�


q,n
�i�2��/V�1�eq · r�n	�2

�� 
�E1s + � − � − En�Vd��

=
4�3
n

��n��r��1	�2

3c3�2J1 + 1�
. �17�

The last expression is standard �see �26�� and was used to
calculate �±,0

�r� in Eqs. �4� and �5�. The PC cross section now
reads

�1
PC =

1

p

�1
�r���p,�;1s1/2,M�VC�1	�2

�E1s + � − E1�2 +
1

4
�1

2

. �18�

The remaining Coulomb matrix element determines the au-
toionizing width �1

�a�:

�1
�a� =

p

��2J1 + 1� 

M1,M,�

��p,�;1s1/2,M�VC�1	�2

=
2p

�


M

��p,�;1s1/2,M�VC�1	�2, �19�

where we take into account that J1=0. Note that the sum in
�19� does not depend on the electron helicity �, or on the
direction of its momentum p, while the individual matrix
elements do depend on � and M. Introducing the branching
ratio R�,M

�a� for autoionization into channel �� ,M�, we can
rewrite �18� in the final form:

�1
PC =

�

2p2

�1
�r��1

�a�R�,M
�a�

�E1s + � − E1�2 +
1

4
�1

2

. �20�

Similarly, the PNC contribution to the cross section
becomes

�1
PNC =

2

p
Re��1

�r��p,�;1s1/2,M�VC�1	�1�HPNC�2	�2�VC�p,�;1s1/2,M	

�E1s + � − E2 +
i

2
�2��E1s + � − E1�2 +

1

4
�1

2� � = 2�1
PCRe� �2�VC�p,�;1s1/2,M	�1�HPNC�2	

�1�VC�p,�;1s1/2,M	�E1s + � − E2 +
i

2
�2� .

�21�

Further simplification of Eq. �21� requires an explicit form of
the Coulomb matrix elements. Let us expand the incident
electron state in partial waves,

�p,�	 =
�2��3/2

�p


j,l,m

�� j,l,m�p̂�����p̂�	ilei
jl��, j,l,m	 , �22�

where � j,l,m and �� are spherical and ordinary spinors and 
 jl
is the scattering phase shift. Wave function �22� is normal-
ized so that �p� ,�� �p ,�	= �2��3
�p�−p�
��,�, and the radial
functions are normalized to the delta function of energy,
��� , j� , l� ,m� �� , j , l ,m	=
���−��
 j�,j
l�,l
m�,m. If we direct
the quantization axis along p̂, the spinor matrix element in
�22� can be written explicitly:

�� j,l,m�p̂�����p̂�	 = 

�

Cl,�,1/2,�
j,m Yl,�

* �p̂�

= Cl,0,1/2,�
j,� �2l + 1

4�
1/2


m,�, �23�

where Cl,�,s,�
j,m is the Clebsh-Gordon coefficient and Yl,� is the

spherical harmonic.

When we use expansion �22� to calculate the Coulomb
matrix elements in Eq. �21�, the angular and parity selection
rules leave only one term of this expansion with j= 1

2 and l
= li=0, or 1 depending on the parity Pi of the intermediate
state i: li= �1− Pi� /2:

�i�VC�p,�;1s1/2,M	 =
�2��3/2

�p
��1/2,li,−M�p̂�����p̂�	ili

�ei
i�Pi,0�VC��, 1
2 ,li,− M ;1s1/2,M	 ,

�24�

where 
i�
1/2,li
. Substituting �23� and �24� in �19� we obtain

the following expression for the autoionizing width:

�i
�a� = 4���Pi,0�VC��, 1

2 ,li,�;1s1/2,−�	�2. �25�

We can also use �23� to find the branching ratio R�,M
�a� in �20�:

R�,M
�a� = 
�,−M . �26�

This expression is valid only if the quantization axis for the
angular momentum of the target ion coincides with the di-
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rection of the momentum of the incident electron. Averaging
over polarizations of the beam and the target gives �R�,M

�a� 	
=1/2 and Eq. �20� transforms into the standard Breit-Wigner
expression �27�:

�1
PC =

�

4p2

�1
�r��1

�a�

�E1s + � − E1�2 + 1
4�1

2 . �27�

Intermediate levels 1 and 2 in Eq. �21� have different
parity leading to different partial wave contributing to the
matrix element �24�: l1=1− l2. The corresponding spherical
spinors are related by �see, e.g., Ref. �1��

�1/2,l2,m�p̂� = − �� · p̂��1/2,l1,m�p̂� , �28�

where �� · p̂����p̂�=2����p̂�. The partial matrix elements in
�24� are real and we can write

