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Many-body theory of positron-atom interactions
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A many-body theory approach is developed for the problem of positron-atom scattering and annihilation.
Strong electron-positron correlations are included nonperturbatively through the calculation of the electron-
positron vertex function. It corresponds to the sum of an infinite series of ladder diagrams, and describes the
physical effect of virtual positronium formation. The vertex function is used to calculate the positron-atom
correlation potential and nonlocal corrections to the electron-positron annihilation vertex. Numerically, we
make use oB-spline basis sets, which ensures rapid convergence of the sums over intermediate states. We
have also devised an extrapolation procedure that allows one to achieve convergence with respect to the
number of intermediate-state orbital angular momenta included in the calculations. As a test, the present
formalism is applied to positron scattering and annihilation on hydrogen, where it is exact. Our results agree
with those of accurate variational calculations. We also examine in detail the properties of the large correlation
corrections to the annihilation vertex.
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[. INTRODUCTION more complex than the electron case. The attractive induced
polarization potential tends to cancel and even overcome the

The interaction of a low-energy positron with a many- static repulsion of the positron by the atom at low energies.

electron atom is char_acterize;d b_y strong correlation ef-feCtsrhe positron may also temporarily capture one of the atomic
Apart from the dynamic polarization of the electron cloud byelectrons in a process known as virtual positronium forma-

the field of the.po.snron, the positron can also form DOSItrO'tion. The need to account for these effects requires an elabo-
nium (P9, by picking up one of the atomic electrons. When

the positron energy is below the Ps-formation thresholdrate and accurate theoretical description. :

ep=l +E,(PS=1-6.8 eV, wherd is the atomic ionization * For small systems, such as hydrogen and_hghum, accurate
Ps™  TIso Y T . results were obtained through the use of variational methods

potentlalz positronium form_at|on IS a v_|rtual Process. Nev.er'[9—14]. Positron scattering from alkali atoms which have a

theless, its role in the positron-atom interaction is very Im'single valence electron has been calculated extensively using

portant[1-4]. The main aim of this work is to develop a coupled-channel method with pseudostdfiés. More re-
many-body theory approach which accounts accurately foEently, positron and Ps interaction with atoms with few ac-

bo;h cor_rﬁ.llattllon effeﬁtz, and to test it for positron scattering (valence electrons has been studied using the stochastic
and anniniiation on hydrogen. . . . variational methodSVM) and configuration-interaction-type
The study of positron interaction with matter is a topic of approache§16—20. However, it is difficult to extend these

fundamentgl in_teres[5]. Positrons have al_s_o found many methods to larger atomic systems with many valence elec-
useful applications. They are a very sensitive probe of th?rons e.g., the noble gases

presence of defects in materig®j. The recent development An attractive alternative to few-body methods is many-

of a s%annlngfposﬁron rr;lcrosc??é] m?ylle?d t(t) "’?nl n- body theory[21]. It lends itself naturally to the study of
creased use ot positrons for quality control of materiais, par'problems where an extra particle interacts with a closed-shell

tlcu_lar_ly mtthe semlﬁonduggrmr:justgy. In medlctlne(,jpot;snrontarget_ The use of diagrams makes this method both descrip-
emission tomography, or , as DECOME a standard meagg, g intuitive, and allows one to take many-particle cor-

pf medical imaginQIse.e, €.9., R(_e[B]).Aproperunderstand- relations into account in a systematic way. Many-body
ing of how positrons interact with matter at the fundamentaltheory has been successful in the study of photoionization

level of atoms and molecules is therefore essential. [22,23 and in problems involving electrons, such as

The tm(;ceracrt]lolrlw of Iotw-tehne:gr;]y p_o?r;rons with daton('jls haTSeIectron—atom scatterin@4-29, negative ion§29-32, and
presented a challengeé 1o the theorist Tor many decades. hge ise calculations of energies and transition amplitudes in

study of positron scattering from atoms was initi:_:tlly seen a eavy atoms with a single valence elect{@8,34. The ap-

a useful complement to work on electron scattering, pa.rt'cublication of many-body theory to low-energy positron inter-
Iarly in helping to understand the role of _the exc_han_ge inter- tions with atoms has met with more difficulty.

action. However, although the exchange interaction is absent, Many-body theory utilizes techniques originating in quan-

it was quickly realized that the positron-atom problem 'Stum field theory. It describes the terms of the perturbation
series in the interaction between particles diagrammatically.

The difficulty in applying this approach to the interaction of
*Email address: g.gribakin@am.qub.ac.uk positrons with atoms arises from the need to take into ac-
TPresent address: Department of Physics, Auburn University, Aucount(virtual) Ps formation. Being a bound state, Ps cannot
burn, AL 36849, USA. Email address: j.ludlow@am.qub.ac.uk  be described by a finite number of perturbation-theory terms.
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Hence an infinite sequence of the “ladder” diagrams must bground-state atom, HO:—%V2+ U(r), where U(r)=(1
summed. +r71)e % [44] (we use atomic units throughguEor systems
The first attempt to apply many-body theory to the containing more than one electron the Hartree-F@dE)
positron-atom problem was by Amuset al. in 1976 [2],  Hamiltonian(without exchange, for the positrpis the best
who used a crude approximate method of accounting fothoice. The correlation potentidl, is given by an infinite
virtual Ps formation in He. A better approximation for the perturbation series in powers of the residual electron-electron
virtual Ps-formation contribution was devised in R4],  and electron-positron interaction. Inclusion of the electro-
and applications to various atomic targets, including noblestatic interaction irH, and the use of the HF approximation
gases, were reportg@5-37. In particular, a reasonable de- for the target electrons means that the perturbation-theory
scription was obtained for positron scattering from noble-gagxpansion foi3,, starts with the second-order diagrams, and
atoms, which highlighted the presence of positron-atom virthat the diagrams do not contain elements which describe the
tual levels in Ar, Kr, and Xe. On the other hand, applicationelectrostatic potentigi5).
of the same approximation to positron-atom annihilation Owing to the spherical symmetry of the problem, ED.
showed that it was clearly deficient. can be solved separately for each positron partial wave. So,
~ In spite of the approximate treatment of virtual Ps forma-in practice one deals with radial quasiparticle wave func-
tion, many_-body theo_ry calcu_latlons_ for Mg, Cd, Zn_, and Hgtions,58|(r), related toy, by l/ls(f):f_lﬁs|(r)Y|m(Q), where
were the first to provide credible evidence that positrons caq{lm(m is the spherical harmonic for the orbital angular mo-

bind to neutral atom$35]. Two years later positron-atom . .
- . . o . mentuml. Accordingly, the self-energy operator is also found
binding was proved in a stochastic variational calculation for

Li [38]. At present the list of atoms capable of binding pos—'cor each partial wave separately,ﬁs@(r,r’), see Eq(AL) in

itrons has expanded dramatically, SVM and configurationi"® Appendix.

interaction calculations confirming positron binding to Mg, . .
Cd, and Zn[39,40. This topic is now of major interest in B. Correlation potential

positron physicgsee Refs[40,4] for useful reviews Figure 1 shows the lowest-order terms of the diagram-
In this paper, new techniques will be outlined that allow matic expansion for the correlation potenttalor more pre-

the exact calculation of the electron-positron ladder diagrangisely, for the matrix elemente’|Sge) of the correlation

sequence which accounts for virtual Ps formation. This aPpotential calculated at some enerGybetween the positron

proach enables many-body theory to provide accurate inforstates: ands’. The leading second-order diagram, Figa)l

mation on the elastic scattering, annihilation, and binding Ofcorresponds to the following expression:
positrons on atoms and negative ions at energies below the
Ps formation threshold. (e'n|V|uv)vu|V|ne)

E-e,-¢,+e,+i0

('5@le)= >

v,u,N

3

Il. MANY-BODY THEORY METHOD where V is the electron-positron Coulomb interaction, the

A. Dyson equation sum runs over all intermediate positron statgexcited elec-
tron statesu, and hole states, andiO is an infinitesimal

A conventional treatment of positron scattering from an ositive imaginary quantity.

