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A many-body theory approach is developed for the problem of positron-atom scattering and annihilation.
Strong electron-positron correlations are included nonperturbatively through the calculation of the electron-
positron vertex function. It corresponds to the sum of an infinite series of ladder diagrams, and describes the
physical effect of virtual positronium formation. The vertex function is used to calculate the positron-atom
correlation potential and nonlocal corrections to the electron-positron annihilation vertex. Numerically, we
make use ofB-spline basis sets, which ensures rapid convergence of the sums over intermediate states. We
have also devised an extrapolation procedure that allows one to achieve convergence with respect to the
number of intermediate-state orbital angular momenta included in the calculations. As a test, the present
formalism is applied to positron scattering and annihilation on hydrogen, where it is exact. Our results agree
with those of accurate variational calculations. We also examine in detail the properties of the large correlation
corrections to the annihilation vertex.
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I. INTRODUCTION

The interaction of a low-energy positron with a many-
electron atom is characterized by strong correlation effects.
Apart from the dynamic polarization of the electron cloud by
the field of the positron, the positron can also form positro-
nium (Ps), by picking up one of the atomic electrons. When
the positron energy is below the Ps-formation threshold,
«Ps= I +E1ssPsd= I −6.8 eV, whereI is the atomic ionization
potential, positronium formation is a virtual process. Never-
theless, its role in the positron-atom interaction is very im-
portant [1–4]. The main aim of this work is to develop a
many-body theory approach which accounts accurately for
both correlation effects, and to test it for positron scattering
and annihilation on hydrogen.

The study of positron interaction with matter is a topic of
fundamental interest[5]. Positrons have also found many
useful applications. They are a very sensitive probe of the
presence of defects in materials[6]. The recent development
of a scanning positron microscope[7] may lead to an in-
creased use of positrons for quality control of materials, par-
ticularly in the semiconductor industry. In medicine, positron
emission tomography, or PET, has become a standard means
of medical imaging(see, e.g., Ref.[8]). A proper understand-
ing of how positrons interact with matter at the fundamental
level of atoms and molecules is therefore essential.

The interaction of low-energy positrons with atoms has
presented a challenge to the theorist for many decades. The
study of positron scattering from atoms was initially seen as
a useful complement to work on electron scattering, particu-
larly in helping to understand the role of the exchange inter-
action. However, although the exchange interaction is absent,
it was quickly realized that the positron-atom problem is

more complex than the electron case. The attractive induced
polarization potential tends to cancel and even overcome the
static repulsion of the positron by the atom at low energies.
The positron may also temporarily capture one of the atomic
electrons in a process known as virtual positronium forma-
tion. The need to account for these effects requires an elabo-
rate and accurate theoretical description.

For small systems, such as hydrogen and helium, accurate
results were obtained through the use of variational methods
[9–14]. Positron scattering from alkali atoms which have a
single valence electron has been calculated extensively using
a coupled-channel method with pseudostates[15]. More re-
cently, positron and Ps interaction with atoms with few ac-
tive (valence) electrons has been studied using the stochastic
variational method(SVM) and configuration-interaction-type
approaches[16–20]. However, it is difficult to extend these
methods to larger atomic systems with many valence elec-
trons, e.g., the noble gases.

An attractive alternative to few-body methods is many-
body theory[21]. It lends itself naturally to the study of
problems where an extra particle interacts with a closed-shell
target. The use of diagrams makes this method both descrip-
tive and intuitive, and allows one to take many-particle cor-
relations into account in a systematic way. Many-body
theory has been successful in the study of photoionization
[22,23] and in problems involving electrons, such as
electron-atom scattering[24–28], negative ions[29–32], and
precise calculations of energies and transition amplitudes in
heavy atoms with a single valence electron[33,34]. The ap-
plication of many-body theory to low-energy positron inter-
actions with atoms has met with more difficulty.

Many-body theory utilizes techniques originating in quan-
tum field theory. It describes the terms of the perturbation
series in the interaction between particles diagrammatically.
The difficulty in applying this approach to the interaction of
positrons with atoms arises from the need to take into ac-
count (virtual) Ps formation. Being a bound state, Ps cannot
be described by a finite number of perturbation-theory terms.
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Hence an infinite sequence of the “ladder” diagrams must be
summed.

The first attempt to apply many-body theory to the
positron-atom problem was by Amusiaet al. in 1976 [2],
who used a crude approximate method of accounting for
virtual Ps formation in He. A better approximation for the
virtual Ps-formation contribution was devised in Ref.[4],
and applications to various atomic targets, including noble
gases, were reported[35–37]. In particular, a reasonable de-
scription was obtained for positron scattering from noble-gas
atoms, which highlighted the presence of positron-atom vir-
tual levels in Ar, Kr, and Xe. On the other hand, application
of the same approximation to positron-atom annihilation
showed that it was clearly deficient.

In spite of the approximate treatment of virtual Ps forma-
tion, many-body theory calculations for Mg, Cd, Zn, and Hg
were the first to provide credible evidence that positrons can
bind to neutral atoms[35]. Two years later positron-atom
binding was proved in a stochastic variational calculation for
Li [38]. At present the list of atoms capable of binding pos-
itrons has expanded dramatically, SVM and configuration-
interaction calculations confirming positron binding to Mg,
Cd, and Zn[39,40]. This topic is now of major interest in
positron physics(see Refs.[40,41] for useful reviews).

In this paper, new techniques will be outlined that allow
the exact calculation of the electron-positron ladder diagram
sequence which accounts for virtual Ps formation. This ap-
proach enables many-body theory to provide accurate infor-
mation on the elastic scattering, annihilation, and binding of
positrons on atoms and negative ions at energies below the
Ps formation threshold.