�2�VC�p,�;1s1/2,−�	
�1�VC�p,�;1s1/2,−�	

= il1−l2ei�
1−
2��� · p̂�

�
�P2,0�VC��, 1

2 ,l2,�;1s1/2,−�	
�P1,0�VC��, 1

2 ,l1,�;1s1/2,−�	
�29�

=iei�
1−
2��1,2�� · p̂���2
�a�/�1

�a�. �30�

The factor �1,2= ±1 in �30� depends on the signs of the par-
tial matrix elements in �29�. Therefore, the PNC cross sec-
tion �21� takes the form

�1
PNC = 2�1,2�� · p̂��1

PC��2
�a�

�1
�a�1/2

� Re�ei�
1−
2� i�1�HPNC�2	

E1s + � − E2 +
i

2
�2� . �31�

Equation �31� is valid for the polarized as well as unpo-
larized target. In the first case one should use Eq. �20�, while
in the second case Eq. �27� applies. For the unpolarized elec-
tron beam �PNC must be averaged over the helicity and Eq.
�31� gives zero for the unpolarized target. However, for the
polarized target �PNC is not zero, because �PC in Eq. �20�
selects the helicity through the branching ratio �26�. In fact
we can substitute �� · p̂� in �31� with −2�S · p̂�, where S is the
spin of the ion.

V. RESULTS

Now we apply the formalism developed in the previous
sections to calculate the PNC effect in the DR cross section
at the energies near the ��, 0� resonances in the He-like ions.
In the diagrams in Fig. 3 and in corresponding equations �27�
and �31� the states 1 and 2 can be either �2s2�0 and �2s2p�0,
or vice versa. These two contributions lead to the final states
n with different parities and we sum the corresponding cross
sections, �PC=�1

PC+�2
PC.

Equations �A3�, �A5�, and �A6� show that the phase factor
�1,2 in �31� is equal to 1. The incident electron energy scales
as Z2 and the Coulomb phase shifts in the nonrelativistic

approximation are independent of Z, 
sp�
s−
p�0.953.
Taking this into account and using �27� and �31�, we obtain
the following total PNC cross section:

�PNC = −
��� · p̂���+

�a��−
�a�hPNC

2p2��+
2 +

1

4
�+

2��−
2 +

1

4
�−

2
����+

�r��− − �−
�r��+�cos 
sp

+
1

2
��+

�r��− + �−
�r��+�sin 
sp� , �32�

where �±�E1s+�−E±, hPNC is given by �13�, and again we
can substitute �� · p̂� with −2�S · p̂� for a polarized target
rather than a polarized electron beam.

Figure 4 presents the plots of �PC, �PNC and the PNC
asymmetry,

A =
�+ − �−

�+ + �− � ��PNC

�PC �
�·p̂=1

, �33�

where �± are the cross sections for positive and negative
helicity. The peak magnitude of the asymmetry increases
from 3.5�10−10 for Z=30 to 1.3�10−8 for Z=48, i.e., at the
crossing point. It continues to grow slowly at larger Z. Figure
4 also shows that for Z�40 the two resonances overlap.

Comparison of Fig. 4 with Table I shows that the ampli-
tude of the asymmetry A is of the order of the PNC mixing
�. For Z=30, where the imaginary part of � is small, the first
term in brackets in Eq. �32� dominates. Figure 2 shows that
for Z�48, the level �,0� lies below the level ��,0�. As a
result, the PNC cross section �32� and the asymmetry A are
mostly positive. For Z=40, where the real and imaginary
parts of � are close, the second term in brackets in �32�
becomes important. As a result, the asymmetry changes sign
through the resonance. Finally, for Z=48 and Z=60 the
imaginary part of � is larger and the asymmetry is mostly
negative. Note that, after the level crossing, the two terms in
�32� add constructively between the resonances. This leads to
a single negative peak for the PNC asymmetry for Z=60.

VI. DISCUSSION AND CONCLUSIONS

It is useful to estimate the feasibility of measuring the
PNC asymmetry in KLL recombination calculated above and
from this estimate derive the sensitivity requirements for an
experimental apparatus capable of observing the PNC using
the scheme proposed. The number of counts in an experi-
ment with a fully polarized electron beam with positive he-
licity is given by

N+ = jeNit��
+ � I�+, �34�

where je is the electron flux, Ni is the number of target ions,
t is the acquisition time, and � is the detection efficiency. The
number of counts for negative helicity is N−= I�−.