N-electron target Would_start from the Sch_rodlnger equatlorP It is easy to see from Eq3) that at low energie€ the
for the total wave function for th&l+1 particles. In many- diagonal matrix elemente|)e) is negative. This means
body theory we start instead from the Dyson equatisee, 9 E &/ 9 i .

e.g., Refs[21,42), that the second-order contribution to the correlation poten-

tial, Fig. 1(a), describes attraction. In fact, this diagram ac-
(Ho+ 2, = e, (1 counts for the main correlation effect in low-energy scatter-
ing, namely the polarization of the atom by the charged
projectile. At large distances it leads to a well-known local
polarization potential,

where iy, is the single-particléquasiparticlg wave function

of the positron,e is its energy, andH, is a central-field
Hamiltonian of the zeroth approximation, which describes
the motion of the positron in the static field of the target. The @ a ,
many-body dynamics in Eql) is represented b¥,, a non- 2E(rr’) ~ - ?‘%r =), (4)
local energy-dependent correlation potential. This quantity,

also known as the optical potential, is equal to the selfwherea is the static dipole polarizability of the atom in the
energy part of the single-particle Green’s function of the posHF approximation,

itron in the presence of the atopd3]. Due to its nonlocal 2

nature., operates on the quasiparticle wave function as an a= EE M (5)
integral operator, 3un €u~€n

Besides the second-order diagram, Fig. 1 shows the main
DRV j 2,(r,r ") (r)dr’. (2)  third-order contributions. A complete list of third-order dia-
grams includes mirror images of the diagrathsand (g).
For hydrogerH, may simply be taken as the Hamiltonian There are also a few more diagrams similar to diagtAm
of the positron moving in the electrostatic field of the where the positron line is connected to the atomic excitation
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(e) (8) (h)

FIG. 1. Diagrammatic expansion of the positron-atom correlation poteliti8hown are the second-order and main third-order contri-
butions. The top line in all the diagrams corresponds to the positron. Other lines with the arrows to the right desitétlelectron states,
while those with the arrows to the left correspond to holes, i.e., the electron statgsiedin the atomic ground state. Wavy lines are the
electron-positron or electron-electron Coulomb interactions.

part by a single line. They represent correlation correctiongs summed to all orders, since in quantum mechanics a bound

to the HF electron charge density of the ground-state atonstate(here, P which is absent in the zeroth approximation

Such corrections are much smaller than other correlationsannot be described by a finite number of perturbation theory

effects[34], and can be neglected. The total number of theterms.

third-order diagrams in the positron-atom problem is consid- Summation of the diagrammatic sequence shown in Fig. 2

erably smaller than that in the electron cdsee, e.g., Ref. is done by calculating the electron-positreartex function

[34]), where one needs to allow for the exchange betweef’, defined here as the sum of the electron-positron ladder

the incident and core electrons. diagrams, Fig. 3, and denoted in the diagram by the shaded
Comparing diagramg), (e), (f) and(g) with (a) in Fig. 1,  block.

we see that they represent corrections to the leading polar- Comparing the left- and right-hand sides of the diagram-

ization diagram>?, due to electron correlations within the matic equation in Fig. 3, we see that the vertex function

atom. Interaction between electron-hole pairs can in prinsatisfies the following linear equation:

ciple be included in all orders, which would correspond to

the random-phase approximatigRPA) treatment of atomic (vaualTelave) = (vauaVipgvy)

polarization[46]. On the other hand, if the two hole orbitals (vopo| V| ) v Tl pyvy)

in diagramg(c) and(e) are identical, these diagrams together + — - (6)
. L ; o E-g,-¢,+i0

with similar higher-order terms, are easily incorporated Vi

within the second-order dlagram by CalCUlatlng the eXClted’rhe vertex function depends on the ene@y It has the
electron stateg. in the field of the atom with a hole in this meaning of the electron-positron scattering amplitude in the
orbital [25]. These approximations, and even the “bare’fie|d of the atom. In the lowest-order approximatiBg=V.
second-order approximatiamwith exchange diagrams added  QOnce the vertex function is found, the contribution of vir-

in both cases give good results in electron-atom scatteringtyal Ps to the correlation potential, Fig. 2, is obtained as
and negative ion problen26,27,29-32

However, for the positron-atom problem the approxima- (&’ = F)|8>
tion based on diagram®) and corrections of typeg), (e), /
(f), and (g), proved to be deficienf2—4]. In addition one (&' V| paa)(vapta|Tere, | avi)(vama|VIne) |
must include the diagram Fig.(t) and higher-order dia- wmn (E=€,, =€, +eq+10)(E~¢, —&, +e,+i0)
grams in which the positron interacts with the excited elec- @)
tron in the intermediate state, Fig. 2. This sequence of dia-
grams accounts for virtual Ps formation. It is important that itSince the electron-positron Coulomb interaction is attractive,

€ v v, € € v v, €
+ 4@_ + v ul/ uz
n n

FIG. 2. Virtual Ps contribution to the positron-atom correlation poteitial

032720-3



G. F. GRIBAKIN AND J. LUDLOW PHYSICAL REVIEW A 70, 032720(2004)

" RERNERNEEERNEN ¥

FIG. 3. Electron-positron ladder diagram sequence and its sum, the vertex fukiction

V<0, the terms of the perturbation series in Fig. 3 have the C. Scattering

sz_igne_ 3|gnf. This Ie>|<3ple}|ns why the|rhsum, and hence the con- paer than solving the Dyson equation for the quasipar-
tribution of virtual Ps formation to the positron-atom atlrac- ;.1 wave function in the coordinate representation, it is

tion, are large. Note that for electron scatteriiMj>0) this easier to work with the self-energy matrix
series is alternating. As a result the net contribution of the '
diagrammatic series on the left-hand side in Fig. 2 is small, .
and its omission in the electron-atom correlation potential <8/|2E|8>:f @, (NZelr,r')e.(r")drdr’, (10
does not give rise to large errors.

The Ps-formation contribution to the correlation potentialyyhere ¢, are the positron eigenfunctions of the HBr
was previously approximated by using the freeslate Ps  ground-state hydroggmiamiltonianHo,
propagator orthogonalized to the ground-state electron wave
functions[4,36], Hop, = e@,, (11

o ~ with a given angular momentumy ¢, (r)=r"P_(r)Y,n(Q).
E 30y =D (e n|V|‘1’15,K><‘1’1;,K|V|_nS> dK . Since the static potential of the atom is repulsive, all positron
n E+en—Es— K74 +i0 (2m) statesg, lie in the continuum(e > 0). The radial wave func-
(8) tions are normalized to & function of energy in Rydberg,
8(k?—k’?), wherek is the positron momentum. This corre-

where \IflsyK:(Bw)‘l’zexp(—lr—r’|/2)exdiK (r+r")/2] is sponds to the asymptotic behavior
the wave function of R4s) with momentunK, E;(+K?/4 is “12 o 0)

. . ; P ~ (7K kr—lm/2 + , 12
the energy of this state, and the tilde abokek in Eq. (8) (1) ~ (o sin(kr = I/ 5<| ) (12
indicates orthogonalization. This approximation is suitableyhere 5 is the scattering phase shift in the static potential.
for positron scattering from the targets where ground-state PS The matrix (10) can be used to obtain the phase shifts

formation dominates, e.g., hydrogen or noble gas atoms. irectly [26]. First, a “reducible” self-energy matrix
also allows one to consider positron scattering above th?e’|§ le) is found via the integral equation
E )

Ps-formation threshold, where the correlation potential ac-
quires an imaginary part due to the pole in the integral in Eq. P
(8) [37,47. At the same time, the ground-state Ps propagator N [y = (ot f (e'[Zele")e"[Zele)

) . : (e'[2gley = (e [Zele) + P de
fails to describe the short-range electron-positron correla- E-¢"
tions crucial for the calculation of the annihilation raf8§]. (13)
By the uncertainty principle, small separations invoke con-
tributions of highly excited states of the Ps internal motion,where P means the principal value of the integral. The phase
not included in the R4s) propagator. In contrast, our present shift is then given by
method based on the summation of the ladder diagram series,
Egs.(6) and(7), is consistent and complete. It accounts for 8§=687+Ag, (14)
all (virtual) intermediate states of the electron-positron pair.