II. MANY-BODY THEORY METHOD

A. Dyson equation

A conventional treatment of positron scattering from an
N-electron target would start from the Schrödinger equation
for the total wave function for theN+1 particles. In many-
body theory we start instead from the Dyson equation(see,
e.g., Refs.[21,42]),

sH0 + S«dc« = «c«, s1d

wherec« is the single-particle(quasiparticle) wave function
of the positron,« is its energy, andH0 is a central-field
Hamiltonian of the zeroth approximation, which describes
the motion of the positron in the static field of the target. The
many-body dynamics in Eq.(1) is represented byS«, a non-
local energy-dependent correlation potential. This quantity,
also known as the optical potential, is equal to the self-
energy part of the single-particle Green’s function of the pos-
itron in the presence of the atom[43]. Due to its nonlocal
natureS« operates on the quasiparticle wave function as an
integral operator,

S«c« =E S«sr ,r 8dc«sr 8ddr 8. s2d

For hydrogenH0 may simply be taken as the Hamiltonian
of the positron moving in the electrostatic field of the

ground-state atom, H0=−1
2¹2+Usrd, where Usrd=s1

+r−1de−2r [44] (we use atomic units throughout). For systems
containing more than one electron the Hartree-Fock(HF)
Hamiltonian(without exchange, for the positron) is the best
choice. The correlation potentialS« is given by an infinite
perturbation series in powers of the residual electron-electron
and electron-positron interaction. Inclusion of the electro-
static interaction inH0 and the use of the HF approximation
for the target electrons means that the perturbation-theory
expansion forS« starts with the second-order diagrams, and
that the diagrams do not contain elements which describe the
electrostatic potential[45].

Owing to the spherical symmetry of the problem, Eq.(1)
can be solved separately for each positron partial wave. So,
in practice one deals with radial quasiparticle wave func-

tions, P̃«lsrd, related toc« by c«sr d=r−1P̃«lsrdYlmsVd, where
YlmsVd is the spherical harmonic for the orbital angular mo-
mentuml. Accordingly, the self-energy operator is also found
for each partial wave separately, asS«

sldsr ,r8d, see Eq.(A1) in
the Appendix.

B. Correlation potential

Figure 1 shows the lowest-order terms of the diagram-
matic expansion for the correlation potentialS, or more pre-
cisely, for the matrix elementk«8uSEu«l of the correlation
potential calculated at some energyE between the positron
states« and«8. The leading second-order diagram, Fig. 1(a),
corresponds to the following expression:

k«8uSE
s2du«l = o

n,m,n

k«8nuVumnlknmuVun«l
E − «n − «m + «n + i0

, s3d

where V is the electron-positron Coulomb interaction, the
sum runs over all intermediate positron statesn, excited elec-
tron statesm, and hole statesn, and i0 is an infinitesimal
positive imaginary quantity.

It is easy to see from Eq.(3) that at low energiesE the
diagonal matrix elementk«uSE

s2du«l is negative. This means
that the second-order contribution to the correlation poten-
tial, Fig. 1(a), describes attraction. In fact, this diagram ac-
counts for the main correlation effect in low-energy scatter-
ing, namely the polarization of the atom by the charged
projectile. At large distances it leads to a well-known local
polarization potential,

SE
s2dsr ,r 8d , −

a

2r4dsr − r 8d, s4d

wherea is the static dipole polarizability of the atom in the
HF approximation,

a =
2

3o
m,n

ukmur unlu2

«m − «n
. s5d

Besides the second-order diagram, Fig. 1 shows the main
third-order contributions. A complete list of third-order dia-
grams includes mirror images of the diagrams(f) and (g).
There are also a few more diagrams similar to diagram(h),
where the positron line is connected to the atomic excitation
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part by a single line. They represent correlation corrections
to the HF electron charge density of the ground-state atom.
Such corrections are much smaller than other correlations
effects[34], and can be neglected. The total number of the
third-order diagrams in the positron-atom problem is consid-
erably smaller than that in the electron case(see, e.g., Ref.
[34]), where one needs to allow for the exchange between
the incident and core electrons.

Comparing diagrams(c), (e), (f) and(g) with (a) in Fig. 1,
we see that they represent corrections to the leading polar-
ization diagramSs2d, due to electron correlations within the
atom. Interaction between electron-hole pairs can in prin-
ciple be included in all orders, which would correspond to
the random-phase approximation(RPA) treatment of atomic
polarization[46]. On the other hand, if the two hole orbitals
in diagrams(c) and(e) are identical, these diagrams together
with similar higher-order terms, are easily incorporated
within the second-order diagram by calculating the excited
electron statesm in the field of the atom with a hole in this
orbital [25]. These approximations, and even the “bare”
second-order approximation(with exchange diagrams added
in both cases), give good results in electron-atom scattering
and negative ion problems[26,27,29–32].

However, for the positron-atom problem the approxima-
tion based on diagrams(a) and corrections of types(c), (e),
(f), and (g), proved to be deficient[2–4]. In addition one
must include the diagram Fig. 1(b) and higher-order dia-
grams in which the positron interacts with the excited elec-
tron in the intermediate state, Fig. 2. This sequence of dia-
grams accounts for virtual Ps formation. It is important that it

is summed to all orders, since in quantum mechanics a bound
state(here, Ps) which is absent in the zeroth approximation
cannot be described by a finite number of perturbation theory
terms.

Summation of the diagrammatic sequence shown in Fig. 2
is done by calculating the electron-positronvertex function
G, defined here as the sum of the electron-positron ladder
diagrams, Fig. 3, and denoted in the diagram by the shaded
block.

Comparing the left- and right-hand sides of the diagram-
matic equation in Fig. 3, we see that the vertex function
satisfies the following linear equation:

kn2m2uGEum1n1l = kn2m2uVum1n1l

+ o
n,m

kn2m2uVumnlknmuGEum1n1l
E − «n − «m + i0

. s6d

The vertex function depends on the energyE. It has the
meaning of the electron-positron scattering amplitude in the
field of the atom. In the lowest-order approximationGE=V.

Once the vertex function is found, the contribution of vir-
tual Ps to the correlation potential, Fig. 2, is obtained as

k«8uSE
sGdu«l

= o
ni,mi,n

k«8nuVum2n2lkn2m2uGE+«n
um1n1lkn1m1uVun«l

sE − «n2
− «m2

+ «n + i0dsE − «n1
− «m1

+ «n + i0d
.

s7d

Since the electron-positron Coulomb interaction is attractive,

FIG. 2. Virtual Ps contribution to the positron-atom correlation potentialS.