For a beam or target with polarization P, to detect
the PNC asymmetry, the difference between the counts,
P�N+−N−� should be greater than statistical error, �N++N−,
which gives
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I�
�+ + �− + 2�b

P2��+ − �−�2 , �35�

where �b is the magnitude of any background occurring
through direct radiative recombination or as an experimental
artifact �e.g., detector dark counts�. We express this as a
cross section for convenience although for experimental ar-
tifact background signal, this is the effective cross section to
which the apparatus background would correspond. For the
rest of this analysis we consider the ideal limit, P=1, �b=0.

Equation �35� is valid for a monoenergetic electron beam.
If the electron energy spread in the beam is greater than the
resonance spacing and widths, then the flux je in �34� should
be replaced by the flux density dje /d�. The counts N± are
obtained by integrating over the electron energy and the ef-
fect can be detected if

Iav�� ��+ + �−�d��� ��+ − �−�d�−2

. �36�

The first integral above is equal to 2�S1+S2�, where

Si =
�2

2p2

�i
�r��i

�a�

�i
, �37�

is the strength of resonance i. The integral ���+−�−�d� in
Eq. �36� can be written as 2S1,2

PNC, where

S1,2
PNC �� ��PNC��·p̂=1d� = −

�2

p2

��+
�a��−

�a�hPNC��+
�r�

�+
+
�−

�r�

�−


��E+ − E−�2 +
1

4
��+ + �−�2�

� ��E+ − E−�cos 
sp +
1

2
��+ + �−�sin 
sp� �38�

is the PNC strength of the two resonances. Thus Eq. �36�
reads

Iav�
1
2 �S1 + S2�/�S1,2

PNC�2. �39�

Equations �35� and �39� show that for the two limiting
cases of narrow and wide energy distribution in the beam the

FIG. 4. PC and PNC DR cross sections and PNC asymmetry for �2s2�0 and �2s2p�0 resonances in H-like ions with Z=30, 40, 48, and 60.
The energy �E=�−Eav+Z2 /2, where � and −Z2 /2 are the energies of the incident electron and H-like target and Eav= �E�2s2�0

+E�2s2p�0
� /2.

Solid lines correspond to �103�PNC��·p̂=1, long-dashed lines are the PNC asymmetry A, and short-dashed lines correspond to 10−n�PC, where
n=7,6 ,5 ,4 for Z=30,40,48,60.
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feasibility of the experiment on ions with nuclear charge Z
depends on the functions:

F = min���+ + �−�/��+ − �−�2� , �40�

Fav =� ��+ + �−�d��� ��+ − �−�d��−2

, �41�

where minimum is taken with respect to the energy of the
beam. These functions are shown in Fig. 5, where cross sec-
tions are in barns �10−24 cm2� and energy in eV. As expected,
measurements become more feasible at large Z, where the
PNC asymmetry is greater. We also see that the averaged
PNC effect is strongly suppressed for ions with 38�Z�40
and then steadily grows with Z �Fav decreases�. This suppres-
sion is caused by the change of the sign of the asymmetry
through the resonances �see Fig. 4� and it is absent for the
monoenergetic electron beam. In the latter case the strongest
effect can be seen for Z=50, i.e., near the level crossing.

It is worth noting that F−1 and Fav
−1 have the same dimen-

sions as a cross section and a resonance strength, respec-
tively. Indeed, these quantities are useful for estimating the
feasibility of any future experiment designed to observe the
PNC effect in KLL dielectronic recombination resonances.
For an experiment to be able to observe the effect predicted,
it would have to be able to detect a cross section as small as
F−1 or a resonance strength as small as Fav

−1, i.e., about
10−11 b or 10−11 b eV, in the absence of background. Of
course, this is extremely demanding, but it is worth remark-
ing that the level crossing considered here, gives rise to an
enhancement of eight orders of magnitude compared to the
basic strength of the weak interaction in atoms.

Let us compare the present scheme with other proposals
for measuring PNC in ions. Pindzola �6� suggested to ob-
serve PNC effect in the Auger emission from the He-like
uranium. He considered the mixing of the same states, 2s2

and 2s2p with J=0, and obtained asymmetries of about 10−7,
which is comparable to our results. However, that estimate

neglected the radiative widths of the levels, which for Z
 50 exceed the level spacing.