For positron scattering on hydrogen, only a few types ofwhere
diagrams contribute t&g, since only one hole can be cre- -
ated. Moreover, the interaction of the intermediate-state elec- tanAg = - 2m(e[X,[e), (15)
tron and positron with the holgliagrams(c) and(d) in Fig. ) . !
1] can be taken into account by calculating the intermediat&€termines the additional phase shiféi(k) due to correla-
electron and positron wave functions in the Coulomb field oftions, at the positron energy .
the nucleus. In this case, the correlation potential is given by ©Once the reducible self-energy matrix has been found, the
the sum of the second-order diagram and the virtual Ps corfluasiparticle wave functiofalso known as théyson or-
tribution, Figs. 1a) and 2, and bital) can be found via

(Y] ! is
Se=3g +3¢ 9 (1) = ou(r) + Pf ()22l |_ |,8>ds’. (16)
is theexactcorrelation potential. In particular, the long-range eme

asymptotic behavior OI(EZ) at low energies, Eq4), contains  In order to normalize the quasiparticle radial wave function
the exact polarizability of hydrogemz%. at large distances to
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Sijg+8§;}i 8+ ii% + g; Sg
(Z) (b) (©) (d)
(&) (h)

(e) ()

FIG. 4. Diagrammatic expansion @f¢. Apart from the zeroth and first-order diagrafag (b), and(c), the main types of second-order
diagrams are shown. The external lines of these diagransepresent the wave function of the incident positron. The solid circle
corresponds to the electron-positréiunction annihilation vertex.

P ~ ()2 sin(kr — 177/2 + 89 + AS), 1 apparatus of many-body theory to this quantity directly
ai(1) ~ (k)= sin(kr =l ! ) (7 [3,36]. In this “transition amplitude” the initial and final

the function obtained from the right-hand side of Ef)s)  States are identical, and the electron-positron two-body op-

must be multiplied by the factor erator,2;5(r;—r), plays the role of a perturbation. The posi-
tron energy in the initial and final states is the same,
cosAS =[1 +(2m(e|S,|e))?] 2, (18) =k?/2, and(owing to the spherical symmetry of the target

the perturbation conserves the positron angular momehtum

Therefore the contribution of each positron partial wave to
D. Positron annihilation Z. can be determined separately. The corresponding many-
body diagrammatic expansion is presented in Fig. 4.

The ann|h|lat|on rate of a posnron in a gas of number The analytical expression for the zeroth-order diagram,
densityn is usually expressed in terms of the effective num-Fig Xa), is

ber of electronZ, which contribute to annihilation on an
atom or moleculg48,49,

) Z8=> f Y1) @p(r DT =11)y(r ) efr(r)drdry
N = 7T GCNZegy, (19 n

wherer is the classical electron radius aads the speed of - 2 2
light. Equation(19) definesZ.; as the ratio of the positron En" J"p”(r)' (), 22
two-photon annihilation cross section of the atom to the spin-

averaged two-photon annihilation cross section of a fre&vherey, is the positron wave functiong, is the wave func-
electron in the Born approximatiof®0]. Annihilation takes  tion of the hole, and the sum ovarruns over all holes, i.e.,
place at very small electron-positron separatioh5mc)  orbitals occupied in the target ground state. This contribution
~102 a.u. Hence for nonrelativistic positrons it is deter-is simply an overlap of the electron and positron densities,
mined by the electron density at the positron, @gglcan be 3 |@,(r)|? and|,.(r)[?, respectively.

calculated a$48], The two first-order “corrections,” Figs(d) and 4c), are

N identical, and their contribution is

Zet = | [®(ry,rp ... ru D)8 =r)dr -~ drydr,
4=

» (en| 8| uv)(vu|Vine)
(20 sen ST et e

(23

where W(ry,r,,...,ry.r) is the full (N+1)-particle wave cf. Eg.(3) for the second-order contribution to the correla-

function of theN electron Coordinateﬁ and positron coor- tion pOtential. In the calculations of annihilation we assume
dinater. The wave function is normalized to a positron planethat the positron energy is below all other inelastic thresh-

wave at |arge positron_atom Separations1 0|dS, hence we have dI’Oppe@i in the energy denominator.
Physically, the first-order diagram describes positron annihi-
W(ry,fp o Fpl) = Do(ry,ro, ... ,rN)eik-f, (21) lation with an electron “pulled out” from the atom by the

positron’s Coulomb field. Calculations in Ref$3,36|
where ®y(rq,ro,...,ry) is the atomic ground-state wave showed that for noble-gas atoms the size of the first-order
function, andk is the incident positron momentum. corrections is approximately equal to the zeroth-order contri-
Although Z; is basically a cross section, H@O) has the  bution. This means that higher-order terms must also be
form of a transition amplitude. This enables one to apply thegaken into account.
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FIG. 5. Main contributions to the positron-atom annihilation paranié&tgrTo account for the mirror images of the diagragk (d), and
(e), their contributions are multiplied by 2.

Diagrams(d)—(h) in Fig. 4 illustrate the main types of diagrams in Fig. 5, areonlocal As a result, the total.; can
second-order corrections to taanihilation vertexltis also  be written as
important to consider corrections to the incident positron
wave functions denoted by, However, these corrections are _ 2 2 « , , ,
included in all orders in the positron quasiparticle wave func—zﬁﬁ_fg [en(r () e +J Yo(DALr, T (r)drdr,
tion, obtained from the Dyson equati¢h), or via Eq.(16).
Hence their contribution t@. is accounted for by using the

positron Dyson orbitalg/, in the calculation of the annihila- \yhereA (r,r') represents the nonlocal correlation correction
tion diagrams. to the annihilation vertex. In the approximation of Fig. 5, it is
The presence of thé&-function operator in the annihilation equal to the sum of all diagran®)—f) with the external
diagrams enhances the importance of small electron-positrosositron linese detached. Diagrarth) in Fig. 4 and similar
separations. For this reason, the most important diagrams ifiagrams which represent corrections to the HF electron den-
Z. are those with the Coulomb interactions between thesity could be included by replacing of the HF electron den-
annihilating pair, e.g., the second-order diagramsand(e)  sity =,|¢,(r)|? in Eq. (24) with the exact target electron den-
in Fig. 4 (the latter together with its mirror imageand simi-  sity p.(r). Given the high accuracy of the HF density, this
lar higher-order terms. A complete all-order calculation ofwould make only a small change #y;. The structure of Eq.
their contribution is achieved by using the vertex function, ag24) shows that even when one uses the best single-particle
shown in Fig. 5. Note that for hydrogen this set of diagramspositron wave function, the annihilation rate is not reduced
is exhaustive, provided the intermediate electron and posito a simple(local) overlap of the electron and positron den-
tron states are calculated in the field of the bare nucleussities.
Previously diagramsc)~(f) in Fig. 5 have only been esti- There is an important physical difference between the cor-
mated[36]. We will see that the ability to calculate these relation effects in positron scattering and annihilation. The
diagrams accurately is crucial for obtaining correct values okey role played by the long-range polarization potential for
Z.. We will also see in Sec. IV that the role of the vertex low-energy positrons means that large distances are impor-
function (representing virtual Bsin annihilation is much t@nt. Polarization also emphasizes the role played by the di-
greater than in scattering. pole part of the positron-target Coulomb interaction and di-

Of course, for many-electron targets one can also consid ole target e>§citati0ns. The contribution qf virFuaI Ps
other diagrams, e.gf)~h) in Fig. 4. In particular, diagram ormation toX is a short-range effect. The typical distances

(f) describes screening of the electron-positron Coulomb inhere are comparable to the radius of the atom, or the radius

. . ; of ground-state Ps. The net effect of the strong positron-atom
terac_:t|on by other electrorsf. F'g 1(e)]'., Dlagrgm_(g) can  attraction brings about low-lying virtuad states(see, e.g.,
be viewed as the lowest-order “pick-off” annihilation contri-

: ) i ) Ref. [44]) for Ar, Kr, and Xe[36], or positron-atom weakly
bution. Here the positron excites an electron-hole @ajre- bound states, e.g., in M@5,37. In both cases, the positron

cursor of virtual Ps formationand annihilates with an elec-  gcattering phase shifts and the positron quasiparticle wave
tron from one of the ground-state orbitals. Diagrém is  fynction in the vicinity of the atom vary rapidly as functions
independent of the positron energy. It represents one of thgf the positron energy.
corrections to the HF ground-state electron density, cf. Fig. oOn the contrary, in the annihilation diagrams the
1(h). Unlike the diagrams in Fig. 5, these contributions ares-function vertex emphasises small electron-positron separa-
not systematically enhanced by the electron-positron Coutions. By the uncertainty principle, such small separations
lomb interaction at small distances. correspond to high-energy excitations in the intermediate
It is clear from Fig. 4 that most correlation corrections to states in the diagranis)—(f), Fig. 5. As a result, the nonlocal
the annihilation vertex, including the dominant sequence otorrection to the annihilation verted,, has a weak energy