FIG. 1. Diagrammatic expansion of the positron-atom correlation potentialS. Shown are the second-order and main third-order contri-
butions. The top line in all the diagrams corresponds to the positron. Other lines with the arrows to the right describeexcitedelectron states,
while those with the arrows to the left correspond to holes, i.e., the electron statesoccupiedin the atomic ground state. Wavy lines are the
electron-positron or electron-electron Coulomb interactions.
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V,0, the terms of the perturbation series in Fig. 3 have the
same sign. This explains why their sum, and hence the con-
tribution of virtual Ps formation to the positron-atom attrac-
tion, are large. Note that for electron scatteringsV.0d this
series is alternating. As a result the net contribution of the
diagrammatic series on the left-hand side in Fig. 2 is small,
and its omission in the electron-atom correlation potential
does not give rise to large errors.

The Ps-formation contribution to the correlation potential
was previously approximated by using the free 1s-state Ps
propagator orthogonalized to the ground-state electron wave
functions[4,36],

k«8uSE
sGdu«l < o

n
E k«8nuVuC̃1s,KlkC̃1s,K uVun«l

E + «n − E1s − K2/4 + i0

dK

s2pd3 ,

s8d

where C1s,K =s8pd−1/2exps−ur −r 8u /2dexpfiK ·sr +r 8d /2g is
the wave function of Pss1sd with momentumK , E1s+K2/4 is
the energy of this state, and the tilde aboveC1s,K in Eq. (8)
indicates orthogonalization. This approximation is suitable
for positron scattering from the targets where ground-state Ps
formation dominates, e.g., hydrogen or noble gas atoms. It
also allows one to consider positron scattering above the
Ps-formation threshold, where the correlation potential ac-
quires an imaginary part due to the pole in the integral in Eq.
(8) [37,47]. At the same time, the ground-state Ps propagator
fails to describe the short-range electron-positron correla-
tions crucial for the calculation of the annihilation rates[36].
By the uncertainty principle, small separations invoke con-
tributions of highly excited states of the Ps internal motion,
not included in the Pss1sd propagator. In contrast, our present
method based on the summation of the ladder diagram series,
Eqs. (6) and (7), is consistent and complete. It accounts for
all (virtual) intermediate states of the electron-positron pair.

For positron scattering on hydrogen, only a few types of
diagrams contribute toSE, since only one hole can be cre-
ated. Moreover, the interaction of the intermediate-state elec-
tron and positron with the hole[diagrams(c) and(d) in Fig.
1] can be taken into account by calculating the intermediate
electron and positron wave functions in the Coulomb field of
the nucleus. In this case, the correlation potential is given by
the sum of the second-order diagram and the virtual Ps con-
tribution, Figs. 1(a) and 2, and

SE = SE
s2d + SE

sGd s9d

is theexactcorrelation potential. In particular, the long-range
asymptotic behavior ofSE

s2d at low energies, Eq.(4), contains
the exact polarizability of hydrogen,a= 9

2.

C. Scattering

Rather than solving the Dyson equation for the quasipar-
ticle wave function in the coordinate representation, it is
easier to work with the self-energy matrix,

k«8uSEu«l =E w«8
* sr dSEsr ,r 8dw«sr 8ddrdr 8, s10d

where w« are the positron eigenfunctions of the HF(or
ground-state hydrogen) HamiltonianH0,

H0w« = «w«, s11d

with a given angular momentuml, w«sr d=r−1P«lsrdYlmsVd.
Since the static potential of the atom is repulsive, all positron
statesw« lie in the continuums«.0d. The radial wave func-
tions are normalized to ad function of energy in Rydberg,
dsk2−k82d, wherek is the positron momentum. This corre-
sponds to the asymptotic behavior

P«lsrd , spkd−1/2 sinskr − lp/2 + dl
s0dd, s12d

wheredl
s0d is the scattering phase shift in the static potential.

The matrix (10) can be used to obtain the phase shifts
directly [26]. First, a “reducible” self-energy matrix

k«8uS̃Eu«l is found via the integral equation,

k«8uS̃Eu«l = k«8uSEu«l + PE k«8uS̃Eu«9lk«9uSEu«l
E − «9

d«9,

s13d

where P means the principal value of the integral. The phase
shift is then given by

dl = dl
s0d + Ddl , s14d

where

tanDdl = − 2pk«uS̃«u«l, s15d

determines the additional phase shiftDdlskd due to correla-
tions, at the positron energy«.

Once the reducible self-energy matrix has been found, the
quasiparticle wave function(also known as theDyson or-
bital) can be found via

c«sr d = w«sr d + PE w«8sr d
k«8uS̃«u«l

« − «8
d«8. s16d

In order to normalize the quasiparticle radial wave function
at large distances to

FIG. 3. Electron-positron ladder diagram sequence and its sum, the vertex functionG.
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P̃«lsrd , spkd−1/2 sinskr − lp/2 + dl
s0d + Ddld, s17d

the function obtained from the right-hand side of Eq.(16)
must be multiplied by the factor

cosDdl = f1 + s2pk«uS̃«u«ld2g−1/2. s18d

D. Positron annihilation

The annihilation ratel of a positron in a gas of number
densityn is usually expressed in terms of the effective num-
ber of electronsZeff, which contribute to annihilation on an
atom or molecule[48,49],

l = pr0
2cnZeff, s19d

wherer0 is the classical electron radius andc is the speed of
light. Equation(19) definesZeff as the ratio of the positron
two-photon annihilation cross section of the atom to the spin-
averaged two-photon annihilation cross section of a free
electron in the Born approximation[50]. Annihilation takes
place at very small electron-positron separations," / smcd
,10−2 a.u. Hence for nonrelativistic positrons it is deter-
mined by the electron density at the positron, andZeff can be
calculated as[48],

Zeff = o
i=1

N E uCsr 1,r 2, . . . ,r N,r du2dsr i − r ddr 1 ¯ dr Ndr ,

s20d

where Csr 1,r 2, . . . ,r N,r d is the full sN+1d-particle wave
function of theN electron coordinatesr i and positron coor-
dinater . The wave function is normalized to a positron plane
wave at large positron-atom separations,

Csr 1,r 2, . . . ,r N,r d . F0sr 1,r 2, . . . ,r Ndeik·r , s21d

where F0sr 1,r 2, . . . ,r Nd is the atomic ground-state wave
function, andk is the incident positron momentum.