Other proposals were based on the observations of PNC
asymmetries in radiative transitions in He-like ions. Schafer
et al. �4� focused on the two-photon E1-M1 transition be-
tween two metastable levels, 2 3P0→2 1S0, separated by
1 eV in U90+. They showed that the PNC mixing is ����5
�10−6, and concluded that lasers with intensities above
1021 W/cm2 would be required to observe it. In Refs. �5,7,8�
two-photon and hyperfine-quenched transitions 2 1S0
→1 1S0 were examined. Here the mixing between 2 1S0 and
2 3P0 levels leads to circular polarization of the photons �up
to 10−4� or to an asymmetry in the photon angular distribu-
tion �4�10−4 for Gd62+ for a fully polarized ion beam�. Al-
though these values seem large, there is a number of associ-
ated problems: low counting rates for the highly forbidden
transitions involved, photon background, detection of the cir-
cular polarization of gamma quanta, and creation of the po-
larized ion beam. As a result, the number of events necessary
to measure the effect is large, e.g., �1018 �9�.
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APPENDIX A: CALCULATION OF AUTOIONIZING
WIDTHS �±,0

„a…

The autoionizing widths of the doubly excited states with
J=0 are given by Eq. �25�. Their wave functions are linear
combinations of the two-electron states of the form:

�P,0�lb,lc�	 = 

m

�− 1� j−m

�2j + 1
�2,lb, j,m	�2,lc, j,− m	 , �A1�

where parity P= �−1�lb+lc. In the initial state the incident elec-
tron is described by the wave function �22� and the H-like
ion is in the ground state �1s1/2,M	. The Coulomb matrix el-
ements on the right-hand side of �24�, after substituting �A1�,
are reduced to the two-electron matrix elements:

�2lb, jb,mb;2lc, jc,mc�VC��,li, ji,mi;1s, 1
2 ,m	

= �− 1�mc+mi+1� jb, jc, ji,
1
2�


K
� ji jb K

− mi mb Q


�� jc
1

2
K

− mc m Q
�� ji jb K

1

2
−

1

2
0 �

�� jc
1

2
K

1

2
−

1

2
0 �Rb,c,i,1s

K , �A2�

FIG. 5. PNC measurement feasibility function F in b−1 �solid
line� and Fav in b−1 eV−1 �dashed line�. The cusp at Z�40 is caused
by the change of sign of the PNC asymmetry �see Fig. 4�. Shallow
minimum of F at Z�50 corresponds to the level crossing.
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where �ja . . . ����2ja+1� . . . �1/2 and Ra,b,c,d
K is the Coulomb

radial integral. It is nonzero for even K+ la+ lc and K+ lb
+ ld. Equations �A1� and �A2� allow one to calculate the ma-
trix elements in �24�. Neglecting the dependence of the radial
integrals on j we have for the odd state,

�− 1,0�VC��, 1
2 ,li,− m;1s1/2,M	

= 
li,1
!m

�2
�R2p,2s,�p,1s

0 − 1
3R2s,2p,�p,1s

1 � , �A3�

where !m��−1�m+1/2. For the even state �A1� we obtain

�+ 1,0�2l2��VC��, 1
2 ,li,− m;1s1/2,M	

= 
li,0
�− 1�l!m

�j + 1/2�1/2

2l + 1
R2l,2l,�s,1s

l , �A4�

and for the eigenstate �6� we arrive at

�+ 1,0�VC��, 1
2 ,0,− m;1s1/2,M	

= !m�CssR2s,2s,�s,1s
0 −

Cpp + �2Cp�p�

3
R2p,2p,�s,1s

1  .

�A5�

To estimate the widths �i
�a� we use nonrelativistic hydro-

genic radial Coulomb integrals, which do not depend on Z:

R2s,2s,�s,1s
0 R2p,2s,�p,1s

0 R2s,2p,�p,1s
1 R2p,2p,�s,1s

1

0.0200 − 0.0304 0.0310 − 0.0300
�A6�

Equations �25�, �A3�, and �A6� give

�−,0
�a� = 0.0104, �A7�

for all Z. �+,0
�a� is somewhat smaller than �−,0

�a� and weakly
depends on Z via the coefficients Caa in Eq. �A5�. For pure
�2s2�0,0 state Eqs. �25� and �A4� give �

2s2
�a� =0.00496. This

value is in agreement with �28�.
The same nonrelativistic hydrogenic approximation for

the radiative transitions was used in Eqs. �4� and �5� for the
radiative widths �±,0

�r� . Again the negative parity state has
larger width. Comparison of Eqs. �A7� and �4� shows that the
radiative width becomes equal to the autoionizing width for
Z�29 and dominates near the level crossing at Z�48.
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