(24)
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dependence, and the energy dependence of the second termThe drawback of this procedure is that for a suitably large
in Eq.(24) is almost entirely due to that of the positron wave R, the step size in momentum is small, e.g., R*30 a.u.,
functions. The only exception is when the positron energyAk=0.1 a.u. Hence one would need large numbers of inter-
approaches the Ps-formation threshold from below. Here thmediate states to achieve convergence. Note that the actual
virtual-Ps contribution, Fig. ), rises sharply. Details of the upper energy limit depends on the quantity in question. Thus
threshold behavior o are discussed in Ref51]. diagrams inZ.; converge more slowly than those of the cor-
The large difference in the energy scales characteristic afelation potentialX, because of the greater role of small
positron scattering and annihilation has another physicallglectron-positron separations and high orbital angular mo-
important consequence. It turns out that thkative size of  menta in the former. However, as a rough guide, summing up
the annihilation vertex corrections K, i.e., the ratio of the  to the energy of 19a.u. should be sufficient for both. The
second term in Eq24) to Zg?, is about the same, whethggy ~ question of the number of intermediate states is especially
are the positron wave functions in the repulsive static potenimportant for the calculation of the vertex functidh which
tial, ¢, =¢,, or the Dyson orbitals which fully account for the is aNp X N matrix [see Eq(6)], whereNp~ N2(l o+ 1), N
positron-atom correlation potential. Numerical illustrationsbeing the number of electron or positron states in each partial
of this effect will be provided in Sec. IV. wave andl ., being the largest orbital angular momentum
Finally, we should mention that the correct normalizationincluded. It is clear that here the simple cavity quantization
of Z for positrons with angular momentuhis obtained by  cannot work.
multiplying the diagrams in Figs. 4 and 5 by the extra nu- Instead, to achieve an accurate and economical span of

merical factor, the continuum we usB splines[52]. B splines of ordek are
2 n piecewise polynomials of degrde-1 defined by a knot
4_(2| +1). (25) sequencer; which divides the interval0,R] into n—k+1
k segmentg53]. The basis states are obtained by expanding
This follows from the structure of the positron wave function the radial wave function®(r) in terms ofB splinesBy(r),
i, which has the asymptotic behavior of a plane wea\ié P(N= chB.(r) (28)
at large distancegef. Eq. (21)], o
w mel and finding the eigenvectors and eigenvalues of the radial
_Am |7 Y x part of the HF(or hydrogen atom Hamiltonian for each
=T kg n§i| PP (N Yim( Q) Yim(Q). (26) s angular momenturh by solving the generalized ei-

genvalue problem,
To derive Eq.(25), one can use) as the external positron

lines in an annihilation diagram, and perform averaging over > HijCJ(I) = > Q; C}'), (29)

the directions ok.
whereHij:<Bi|H8)|Bj>, andQ;;=(B;|B;). Prior to solving Eq.

I1l. NUMERICAL IMPLEMENTATION (29), the ground-state atom HF Hamiltonian is generated by
a conventional HF routings4]. Note that in the sums over
and j in Egs. (28) and (29) the first and last splines are

To evaluate the diagrams of the correlation potential discarded to implement the boundary conditid®(0)
and annihilation parametéf., one first needs to generate =pP|(R)=0, leaving one with a set ofi-2 eigenstates for
sets of electron and positron HF basis states. These are thgach electron and positron orbital angular momentum. When
used to calculate matrix elements of the Coulomb andsq. (29) is solved for the electron, it yields the wave func-
o-function operators, the main building blocks of the dia-tions of the orbitals occupied in the atomic ground state
grams. Evaluation of the diagrams requires summation oveholeg, as well as those of the excited staparticleg. The
complete sets of electron and positron intermediate stategxact energies of the excited electron and positron states are
including integration over the electron and positron continuadetermined by th&-spline radial knot sequence.

To perform a numerical calculation, the continuous spec- |t is instructive to try to design an ideal distribution of
trum can be discretized. The simplest way of doing this is byenergies of a discrete set spanning the continuum. Qualita-
placing the system in a spherical cavity of radRisSetting  tively, at low energiege <1 a.u) the continuous spectrum
the wave functions to zero at the boundary will result in astates oscillate slowly, and the contribution of large distances
discrete spectrum of eigenstates with an approximately conn the matrix elements is importarthence the need for a
stant step size In momentum space, large R). As the energy of the states increases, the range of

Ak =~ /R important distances becomes smaller and smaller. Indeed, the
=~ 7/R. (27) . ) ) o

matrix elements then contain rapidly oscillating factors of
If the value of R is sufficiently large(R>R,, whereR,, €X' type, which means that the dominant contribution comes
~1 a.u. is the size of the atgnithe presence of the boundary from r<k™. Therefore one does not need a large value of
will not affect the quantities calculated. Indeed, for the posthe cavity radiusR for the higher-energy states. More spe-
itron energy below all inelastic threshol@esxcept, of course, cifically, one can estimate the necessary radiuRasa/k,
annihilatior), the intermediate states in the diagramsvare  wherea is a number greater than unity. Combining this with
tual, and no particle in an intermediate state can escape tthe cavity quantisation conditioi27), one obtainsAk/k
infinity. ~ arla, which yields the following grid in momentum space:

A. Use of B splines and convergence
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10% [ ' ' ' . ] B. Calculation of the self-energy and annihilation diagrams
107 | o The self-energy and annihilation diagrams are calculated
100 | ..' 1 by summation over th&-spline basis states, and the vertex
o* function is found by matrix inversion from E@6). The an-
~ 10° | o* E gular parts of the states are separated in the matrix elements
g 10* [ ..°° ] and the angular variables are integrated over analytically.
= o8 o® The actual expressions for the diagrams are given in the Ap-
o 10 ¢ .° ; pendix. The self-energy matrix and the vertex function are
2 10° | go' -3 ] energy dependent. In practice, the self-energy matrix has
w 10" | 839 N ] been calculated at eight energies spaced evenly from zero to
] o2? the Ps formation threshold. Interpolation onto any required
107 ¢ 0200 1 energyE is then used.
10” _..0..;(30 ] Apart from theB-spline basis states, we also consider true
> positron continuum HF stat€$2). They are needed to evalu-
100 T 10 20 30 40  ate the matrix element&|Sele’) and obtain the phase shifts
Basis state number via Egs.(13)—«(15). Here we use 201 states that form an equi-

distant mesh in positron momenta of sixk=0.02. A trans-
FIG. 6. Energies of the electrofopen circles and positron  formation of theB-spline basis matrix elemen¢gXg|j) into

(solid circle) swave B-splir]e basis states in the field of Fhe hydro- (e|Sgle’) could be done using the effective completeness of
gen nucleus, obtalr_1ed usnerSO, k=6, gndn:40. The first four the B-spline states on the intervid,R],
electron states with negative energi€s0.500 00, -0.12500,

-0.05542, and —0.002 46 a)uare not shown. <8‘2E|8’> - 2 <8||><||EE|J><J|8’>, (32)
i

kj = koe, (30 where(e|i) is the overlap of the HF state with ti@spline

basis state. However, unlike tiBespline states which satisfy
where ky is the lowest momentum,3=m/a, and ] the zero boundary condition Bt R, the continuous spectrum
=0,1,2,... Thus it appears that the optimal momentum andstate P, is finite at the boundary. To fix this problem we
energy grids are exponential. By choosing a small initial mo-nsert a radial weighting functiofi(r)=R-r into Eg. (32),
mentumk, <1 a.u. and3<1 one ensures that the stepsize inwhich now reads
momentumAk= Bk, is sufficiently small, to describe accu-
rately the energy variation of the quantities summed. (slSele’) = 2 (el Xl et YiXlfle"),  (33)
It turns out that basis sets generated by E28) and(29) i
using an exponential radial knot sequenge] are a very and calculate the “weighted” self-energy matrix
close realization of the exponential energy grid, andedre  (j|f-13..f-1|j), rather thani|Sglj). The singularity off! at
fectively completeln the present work we use=40 B =R qoes not cause a problem, since Bagpline basis states
splines of ordek=6 with a knot sequence in the Coulomb matrix elements involved, vanishratR.
The same trick is applied in the calculation of the annihila-
r=p(e” - 1), (37)  tion diagrams. _
To calculate({s|Sg|e’) more accurately at low positron
) ] N energies, where distances beyamdR can be important, we
where p=10° a.u., ando is determined by the condition make use of the long-range asymptotic form of the correla-