AlthoughZeff is basically a cross section, Eq.(20) has the
form of a transition amplitude. This enables one to apply the

apparatus of many-body theory to this quantity directly
[3,36]. In this “transition amplitude” the initial and final
states are identical, and the electron-positron two-body op-
erator,oidsr i −r d, plays the role of a perturbation. The posi-
tron energy in the initial and final states is the same,«
=k2/2, and(owing to the spherical symmetry of the target)
the perturbation conserves the positron angular momentuml.
Therefore the contribution of each positron partial wave to
Zeff can be determined separately. The corresponding many-
body diagrammatic expansion is presented in Fig. 4.

The analytical expression for the zeroth-order diagram,
Fig. 4(a), is

Zeff
s0d = o

n
E c«

*sr dwn
*sr 1ddsr − r 1dwnsr 1dc«sr ddrdr 1

= o
n
E uwnsr du2uc«sr du2dr , s22d

wherec« is the positron wave function,wn is the wave func-
tion of the hole, and the sum overn runs over all holes, i.e.,
orbitals occupied in the target ground state. This contribution
is simply an overlap of the electron and positron densities,
onuwnsr du2 and uc«sr du2, respectively.

The two first-order “corrections,” Figs. 4(b) and 4(c), are
identical, and their contribution is

Zeff
s1d = 2 o

n,m,n

k«nudumnlknmuVun«l
« − «n − «m + «n

, s23d

cf. Eq. (3) for the second-order contribution to the correla-
tion potential. In the calculations of annihilation we assume
that the positron energy is below all other inelastic thresh-
olds, hence we have droppedi0 in the energy denominator.
Physically, the first-order diagram describes positron annihi-
lation with an electron “pulled out” from the atom by the
positron’s Coulomb field. Calculations in Refs.[3,36]
showed that for noble-gas atoms the size of the first-order
corrections is approximately equal to the zeroth-order contri-
bution. This means that higher-order terms must also be
taken into account.

FIG. 4. Diagrammatic expansion ofZeff. Apart from the zeroth and first-order diagrams(a), (b), and(c), the main types of second-order
diagrams are shown. The external lines of these diagramss«d represent the wave function of the incident positron. The solid circle
corresponds to the electron-positrond-function annihilation vertex.
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Diagrams(d)–(h) in Fig. 4 illustrate the main types of
second-order corrections to theannihilation vertex. It is also
important to consider corrections to the incident positron
wave functions denoted by«. However, these corrections are
included in all orders in the positron quasiparticle wave func-
tion, obtained from the Dyson equation(1), or via Eq.(16).
Hence their contribution toZeff is accounted for by using the
positron Dyson orbitalsc« in the calculation of the annihila-
tion diagrams.

The presence of thed-function operator in the annihilation
diagrams enhances the importance of small electron-positron
separations. For this reason, the most important diagrams in
Zeff are those with the Coulomb interactions between the
annihilating pair, e.g., the second-order diagrams(d) and(e)
in Fig. 4 (the latter together with its mirror image), and simi-
lar higher-order terms. A complete all-order calculation of
their contribution is achieved by using the vertex function, as
shown in Fig. 5. Note that for hydrogen this set of diagrams
is exhaustive, provided the intermediate electron and posi-
tron states are calculated in the field of the bare nucleus.
Previously diagrams(c)–(f) in Fig. 5 have only been esti-
mated [36]. We will see that the ability to calculate these
diagrams accurately is crucial for obtaining correct values of
Zeff. We will also see in Sec. IV that the role of the vertex
function (representing virtual Ps) in annihilation is much
greater than in scattering.

Of course, for many-electron targets one can also consider
other diagrams, e.g.,(f)–(h) in Fig. 4. In particular, diagram
(f) describes screening of the electron-positron Coulomb in-
teraction by other electrons[cf. Fig. 1(e)]. Diagram(g) can
be viewed as the lowest-order “pick-off” annihilation contri-
bution. Here the positron excites an electron-hole pair(a pre-
cursor of virtual Ps formation) and annihilates with an elec-
tron from one of the ground-state orbitals. Diagram(h) is
independent of the positron energy. It represents one of the
corrections to the HF ground-state electron density, cf. Fig.
1(h). Unlike the diagrams in Fig. 5, these contributions are
not systematically enhanced by the electron-positron Cou-
lomb interaction at small distances.

It is clear from Fig. 4 that most correlation corrections to
the annihilation vertex, including the dominant sequence of

diagrams in Fig. 5, arenonlocal. As a result, the totalZeff can
be written as

Zeff =E o
n

uwnsr du2uc«sr du2dr +E c«
*sr dD«sr ,r 8dc«sr 8ddrdr 8,

s24d

whereD«sr ,r 8d represents the nonlocal correlation correction
to the annihilation vertex. In the approximation of Fig. 5, it is
equal to the sum of all diagrams(b)–(f) with the external
positron lines« detached. Diagram(h) in Fig. 4 and similar
diagrams which represent corrections to the HF electron den-
sity could be included by replacing of the HF electron den-
sity onuwnsr du2 in Eq. (24) with the exact target electron den-
sity resr d. Given the high accuracy of the HF density, this
would make only a small change inZeff. The structure of Eq.
(24) shows that even when one uses the best single-particle
positron wave function, the annihilation rate is not reduced
to a simple(local) overlap of the electron and positron den-
sities.

There is an important physical difference between the cor-
relation effects in positron scattering and annihilation. The
key role played by the long-range polarization potential for
low-energy positrons means that large distances are impor-
tant. Polarization also emphasizes the role played by the di-
pole part of the positron-target Coulomb interaction and di-
pole target excitations. The contribution of virtual Ps
formation toSE is a short-range effect. The typical distances
here are comparable to the radius of the atom, or the radius
of ground-state Ps. The net effect of the strong positron-atom
attraction brings about low-lying virtuals states(see, e.g.,
Ref. [44]) for Ar, Kr, and Xe [36], or positron-atom weakly
bound states, e.g., in Mg[35,37]. In both cases, the positron
scattering phase shifts and the positron quasiparticle wave
function in the vicinity of the atom vary rapidly as functions
of the positron energy.

On the contrary, in the annihilation diagrams the
d-function vertex emphasises small electron-positron separa-
tions. By the uncertainty principle, such small separations
correspond to high-energy excitations in the intermediate
states in the diagrams(b)–(f), Fig. 5. As a result, the nonlocal
correction to the annihilation vertex,D«, has a weak energy

FIG. 5. Main contributions to the positron-atom annihilation parameterZeff. To account for the mirror images of the diagrams(b), (d), and
(e), their contributions are multiplied by 2.
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dependence, and the energy dependence of the second term
in Eq. (24) is almost entirely due to that of the positron wave
functions. The only exception is when the positron energy
approaches the Ps-formation threshold from below. Here the
virtual-Ps contribution, Fig. 5(f), rises sharply. Details of the
threshold behavior ofZeff are discussed in Ref.[51].

The large difference in the energy scales characteristic of
positron scattering and annihilation has another physically
important consequence. It turns out that therelative size of
the annihilation vertex corrections inZeff, i.e., the ratio of the
second term in Eq.(24) to Zeff

s0d, is about the same, whetherc«

are the positron wave functions in the repulsive static poten-
tial, c«=w«, or the Dyson orbitals which fully account for the
positron-atom correlation potential. Numerical illustrations
of this effect will be provided in Sec. IV.

Finally, we should mention that the correct normalization
of Zeff for positrons with angular momentuml is obtained by
multiplying the diagrams in Figs. 4 and 5 by the extra nu-
merical factor,

4p2

k
s2l + 1d. s25d

This follows from the structure of the positron wave function
ck, which has the asymptotic behavior of a plane waveeik·r

at large distances[cf. Eq. (21)],

ck =
4p

r
Îp

k o
l=0

`

o
m=−l

m=l

i leidl P̃«lsrdYlm
* sVkdYlmsVrd. s26d

To derive Eq.(25), one can useck as the external positron
lines in an annihilation diagram, and perform averaging over
the directions ofk.

III. NUMERICAL IMPLEMENTATION

A. Use ofB splines and convergence

To evaluate the diagrams of the correlation potentialS
and annihilation parameterZeff, one first needs to generate
sets of electron and positron HF basis states. These are then
used to calculate matrix elements of the Coulomb and
d-function operators, the main building blocks of the dia-
grams. Evaluation of the diagrams requires summation over
complete sets of electron and positron intermediate states,
including integration over the electron and positron continua.

To perform a numerical calculation, the continuous spec-
trum can be discretized. The simplest way of doing this is by
placing the system in a spherical cavity of radiusR. Setting
the wave functions to zero at the boundary will result in a
discrete spectrum of eigenstates with an approximately con-
stant step size in momentum space,

Dk < p/R. s27d

If the value of R is sufficiently large(R@Rat, where Rat
,1 a.u. is the size of the atom), the presence of the boundary
will not affect the quantities calculated. Indeed, for the pos-
itron energy below all inelastic thresholds(except, of course,
annihilation), the intermediate states in the diagrams arevir-
tual, and no particle in an intermediate state can escape to
infinity.

The drawback of this procedure is that for a suitably large
R, the step size in momentum is small, e.g., forR=30 a.u.,
Dk<0.1 a.u. Hence one would need large numbers of inter-
mediate states to achieve convergence. Note that the actual
upper energy limit depends on the quantity in question. Thus
diagrams inZeff converge more slowly than those of the cor-
relation potentialS, because of the greater role of small
electron-positron separations and high orbital angular mo-
menta in the former. However, as a rough guide, summing up
to the energy of 102 a.u. should be sufficient for both. The
question of the number of intermediate states is especially
important for the calculation of the vertex functionG, which
is a NG3NG matrix [see Eq.(6)], whereNG,N2slmax+1d, N
being the number of electron or positron states in each partial
wave andlmax being the largest orbital angular momentum
included. It is clear that here the simple cavity quantization
cannot work.

Instead, to achieve an accurate and economical span of
the continuum we useB splines[52]. B splines of orderk are
n piecewise polynomials of degreek−1 defined by a knot
sequencer j which divides the intervalf0,Rg into n−k+1
segments[53]. The basis states are obtained by expanding
the radial wave functionsPlsrd in terms ofB splinesBisrd,

Plsrd = o Ci
sldBisrd, s28d

and finding the eigenvectors and eigenvalues of the radial
part of the HF (or hydrogen atom) Hamiltonian for each
orbital angular momentuml by solving the generalized ei-
genvalue problem,

o HijCj
sld = « o QijCj

sld, s29d

whereHij =kBiuH0
slduBjl, andQij =kBi uBjl. Prior to solving Eq.

(29), the ground-state atom HF Hamiltonian is generated by
a conventional HF routine[54]. Note that in the sums overi
and j in Eqs. (28) and (29) the first and last splines are
discarded to implement the boundary conditionPls0d
=PlsRd=0, leaving one with a set ofn−2 eigenstates for
each electron and positron orbital angular momentum. When
Eq. (29) is solved for the electron, it yields the wave func-
tions of the orbitals occupied in the atomic ground state
(holes), as well as those of the excited states(particles). The
exact energies of the excited electron and positron states are
determined by theB-spline radial knot sequence.

It is instructive to try to design an ideal distribution of
energies of a discrete set spanning the continuum. Qualita-
tively, at low energiess«!1 a.u.d the continuous spectrum
states oscillate slowly, and the contribution of large distances
in the matrix elements is important(hence the need for a
largeR). As the energy of the states increases, the range of
important distances becomes smaller and smaller. Indeed, the
matrix elements then contain rapidly oscillating factors of
eikr type, which means that the dominant contribution comes
from r &k−1. Therefore one does not need a large value of
the cavity radiusR for the higher-energy states. More spe-
cifically, one can estimate the necessary radius asR,a/k,
wherea is a number greater than unity. Combining this with
the cavity quantisation condition(27), one obtainsDk/k
,p /a, which yields the following grid in momentum space:
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kj = k0e
b j , s30d

where k0 is the lowest momentum,b=p /a, and j
=0,1,2, . . . .Thus it appears that the optimal momentum and
energy grids are exponential. By choosing a small initial mo-
mentumk0!1 a.u. andb,1 one ensures that the stepsize in
momentum,Dk<bk, is sufficiently small, to describe accu-
rately the energy variation of the quantities summed.