rn-r1=R. Figure 6 shows the positive eigenenergies of th&jon potential(4). The contribution of >R can be evaluated
electron and positron basis states Wit0 for the hydrogen 45

atom. Their distribution does indeed correspond to the expo-
nential ansatz, Eq.30), with 8=~ ¢. The highest energies in
the sets are about 4@.u. This value is close to the magni-
tude of (po)™2, since the knot point closest to the origin
determines the most rapidly varying eigenstdig the un-
certainty principlg. In fact, it may not be necessary to in- with the correct value of the dipole polarizability, and
clude all 38 basis states in each partial wave in the manyadded to(s[Sg|e’).
body theory sums. In the calculations reported in this paper
we use only about 15 lowest states, which span the energy . .
range from threshold te- 1R a.u. C. Convergence with respect to the orbital angular momenta
Note thatB-spline basis sets are used widely in atomic The use of 8-spline basis means that fast convergence is
physics[52], and that there are other basis sets which show achieved with respect to the number of states with a particu-
near-exponential spanning of the continuum. In particularjar orbital angular momentum. However, this leaves open the
Laguerre basis states provide rapid convergence in closeuestion of convergence with respect to the maximal orbital
coupling electron-atom scattering calculatigbs). angular momentum of the electron and positron intermediate

Fg.(r)(— %)Paq(ndr, (34

n— 8
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states included in the calculation. It has been known for a In the numerical implementation we first generate the
while that calculations of positron-atom scattering convergeelectron and positroB-spline basis sets. They are then used
slowly with respect to the number of target angular momentdo evaluate the matrix elements, find the vertex function, and
included in the expansion of the total wave function, notablycalculate the self-energy and annihilation diagrasee the
slower than in the electron-atom c&g&s]. This is also true  AppendiX. Using the self-energy matrix, the phase shifts are
for the configuration-interaction-type calculations of obtained by means of Eqel3)-(15), and the positron Dyson
positron-atom bound statdd7,19,57 and scattering20].  Orbital is calculated from Eqg16) and(18). In the end, the
Calculations of annihilation rates converge even more slowlyySon orbitals replace the positron HF states in the external
[19,20,57. Physically, the slow convergence rate arises fro

ines of the annihilation diagrams, and final valueZgf are
the need to describe virtual Ps localized outside the atom b btained. To test the stability of the results with respect to the
an expansion in terms of single-particle orbitals centered o

avity radius, the calculations were performed wiRk 15
the nucleus.

and 30 a.u.

The problem of the convergence rate with respect to the | ;I;o ;SX t;e;pr)oé?qtse(;%e asr::g Egeé)m?hghgzzr;mzs;gd et\cl)allﬂgted
maximal orbit_al angular momentum has been investigated by, ,a range of maximal or’bital angular moments, .,
the authors in Ref[58). Using a perturbation-theory ap- _7_10_ This procedure is illustrated by Fig. 7 for the phase
proach and the original ideas of Schwaft8], we derived  spifts and Fig. 8 foiZy, for thes-, p-, andd-wave incident
asymptotic formulas that describe the convergence of thBositron with moment&=0.2, 0.4, and 0.6 a.u.
scattering amplitudes, or the phase shifts, and annihilation Figures 7 and 8 show that the calculations have converged
rates, orZy. The contribution of high orbital angular mo- g the regime in which the asymptotic formy®6) for & and
menta probes small particle separations in the system. Tl”ﬁrmu|a(36) for Zs, may be applied. The graphs also illus-
difference between the convergence rates of the scatteringate the point that the inclusion of high orbital angular mo-
and annihilation parameters is due to the presence of eitherenta and extrapolation tg,,— e is much more important
the Coulomb interaction or théfunction annihilation opera- i the calculations of annihilation, compared with scattering.
tor in the relevant amplitudes. . _ For the positron momenta and partial waves shown, between
_ The increments to the phase shifts ahg upon increas- 1504 and 30% of the final value . is due to such ex-
ing the maximum orbital angular momentum fram1 to\,  trapolation. Quantitatively, this contribution can be charac-
were found to behave d&+1/2)* and(\+1/2)7?, respec- terized by the rati®/Zg: see Eq(36), given in Table . Its
tively. This means that if a series of calculations is stopped afcrease with the positron angular momentum may be related
some maximal angular momentuRFly,, the values ob- tg the greater role of the correlation corrections to the anni-

tained approach the ultimat&,.,— ) values as follows: hjlation vertex in higher positron partial partial wavesee
A below).
5{'max] =83, (35) Figure 9 shows the-, p-, andd-wave phase shifts for the
(Imax+ 1/2 total correlation potential9). They are in very good agree-
ment with those from an accurate variational calculatse®e
Alyad = 7 B (36) Ref.[13]), the discrepancy being of order 0ad; see also
et T (| et 172) Table Il. The values obtained witR=15 andR=30 a.u. are

almost indistinguishable, except at low positron momenta.
where A and B are some constants. They are determinedyere the results foR=30 are superior to those f&=15.
together withg) and Z; by fitting Eqs.(35) and(36) to the  The larger cavity size allows for a better account of the long-
numerical data obtained for a rangelgf. This extrapola-  range -/2r* tail in the polarization potential.
tion to Ina— 0 is performed at each positron momentum  Examining the phase shifts allows us to compare the rela-
value considered, and is especially important for obtainingjve sizes of the polarization and Ps-formation contributions
correct values 0Z. to the correlation potentigP). The static positron-atom po-
IV. RESULTS: SCATTERING AND ANNIHILATION ON ter_1tia| is_repul_sive, resulting in negative vaIL!es of the phase
HYDROGEN ShlftS (thin solid curves The inclusion o_fE, e, _correla-
tions, makes the low-energy phase shifts positive. Dashed
The theory outlined above can be readily applied to anycurves in Fig. 9 show the phase shifts obtained by including
closed-shell atom or ion. In this paper we would like to testonly the second-order diagra®® (polarization, while
it for the simplest possible target, the hydrogen atom. Since idotted-dashed curves are those obtained With alone(vir-
contains only one electron, the correlation potential from Eqtual Ps formation We see that none of these results is close
(9) and theZ, diagrams in Fig. 5 give an exact solution of to the phase shift obtained with the fiill. This means that
the elastic scattering and annihilation problems, provided theeither contribution dominates the correlation potential, and
intermediate electron and positron states are calculated in thibe inclusion of both polarization and virtual Ps-formation
field of H*. The key advance of the present many-bodyeffects is essential for solving the positron-atom problem. Of
theory of positron-atom interactions relates to the calculatiortourse, any calculation which produces accurate positron-
of the electron-positron vertex functidn, Eq. (6), and its  hydrogen phase shifts contains these contributions implicitly.
incorporation in the self-energy and annihilation diagrams. IfThe advantage of the many-body theory approach is that one
is mainly these features of the theory that a positron-can separate them, and get a better insight into the physics of
hydrogen calculation is intended to test. the system.
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) FIG. 8. Convergence of the, p-, andd-wave contributions to
~ FIG. 7. Convergence of the, p-, andd-wave positron scatter- 7 for positron annihilation on hydrogen with respect to the maxi-
ing phase shifts on hydrogen with respect to the maximal orbitalya| orpital angular momentunty,, for R=15 a.u. Circles,k

angular momenturty,,, for R=15 a.u. Circlesk=0.2 a.u.; squares, =g 2 a.u.; squarek=0.4 a.u.; diamondsk=0.6 a.u. Lines show
k=0.4 a.u.; diamond%=0.6 a.u. Lines show extrapolation. extrapolation.
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TABLE |. Values of B/Zs which characterize the dependence

of calculatedZq¢ on | ay

Partial wave
Momentum
(a.u) S p d
0.2 1.82 2.63 3.33
0.4 1.62 2.58 3.32
0.6 1.41 2.51 3.37

0.2

PHYSICAL REVIEW A70Q, 032720(2004

To illustrate the nonperturbative nature of virtual Ps for-
mation we have also performed calculations that include the
vertex function only to first ordez=V, in 1 (dotted
curves in Fig. 9. This approximation accounts only for about
50% of the total vertex function contribution. Note that the
higher-order terms id” become even more important close
to the Ps formation threshol#~0.7) in p andd waves. This
is related to the virtual Ps becoming more “real” close to the
threshold.