It turns out that basis sets generated by Eqs.(28) and(29)
using an exponential radial knot sequence[52] are a very
close realization of the exponential energy grid, and areef-
fectively complete. In the present work we usen=40 B
splines of orderk=6 with a knot sequence

r j = rses j − 1d, s31d

where r=10−3 a.u., ands is determined by the condition
rn−k+1=R. Figure 6 shows the positive eigenenergies of the
electron and positron basis states withl =0 for the hydrogen
atom. Their distribution does indeed correspond to the expo-
nential ansatz, Eq.(30), with b<s. The highest energies in
the sets are about 108 a.u. This value is close to the magni-
tude of srsd−2, since the knot point closest to the origin
determines the most rapidly varying eigenstate(by the un-
certainty principle). In fact, it may not be necessary to in-
clude all 38 basis states in each partial wave in the many-
body theory sums. In the calculations reported in this paper
we use only about 15 lowest states, which span the energy
range from threshold to,102 a.u.

Note thatB-spline basis sets are used widely in atomic
physics[52], and that there are other basis sets which show a
near-exponential spanning of the continuum. In particular,
Laguerre basis states provide rapid convergence in close-
coupling electron-atom scattering calculations[55].

B. Calculation of the self-energy and annihilation diagrams

The self-energy and annihilation diagrams are calculated
by summation over theB-spline basis states, and the vertex
function is found by matrix inversion from Eq.(6). The an-
gular parts of the states are separated in the matrix elements
and the angular variables are integrated over analytically.
The actual expressions for the diagrams are given in the Ap-
pendix. The self-energy matrix and the vertex function are
energy dependent. In practice, the self-energy matrix has
been calculated at eight energies spaced evenly from zero to
the Ps formation threshold. Interpolation onto any required
energyE is then used.

Apart from theB-spline basis states, we also consider true
positron continuum HF states(12). They are needed to evalu-
ate the matrix elementsk«uSEu«8l and obtain the phase shifts
via Eqs.(13)–(15). Here we use 201 states that form an equi-
distant mesh in positron momenta of sizeDk=0.02. A trans-
formation of theB-spline basis matrix elementski uSEu jl into
k«uSEu«8l could be done using the effective completeness of
the B-spline states on the intervalf0,Rg,

k«uSEu«8l = o
i,j

k«uilki uSEu jlk j u«8l, s32d

wherek« u il is the overlap of the HF state with theB-spline
basis state. However, unlike theB-spline states which satisfy
the zero boundary condition atr =R, the continuous spectrum
stateP«l is finite at the boundary. To fix this problem we
insert a radial weighting functionfsrd=R−r into Eq. (32),
which now reads

k«uSEu«8l = o
i,j

k«uf uilki uf−1SEf−1u jlk j uf u«8l, s33d

and calculate the “weighted” self-energy matrix
ki uf−1SEf−1u jl, rather thanki uSEu jl. The singularity off−1 at
r =R does not cause a problem, since theB-spline basis states
in the Coulomb matrix elements involved, vanish atr =R.
The same trick is applied in the calculation of the annihila-
tion diagrams.

To calculatek«uSEu«8l more accurately at low positron
energies, where distances beyondr =R can be important, we
make use of the long-range asymptotic form of the correla-
tion potential(4). The contribution ofr .R can be evaluated
as

E
R

`

P«lsrdS−
a

2r4DP«8lsrddr, s34d

with the correct value of the dipole polarizabilitya, and
added tok«uSEu«8l.

C. Convergence with respect to the orbital angular momenta

The use of aB-spline basis means that fast convergence is
achieved with respect to the number of states with a particu-
lar orbital angular momentum. However, this leaves open the
question of convergence with respect to the maximal orbital
angular momentum of the electron and positron intermediate

FIG. 6. Energies of the electron(open circles) and positron
(solid circle) s-waveB-spline basis states in the field of the hydro-
gen nucleus, obtained usingR=30, k=6, andn=40. The first four
electron states with negative energies(−0.500 00, −0.125 00,
−0.055 42, and −0.002 46 a.u.) are not shown.
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states included in the calculation. It has been known for a
while that calculations of positron-atom scattering converge
slowly with respect to the number of target angular momenta
included in the expansion of the total wave function, notably
slower than in the electron-atom case[56]. This is also true
for the configuration-interaction-type calculations of
positron-atom bound states[17,19,57] and scattering[20].
Calculations of annihilation rates converge even more slowly
[19,20,57]. Physically, the slow convergence rate arises from
the need to describe virtual Ps localized outside the atom by
an expansion in terms of single-particle orbitals centered on
the nucleus.

The problem of the convergence rate with respect to the
maximal orbital angular momentum has been investigated by
the authors in Ref.[58]. Using a perturbation-theory ap-
proach and the original ideas of Schwartz[59], we derived
asymptotic formulas that describe the convergence of the
scattering amplitudes, or the phase shifts, and annihilation
rates, orZeff. The contribution of high orbital angular mo-
menta probes small particle separations in the system. The
difference between the convergence rates of the scattering
and annihilation parameters is due to the presence of either
the Coulomb interaction or thed-function annihilation opera-
tor in the relevant amplitudes.

The increments to the phase shifts andZeff upon increas-
ing the maximum orbital angular momentum froml−1 to l,
were found to behave assl+1/2d−4 and sl+1/2d−2, respec-
tively. This means that if a series of calculations is stopped at
some maximal angular momentuml= lmax, the values ob-
tained approach the ultimateslmax→`d values as follows:

dl
flmaxg . dl −

A

slmax+ 1/2d3 , s35d

Zeff
flmaxg . Zeff −

B

slmax+ 1/2d
, s36d

where A and B are some constants. They are determined
together withdl andZeff by fitting Eqs.(35) and (36) to the
numerical data obtained for a range oflmax. This extrapola-
tion to lmax→` is performed at each positron momentum
value considered, and is especially important for obtaining
correct values ofZeff.

IV. RESULTS: SCATTERING AND ANNIHILATION ON
HYDROGEN

The theory outlined above can be readily applied to any
closed-shell atom or ion. In this paper we would like to test
it for the simplest possible target, the hydrogen atom. Since it
contains only one electron, the correlation potential from Eq.
(9) and theZeff diagrams in Fig. 5 give an exact solution of
the elastic scattering and annihilation problems, provided the
intermediate electron and positron states are calculated in the
field of H+. The key advance of the present many-body
theory of positron-atom interactions relates to the calculation
of the electron-positron vertex functionG, Eq. (6), and its
incorporation in the self-energy and annihilation diagrams. It
is mainly these features of the theory that a positron-
hydrogen calculation is intended to test.

In the numerical implementation we first generate the
electron and positronB-spline basis sets. They are then used
to evaluate the matrix elements, find the vertex function, and
calculate the self-energy and annihilation diagrams(see the
Appendix). Using the self-energy matrix, the phase shifts are
obtained by means of Eqs.(13)–(15), and the positron Dyson
orbital is calculated from Eqs.(16) and (18). In the end, the
Dyson orbitals replace the positron HF states in the external
lines of the annihilation diagrams, and final values ofZeff are
obtained. To test the stability of the results with respect to the
cavity radius, the calculations were performed withR=15
and 30 a.u.

To extrapolate the scattering phase shifts andZeff to lmax
→`, as per Eqs.(35) and (36), the diagrams are evaluated
for a range of maximal orbital angular momenta,lmax
=7–10. This procedure is illustrated by Fig. 7 for the phase
shifts and Fig. 8 forZeff, for thes-, p-, andd-wave incident
positron with momentak=0.2, 0.4, and 0.6 a.u.

Figures 7 and 8 show that the calculations have converged
to the regime in which the asymptotic formula(35) for dl and
formula (36) for Zeff, may be applied. The graphs also illus-
trate the point that the inclusion of high orbital angular mo-
menta and extrapolation tolmax→` is much more important
in the calculations of annihilation, compared with scattering.
For the positron momenta and partial waves shown, between
15% and 30% of the final value ofZeff is due to such ex-
trapolation. Quantitatively, this contribution can be charac-
terized by the ratioB/Zeff; see Eq.(36), given in Table I. Its
increase with the positron angular momentum may be related
to the greater role of the correlation corrections to the anni-
hilation vertex in higher positron partial partial waves(see
below).

Figure 9 shows thes-, p-, andd-wave phase shifts for the
total correlation potential(9). They are in very good agree-
ment with those from an accurate variational calculation(see
Ref. [13]), the discrepancy being of order 10−3 rad; see also
Table II. The values obtained withR=15 andR=30 a.u. are
almost indistinguishable, except at low positron momenta.
Here the results forR=30 are superior to those forR=15.
The larger cavity size allows for a better account of the long-
range −a /2r4 tail in the polarization potential.

Examining the phase shifts allows us to compare the rela-
tive sizes of the polarization and Ps-formation contributions
to the correlation potential(9). The static positron-atom po-
tential is repulsive, resulting in negative values of the phase
shifts (thin solid curves). The inclusion ofS, i.e., correla-
tions, makes the low-energy phase shifts positive. Dashed
curves in Fig. 9 show the phase shifts obtained by including
only the second-order diagramSs2d (polarization), while
dotted-dashed curves are those obtained withSsGd alone(vir-
tual Ps formation). We see that none of these results is close
to the phase shift obtained with the fullS. This means that
neither contribution dominates the correlation potential, and
the inclusion of both polarization and virtual Ps-formation
effects is essential for solving the positron-atom problem. Of
course, any calculation which produces accurate positron-
hydrogen phase shifts contains these contributions implicitly.
The advantage of the many-body theory approach is that one
can separate them, and get a better insight into the physics of
the system.
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FIG. 7. Convergence of thes-, p-, andd-wave positron scatter-
ing phase shifts on hydrogen with respect to the maximal orbital
angular momentumlmax for R=15 a.u. Circles,k=0.2 a.u.; squares,
k=0.4 a.u.; diamonds,k=0.6 a.u. Lines show extrapolation.

FIG. 8. Convergence of thes-, p-, andd-wave contributions to
Zeff for positron annihilation on hydrogen with respect to the maxi-
mal orbital angular momentumlmax for R=15 a.u. Circles,k
=0.2 a.u.; squares,k=0.4 a.u.; diamonds,k=0.6 a.u. Lines show
extrapolation.

G. F. GRIBAKIN AND J. LUDLOW PHYSICAL REVIEW A 70, 032720(2004)

032720-10



To illustrate the nonperturbative nature of virtual Ps for-
mation we have also performed calculations that include the
vertex function only to first order,GE=V, in SsGd (dotted
curves in Fig. 9). This approximation accounts only for about
50% of the total vertex function contribution. Note that the
higher-order terms inG become even more important close
to the Ps formation thresholdsk<0.7d in p andd waves. This
is related to the virtual Ps becoming more “real” close to the
threshold.

We now turn to positron annihilation. Having solved the
scattering problem accurately with the fullS, we are now in
possession of the best(quasiparticle) positron wave function,
the Dyson orbital. Before using it in all annihilation dia-
grams, let us first look at the effect of the Dyson orbital on
the zeroth-order diagram, Fig. 5(a), for thes-waveZeff. Fig-
ure 10 shows that the zeroth-order contribution, Eq.(22),
evaluated with the positron wave function in the static
atomic potential gives values up to 20 times smaller than the
variational results of Ref.[60]. This situation is similar to
that in positron annihilation on noble-gas atoms, where Eq.
(22) evaluated with the static(HF) positron wave function
underestimates experimentalZeff by a factor of 101–103 at
low positron energies[3,36]. It is natural that the use of the
Dyson orbital, which is “aware” of the positron-atom attrac-
tion, in Eq. (22), leads to increasedZeff, and introduces a
correct momentum dependence(dashed curve in Fig. 10).
This latter fact is in agreement with the general understand-
ing of the origins of the energy dependence and enhancement
of Zeff at low energies, and their relation to positron-atom
virtual states[3,36,61]. However, the absolute values ob-
tained are still about five times lower than the benchmark.

The remaining 80% come from the nonlocal corrections
to the annihilation vertex, diagrams(b)–(f) in Fig. 5. The
contributions of all the diagrams evaluated using the positron
Dyson orbitals and the totalZeff are shown in Fig. 11 for the
positrons, p, andd partial waves.

The difficulty of calculating the vertex corrections toZeff
accurately is evident from these graphs, as all the diagrams
in Fig. 5 contribute significantly. The higher-order diagrams
containing the vertex function, are close to or greater than
the lower-order diagrams. Note that all contributions have a
similar dependence on the positron momentum. It is driven
by the momentum dependence of the positron Dyson orbitals
(external lines in the diagrams), as discussed in Sec. II D.