We now turn to positron annihilation. Having solved the
scattering problem accurately with the fiil] we are now in
possession of the begjuasiparticlg positron wave function,
the Dyson orbital. Before using it in all annihilation dia-
grams, let us first look at the effect of the Dyson orbital on
the zeroth-order diagram, Fig(&, for the swave Z.4. Fig-
ure 10 shows that the zeroth-order contribution, E2R),
evaluated with the positron wave function in the static
atomic potential gives values up to 20 times smaller than the
variational results of Ref[60]. This situation is similar to
that in positron annihilation on noble-gas atoms, where Eq.
(22) evaluated with the statictHF) positron wave function
underestimates experimeni@ls by a factor of 16—1C° at
low positron energie$3,36]. It is natural that the use of the
Dyson orbital, which is “aware” of the positron-atom attrac-
tion, in Eq. (22), leads to increased.y;, and introduces a
correct momentum dependenggashed curve in Fig. 30
This latter fact is in agreement with the general understand-
ing of the origins of the energy dependence and enhancemet
of Z.; at low energies, and their relation to positron-atom
virtual states[3,36,6]. However, the absolute values ob-
tained are still about five times lower than the benchmark.

The remaining 80% come from the nonlocal corrections
to the annihilation vertex, diagram®)—f) in Fig. 5. The
contributions of all the diagrams evaluated using the positron
Dyson orbitals and the tot&@l.; are shown in Fig. 11 for the
positrons, p, andd partial waves.

The difficulty of calculating the vertex corrections Zgg
accurately is evident from these graphs, as all the diagram:
in Fig. 5 contribute significantly. The higher-order diagrams
containing the vertex function, are close to or greater than
the lower-order diagrams. Note that all contributions have a
similar dependence on the positron momentum. It is driven

Phase shift

Phase shift

Phase shift
N

0.2

0.15

0.1

0.05

-0.05
0

0.1

0.02

-0.02
0

0 01 02 03 04 05 06 07
Momentum (a.u.)
[
p—wave

02 03 04 05 06
Momentum (a.u.)

0.7

d-wave

0.1

02 03 04 05
Momentum (a.u.)

0.6 0.7

by the momentum dependence of the positron Dyson orbitals FIG. 9. Positron-hydroges-, p-, and d-wave scattering phase

(external lines in the diagramsas discussed in Sec. Il D.
Figure 11 shows that fgp andd waves, the contribution

shifts: long-dashed curve, many-body thedfig=15 a.u); solid
curve, many-body theoryR=30 a.u); circles, variational calcula-

of the diagram Fig. &) grows rapidly and becomes largest tion [13]. Thin solid curve, static approximation; dashed cus/@);
towards the Ps formation threshold. This diagram describegotted-dashed curve;"); dotted curve 3 obtained with'=V
annihilation inside the virtual Ps formation, which has a vig-(all R=15).

032720-11



G. F. GRIBAKIN AND J. LUDLOW PHYSICAL REVIEW A 70, 032720(2004)

TABLE Il. Comparison of many-body phase shifts afg: with those from an accurate variational calculation.

Phase shifts Lt
K s wave p wave d wave s wave p wave d wave
(au)y  MB? Var’ MB var MB Var MB var MB Var MB Var
0.1 0.1447 0.1479 0.0084 0.0086 0.0008 0.0013 6.7806 7.5679 0.1227 0.1422 0.0008 0.0010
0.2 0.1842 0.1875 0.0320 0.0320 0.0054 0.0053 5.1058 5.7619 0.4842 0.5461 0.0128 0.0150
0.3 0.1654 0.1672 0.0653 0.0657 0.0129 0.0128 3.9289 4.3515 1.0218 1.1375 0.0615 0.0704
0.4 0.1180 0.1198 0.0996 0.1003 0.0241 0.0238 3.1119 3.4073 1.6067 1.7940 0.1773 0.2009
0.5 0.0605 0.0624 0.1290 0.1306 0.0393 0.0390 2.5459 2.7470 2.1349 2.4015 0.3889 0.4399
0.6 0.0024 0.0036 0.1529 0.1544 0.0593 0.0585 2.1449 2.2848 2.6312 2.9457 0.7512 0.8346
0.7 -0.0524 -0.0523 0.1750 0.1786 0.0867 0.0866 1.8401 1.9719 3.3140 3.9278 1.4480 1.6756

#Present calculation faR=15 a.u.
bKohn variational calculations, Refgl3,60.

orous energy dependence close to threskiid. This may when we usen=60 B splines of ordek=9 and include the
have a bearing on the kinks iy visible atk=0.6 a.u. for  first 23 basis states, the difference between Zygrand the
the p andd waves. Although they may be a numerical arti- benchmark values is halved. However, using lamy&rould
fact, an indication of an inflection point is also present in therequire the inclusion of more basis states, which would lead
accuratep-wave results of Ref{60]. to impracticably large sizes of the vertex function matrix.
The total Z. values obtained foR=15 a.u. are slightly The main conclusion of this section is that the numerical
higher than those foR=30 a.u. A denser knot sequence for implementation of the many-body theory approach proposed
R=15 provides a better description of small electron-positrorin this paper works. For positron collisions with hydrogen,
separations. Our final results compare well with those fromwhere this approach is exact, the calculations reproduce the
the accurate variational calculation, RE80] (see Table ), best scattering phase shifts, and yield good results in the
although they are systematically lower. In RE0] andall more difficult annihilation problem.
other calculations of positron-hydrogen annihilatigsee,
e.g., Ref[62]), the electron-positron distance is represented
explicitly in the calculation, while we use a single-center
expansion. The discrepancy is therefore related to the diffi- - ) .
culty in describing small electron-positron separations. We 1he ability of a many-body theory to describe correlation
believe that it could be eliminated by “pushing harder” thecorrections to the annihilation vertex may give some insight

theoretical studies of positron annihilation in condensed-

. , matter systems the annihilation rate is often found in the
. form (see, e.g., Ref6]),
s—wave

V. CORRELATION CONTRIBUTION TO THE
ANNIHILATION VERTEX

8

A= Wrng pe(r)Pp(r)')’(pe!pp)dr ) (37)
] wherep(r) andpy(r) are the electron and positron densities
e and y(pe,pp) is the enhancement factointroduced to ac-
count for the Coulomb attraction in the annihilating pair. It
. has long been known that the independent-particle approxi-
o mation (y=1) underestimates the annihilation rates by sev-

L I eral times[63], and a number of semiempirical and interpo-

lation forms of y(pe, pp) have been suggestesee, e.g., Ref.

[64] and references thergin

A comparison between E@37) with y=1 and the many-
body theory expressio24) shows that the former corre-
sponds to the zeroth-order termZgy, Eq. (22) [65]. As we
have seen in Sec. IYFig. 10, ng does underestimate the

FIG. 10. Contribution of the zeroth-order diagram, Figa)5to ~ annihilation rate in hydrogen by a factor of 5, even when the
the positron-hydrogers-wave annihilation parameteZ.q, calcu-  D€st positron wave function is used. The correlation correc-
lated with the positron wave function in the static atomic potentialtion to the annihilation rat¢second term in Eq(24)] does

02 03 04 05
Momentum (a.u.)

(solid curve, and with the Dyson orbitai{dashed curve Circles
connected by dotted curve are the accurate results of[B@f.

not have the form of Eq(37). It depends on the positron

wave function at two different points, andr’, hence any
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8
6 L
& 4+t
N
2 L
6
0
6 01 02 03 04 05 06 07 FIG. 12. Radial dependence of the integrd@6) of the corre-
Momentum (a.u.) lation correction for the annihilation of thewave positron with
4 ’ . ; 1 1 momentumk=0.06 a.u. on hydrogen. The “ripples” is an artifact of
? the reconstruction oA(s')(r,r’) from the matrix elementi|A,[j).
p—wave - , . ,
3 local expression like Eq37) is necessarily an approxima-
I tion.
To illustrate this point, a contour plot in Fig. 12 shows the
radial part of the integrand of the nonlocal term,
& 2r
N Pa(NAD(r,rP,(r), (38)
for the sswave (I1=0) positron annihilation on hydrogen at
16 k=0.06 a.u. The plot confirms that the correlation contribu-
tion to the annihilation vertex is localized near the atom. Its
- maximum at =r’ = 1.5 a.u. compares well with the radius of
B e T the hydrogen atom, and the ridgelike structure indicates that
O o1 02 03 04 05 o8 o7 the “nonlocality” is limited to[r—r'|~1 a.u. _
Momentum (a.u.) _The overall size of thenonloca) correction to the anni-
hilation vertex can be characterized by the average enhance-
2 ; . ; ; ; ‘ ment factor,
d-wave . f Go(DAL(r,r )i (r")drdr’
15 1 y=1+ (39)
f 2 len() Py (r)|Zdr
N% Tr We define this factor in such a way that when used in place
of y in Eq. (37), together withp(r)==|¢n(r)[> and py(r)
=|4,(r)|?, it would reproduce correct values of the positron-
05 | atom annihilation rate.
The quantityy can also be defined as the ratio of the total
Z to the value obtained from the zeroth-order diag%ﬁ),
0 R Fig. 5@). Since large energies of the intermediate virtual
0 01 02 03 04 05 06 07 states dominat@, (see Sec. Il D) this ratio should depend

Momentum (a.u.) weakly on the energy of the incident positron, or the type of
the wave function of the incident positron. In particular, the

FIG. 11. Annihilation parameteZ,; for the s, p-, andd-wave use_of either HF or Dyson wave functiogs for the incident

positron on hydrogen. Contributions of individual diagrams from POSitron should yield similar values of _

Fig. 5 are: solid curve, diagraa); dotted curve(b); long-dashed __ This understanding is confirmed by Fig. 13, which shows
curve, (c); dashed curve(d); dotted-dashed curvee); thick dotted ¥ for the s-, p-, and d-wave positrons on hydrogen. The
curve, (f) (all for R=15 a.u). Thick solid curve is the total for ~ Vvalues of y depend weakly on the positron energy, except
=15 a.u., thick dashed curve, total f&®=30 a.u.; thick dotted- When the Ps formation threshold is approached. This agrees
dashed curvés-wave), a calculation forR=30 a.u. with 23 out of ~With the earlier observation that the energy dependence of

n=60 ninth-orderB splines. Circles are the results of RES0]. various contributions t@. in Fig. 11 is approximately the
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 FIG. 14. Effective electron correlation densitfé{_ﬁ](r) (dashed

Momentum (a.u.) curve andﬁg](r) (dotted-dashed curydor the annihilation of the

— 0) . L s-wave positron withk=0.5 on hydrogen. Shown for comparison
FIG. 13. Ratioy of the totalZe to Z for positron annihilation . 4 ground-state electron density in hydrogefr) (solid
on hydrogen. Values obtained with positron wave function in thecurv@, and the positron densit?zl(r) (dotted curve, arbitrarily
static approximation are shown by solid curves, and those with th%caled. ®

Dyson orbitals, by dashed curves.

same. The values of obtained with the static and Dyson AD(r )P, (r7)dr
orbitals are close to each other, even though the absolute H(r) = (42)
values ofZs obtained in the two approximations are very Pe P.i(r)

different(see, e.g., Fig. J0On the other hand, the enhance-

ment factor increases with the positron angular momentumynich ensures théf](r) satisfies Eq(40) exactly. However,
For largerl, the penetration of the positron into the electron-j; nas a disadvantage in that it may have unphysical poles at

rich regions of the atom is suppressed by the centrifugajhe zeroes of the positron wave function. A second method
barrier, and the effect of “pulling the electron out'e., vir-  jqyolves calculating

tual Ps formatioh described by the correlation corrections,
becomes more important. o
In order to compare the enhancementZgf due to the i (o) :J AV(r + o/2,1 - 0/2)do, (43)
nonlocal vertex correction term with the local enhancement -2
factors used in condensed-matter calculations, we need to
“localize” the contribution ofA,(r,r’). We do this by intro-  which follows from Eq.(40) if we change variables, r’ to
ducing an effective “electron correlation densifys(r) via  r+¢/2, and keep the lowest-order term in the Taylor expan-
the relation sion of P, (r+o/2)P,(r—o/2). This approximation may not
be accurate for small, where the positron wave function
varies rapidly, but should be correct for largervalues,
Jf P.(DAY(r,r")P, (r")drdr’ = fﬁe(r)P§|(r)dr, where the peaking cxfsi')(r,r’) atr=r’' (Fig. 12 means that
P.(r) varies slowly on the scale of typical.
(40) Figure 14 shows both electron correlation densities calcu-
lated for thes-wave positron with momenturk=0.5 a.u.
Apart from the small range of distances near the origin, the
values ofp, from the two methods are close, aIthongfﬁ]
shows some numerical “noise” related to the reconstruction
of A(a')(r,r’) from its matrix elements. A comparison with the
~ N hydrogen ground-state electron density shows that the latter
pelr) +pelr) = 7elN)pelr), 4D d?/opsgmuc% faster with the distance fro)r/n the nucleus. In fact,
‘pe is much greater thap, at thoser where the positron
where po(r)=Pi(r)/4mr?, and Py=2re™ for hydrogen. density is large, in agreement with the correlation contribu-
Equationg40) and(41) guarantee that when we usg(r) in  tion to Ze4 being five timeszgf).
Eq. (37), correct annihilation rates are recovered. In Fig. 15 the enhancement factor obtained frbLH is
Equation(40) does not defin@.(r) uniquely. We use two compared with a commonly used parametrization of
different methods to obtain it numerically. The first one ¥(pe,p,) derived by Arponen and Pajanf@6] for a positron
states in a homogeneous electron gas,

for positron annihilation in théth partial wave. This allows
us to define an effective enhancement faetgr) through
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40 ‘ ‘ : 7 large differences between the average enhancement factors in
; Fig. 13 are due to the effect of the centrifugal barrier on the

' positron wave function. The distances which effectively con-
30 | ! tribute to Zy are greater for the positron in higher partial
/o waves.

2 s VI. SUMMARY AND OUTLOOK
/;//’ In this paper we have formulated a many-body theory
10 | /;’{/’* _ approach which accounts for the main correlation effects in
e positron-atom interactions. These &g polarization of the
T target by the positrorji) virtual positronium formation, and
———————— ‘ ‘ . (iii) strong enhancement of the electron-positron contact den-
0 1 2 3 4 sity due to their Coulomb interaction. The key development
Radius (a.u.) for an accurate description ¢ii) and(iii ) is the summation
_ o of the ladder diagram series and calculation of the electron-
FIG. 15. Enhancement factors for positron annihilation on hy‘positron vertex functionB-spline basis sets and extrapola-
drogen. Solid curveyap, Eq.(44); dotted liney, for swave posi- o0 gyer the orbital angular momenta are used to achieve
trons atkz0.0_6; dashed liney, for_ Swave p05|.trons ak=0.5, convergence of the sums over the electron and positron in-
I.Ong'daShed lineye for_p-wave positrons ak=0.5; dotted-dashed termediate states. The method can be applied to a range of
line, e for d-wave positrons a=0.5. problems such as positron scattering, annihilation, and for-
mation of bound states. A many-body diagrammatic ap-
yap=1+1.23,-0.07422+ 512, (44)  proach can also be developed to calculate the angular corre-

. , lation between the annihilatiop quanta, or the spectrum of
whererg is a measure of the average distance between tht%e gamma ray$67]
electrons, Although our main interest is in exploring many-electron

( 3 >1/3 targets, the method has been first tested for hydrogen, where
re=

Enhancement factor

(45) accurate benchmark data exist for the scattering phase shifts
and annihilation rates. In the case of hydrogen the present
Unlike yap, the factor y, obtained from our many-body formalism is exact. Numerically, excellent agreement with
theory approach, depends on the energy and orbital angulaccurate variational calculations for the phase shifts has been
momentum of the positron. The values shown in Fig. 15obtained, together with a good agreement for the annihilation
correspond to the momenka=0.06 (s wave) and 0.5 a.u(s, parameterZ.4. The calculation of the most difficult part of
p, andd waves. the correlation potential, which contains the vertex function,
A feature common to all enhancement factors in Fig. 15 ifor many-electron atoms is only marginally more difficult
their rapid rise with the distance from the nucleus. This in-than for hydrogen. Therefore we expect that application of
crease is related to the drop of the electron density, a relatioour many-body theory to the problems of positron scattering
which is explicit in Eq.(44) for y,p. At small distances, and annihilation on noble-gas atoms and binding to halogen
where the electron density is large,, compares well with  ions [68,69 should yield accurate results. In particular, we
ve- However, at larger distances, where the electron densitwould like to re-examine and improve the accuracy of the
is low, yap is much greater than all of thg,. Such a discrep- many-body theory prediction85] of positron binding ener-
ancy could be expected, given that a homogeneous electrajies to thens’ atoms such as Mg, Cd, and Zn.
gas theory used to derivg,p is more reliable in the high- The advantage of many-body theory methods is their
density limit. The exaggeration of the enhancementyly ~ physical transparency. It allows one to distinguish between
was reported in Ref[64] where various forms of the en- different physical mechanisms and compare their relative im-
hancement factor were tested by comparison with accurafgortance. Thus we saw that virtual Ps formation in positron-
annihilation rates for a number of positron-atom bound syshydrogen scattering is just as important as the target polar-
tems. For Be and Mdgwhich havel >6.8 eV), the values ization. Correlation corrections to the annihilation vertex,
obtained usingy,p overestimated the accurate annihilation which are physically related to the virtual Ps formation, are
rates by factors of 5 and 2, respectively. Note also that theven more important. They enhance the annihilation rate in
productpeyap remains finite ag.— 0. This means that one hydrogen by a factor of 5 or more, depending on the positron
cannot in principle use it in Eq37) for a continuous spec- partial wave. Such vertex corrections depend weakly on the
trum positron, since it would yield infinite values of the an- positron energy, and the enhancement they produce is prac-
nihilation rate andZ.. For the same reason a much strongertically the same for various positron wave functions. There-
overestimate observed in Rg64] with y,p for Be is a direct  fore one could use the average enhancement factors derived
consequence of the positron binding energy for Be beindor isolated atoms to obtain reliable annihilation rates for
much smaller than for Mg. atoms placed in different environments, provided that a suf-
Figure 15 shows that the values @f derived for thep  ficiently accurate single-particle positron wave function is
andd waves are similar to those from tlsavave. Hence the available. Of course, different atomic subshells will be char-

4mpe
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acterized by different enhancement factors. However, thepnd(e|Ag|e) is simplified by the use of graphical techniques
can all be determined in many-body calculations of the typeor performing angular momentum algediz0)].

described in this paper, and serve as an input for the calcu- The reduced Coulomb matrix element is defined as
lations of positron annihilation in molecules or condensed

matter. —— b |1
In this work we have analyzed the spatial dependence of (3,4|V|[2,1) = \'[Il][lz][lsj[u]( ! 3)( 2 4)
the nonlocal correlation corrections to the annihilation ver- 0 0 0/0 00

tex. We have also derived the equivalent local enhancement r'<

factor and compared it with an expression used in X P83|3(r1)Pa4|4(fz)r|—+l
condensed-matter calculations. Similar comparisons for =

larger many-electron targets may test various forms of en- X P, (ra) P, (ry)drydry, (A3)
hancement factors in a much greater range of electron den-

sities. where[l,]=2l,+1, etc. The minus sign in the reduced Cou-

The rapid development of computers over the past feWomp matrix element involving the positron is accounted for
decades seems to have favored theoretical methods Othiﬁrthe overall sign factor for the diagratsee below The

than the many-body theory. Such methods often rely more O,y ced Coulomb matrix element for an electron-positron

the computer power and numerical techniques than on thﬁair coupled into a total angular momentunis given by
physical insight. They often appear to be “more exact” than

the sophisticated but explicitly approximate many-body I

theory approaches, and promise improved results due to (3 4vV|2,2)=> (- 1)J+'<3,4|V|||2,1>{ 3 4},
shear growth of computer power. Their drawback is that they i N PIET

do not always increase one’s physical understanding of the (A4)
problem. We believe that a further theoretical development

of many-body methods combined with a judicial use of com-_, . L B . .
) . This expression is similar to the “exchange” matrix element
puters is a healthy alternative.

that one meets in all-electron probleif22].
The sum of the ladder diagram ser{dise vertex function
ACKNOWLEDGMENTS is calculated via the matrix equati@f) solved for all pos-
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In the Appendix, the state labels vy, etc., refer to the pos-
itron orbitals ¢,|,, s,,ll,,l, etc. Similarly, u, w4, etc., label
excited-state electron orbitals. Electron orbitals occupied in
For a positron interacting with a spherically symmetric the target ground statgholeg are labeled by Latin indices
target, the self-energy(r,r’) and the correlation correction (n). WhenB-spline basis states are used, Bp) is a finite-
to the annihilation verteXAg(r,r’) can be expanded in par- dimension linear equation solved by standard methods.
tial waves, e.g., For closed-shell atoms, each loop in the diagram gives a
spin factor of 2. This factor should be omitted for hydrogen
. N which has only one electron in the trbital. The sign factor
2e(rr) = ”_fé) _2_ Y221 r)Y, Q). for each diagram i§-1)2**¢, wherea is the number of hole
souE lines, b is the number of electron-hole loops, ands the
(A1) number of positron-electron Coulomb interactions. In the ex-

Defining the volume elemerdr =r?drdQ, and the positron Pressions below ande’ are the external positron lines, and

wave function with orbital angular momentuty ¢, (r)  the angular momentum of the incident positrors
=r71P,,(r)Y;(Q), we obtain the matrix elemere|S|e’) as A The second-order self-energy diagram, Fi@),lis given
y

APPENDIX: MATRIX ELEMENTS AND DIAGRAMS

SN TEIN

<8|2E|8’>=fQDZ(r)EE(r,r’)%r(r’)dr

o5 s o)

A6
2 & TLNE S en-s,-5,) (A6)

=fP8|(r)2(E')(r,r’)Psq(r’)drdr’. (A2)
The virtual-Ps contribution t&, Fig. 2, is obtained after
The angular reduction of the various diagramsdfSgle’)  finding the vertex function as follows:
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[JKe', n||V<J)||,u2, V2><V21M2||F(Ejlsn||l’«11 v, ,U«1||V(J)||na &)

22 2 (A7)
v, N J [Ip](E+Sn_Svl_SMl)(E+8n_8v2_8M2
[
Matrix elements of the annihilatioéi function are defined The diagrams contributing 6.4 also contain factors of 2

similarly to the Coulomb ones, using the expansion of thefor each closed loop, which must be removed for hydrogen.
&(r,=r,) in terms of spherical harmoni¢30]. The reduced In the diagrams below, we also include factors of 2 to ac-

matrix element then is count for the mirror images of those diagrams that are not
symmetric. To produce correct valuesyf; the expressions
[1] éCl I I3><I2 I I4> given below must be multiplied by the normalization factor
3,482, 2) = —=~[I[I:][Is][
@Al n= 0y o e o o) @5

The zeroth-order diagram, Fig(a}, is a sum of simple

- radial integrals over all hole orbital
><JPasls(r)Pg4l4(|’)|382|2(l’)P€l|l(r)r 2dr, g s

Iy _
(A8) 2§n‘, % f PZ (NP2, (Nr2dr. (A10)

and the matrix element for an electron-positron pair coupledrhe first-order contribution, Figs.(d) and 4c), is given by
into a total angular momentuhis given by

(e.nl| 8|, vX(v, wVilIn, &)
-4> X .
<3,4I|6(J)||2,1> = 2 (_ 1)J+|<3’4”5|||2'1>{J |3 |4} vun | [l][lp](E+ En—&,~ S,U)
|

iz Iy Expressions for the remaining four contributions, Figs.
(A9)  5(c)-5(f), are

(A11)

2 E 2 [J]<€'n||V(J)||M2, V2><V2aM2||5<J)||M1a V1><V1:M1||V(J)||”’8>

, (A12)
v 0 J [Ip](E+sn_gvz_syz)(E+8n_8Vl_8M1
[Nl a2, va)(vo, ol ALY, I, &)
-4 > —, (A13)
Vi MmN J [Ip](E+8n_8V2_8/.L2
4 E 2 [J]<8’”||V(J)||,U~3: V3><V3,M3||5(J)||M2, V2><V2-M2||Agisn||n,8> (AL4)
Vi, Mi,N J [Ip](E+8n_8V3_8M3)(E+8n_81/2_8,u2 ,

23 S [J]<8,n||A§leen||M3, va)(va, pgl| 0 s V2><V2:M2||A|(5Jlsn||”:8> (A15)

Vi, 4N J [Ip](E+3n_8V3_8M3)(E+8n_81/2_8p,2 '

where we have introduced
(o o T, NI, v)(we, s [V, )
(v AL, Ine) = 2 - . (A16)
" ViR E+en- B "8
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