Figure 11 shows that forp andd waves, the contribution
of the diagram Fig. 5(f) grows rapidly and becomes largest
towards the Ps formation threshold. This diagram describes
annihilation inside the virtual Ps formation, which has a vig-

TABLE I. Values of B/Zeff which characterize the dependence
of calculatedZeff on lmax.

Momentum
(a.u.)

Partial wave

s p d

0.2 1.82 2.63 3.33

0.4 1.62 2.58 3.32

0.6 1.41 2.51 3.37

FIG. 9. Positron-hydrogens-, p-, and d-wave scattering phase
shifts: long-dashed curve, many-body theorysR=15 a.u.d; solid
curve, many-body theorysR=30 a.u.d; circles, variational calcula-
tion [13]. Thin solid curve, static approximation; dashed curve,Ss2d;
dotted-dashed curve,SsGd; dotted curve,SsGd obtained withG=V
(all R=15).
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orous energy dependence close to threshold[51]. This may
have a bearing on the kinks inZeff visible atk<0.6 a.u. for
the p andd waves. Although they may be a numerical arti-
fact, an indication of an inflection point is also present in the
accuratep-wave results of Ref.[60].

The totalZeff values obtained forR=15 a.u. are slightly
higher than those forR=30 a.u. A denser knot sequence for
R=15 provides a better description of small electron-positron
separations. Our final results compare well with those from
the accurate variational calculation, Ref.[60] (see Table II),
although they are systematically lower. In Ref.[60] and all
other calculations of positron-hydrogen annihilation(see,
e.g., Ref.[62]), the electron-positron distance is represented
explicitly in the calculation, while we use a single-center
expansion. The discrepancy is therefore related to the diffi-
culty in describing small electron-positron separations. We
believe that it could be eliminated by “pushing harder” the
numerics in our approach. Thus Fig. 11(s wave) shows that

when we usen=60 B splines of orderk=9 and include the
first 23 basis states, the difference between ourZeff and the
benchmark values is halved. However, using largern would
require the inclusion of more basis states, which would lead
to impracticably large sizes of the vertex function matrix.

The main conclusion of this section is that the numerical
implementation of the many-body theory approach proposed
in this paper works. For positron collisions with hydrogen,
where this approach is exact, the calculations reproduce the
best scattering phase shifts, and yield good results in the
more difficult annihilation problem.

V. CORRELATION CONTRIBUTION TO THE
ANNIHILATION VERTEX

The ability of a many-body theory to describe correlation
corrections to the annihilation vertex may give some insight
into their role in positron annihilation with matter. Thus in
theoretical studies of positron annihilation in condensed-
matter systems the annihilation rate is often found in the
form (see, e.g., Ref.[6]),

l = pr0
2cE resr drpsr dgsre,rpddr , s37d

whereresr d andrpsr d are the electron and positron densities
and gsre,rpd is the enhancement factorintroduced to ac-
count for the Coulomb attraction in the annihilating pair. It
has long been known that the independent-particle approxi-
mation sg=1d underestimates the annihilation rates by sev-
eral times[63], and a number of semiempirical and interpo-
lation forms ofgsre,rpd have been suggested(see, e.g., Ref.
[64] and references therein).

A comparison between Eq.(37) with g=1 and the many-
body theory expression(24) shows that the former corre-
sponds to the zeroth-order term inZeff, Eq. (22) [65]. As we
have seen in Sec. IV(Fig. 10), Zeff

s0d does underestimate the
annihilation rate in hydrogen by a factor of 5, even when the
best positron wave function is used. The correlation correc-
tion to the annihilation rate[second term in Eq.(24)] does
not have the form of Eq.(37). It depends on the positron
wave function at two different points,r and r 8, hence any

TABLE II. Comparison of many-body phase shifts andZeff with those from an accurate variational calculation.

k
(a.u.)

Phase shifts Zeff

s wave p wave d wave s wave p wave d wave

MBa Varb MB Var MB Var MB Var MB Var MB Var

0.1 0.1447 0.1479 0.0084 0.0086 0.0008 0.0013 6.7806 7.5679 0.1227 0.1422 0.0008 0.0010

0.2 0.1842 0.1875 0.0320 0.0320 0.0054 0.0053 5.1058 5.7619 0.4842 0.5461 0.0128 0.0150

0.3 0.1654 0.1672 0.0653 0.0657 0.0129 0.0128 3.9289 4.3515 1.0218 1.1375 0.0615 0.0704

0.4 0.1180 0.1198 0.0996 0.1003 0.0241 0.0238 3.1119 3.4073 1.6067 1.7940 0.1773 0.2009

0.5 0.0605 0.0624 0.1290 0.1306 0.0393 0.0390 2.5459 2.7470 2.1349 2.4015 0.3889 0.4399

0.6 0.0024 0.0036 0.1529 0.1544 0.0593 0.0585 2.1449 2.2848 2.6312 2.9457 0.7512 0.8346

0.7 −0.0524 −0.0523 0.1750 0.1786 0.0867 0.0866 1.8401 1.9719 3.3140 3.9278 1.4480 1.6756

aPresent calculation forR=15 a.u.
bKohn variational calculations, Refs.[13,60].

FIG. 10. Contribution of the zeroth-order diagram, Fig. 5(a), to
the positron-hydrogens-wave annihilation parameterZeff, calcu-
lated with the positron wave function in the static atomic potential
(solid curve), and with the Dyson orbital(dashed curve). Circles
connected by dotted curve are the accurate results of Ref.[60].
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local expression like Eq.(37) is necessarily an approxima-
tion.

To illustrate this point, a contour plot in Fig. 12 shows the
radial part of the integrand of the nonlocal term,

P«lsrdD«
sldsr,r8dP«lsr8d, s38d

for the s-wave sl =0d positron annihilation on hydrogen at
k=0.06 a.u. The plot confirms that the correlation contribu-
tion to the annihilation vertex is localized near the atom. Its
maximum atr =r8<1.5 a.u. compares well with the radius of
the hydrogen atom, and the ridgelike structure indicates that
the “nonlocality” is limited tour −r8u,1 a.u.

The overall size of the(nonlocal) correction to the anni-
hilation vertex can be characterized by the average enhance-
ment factor,

ḡ = 1 +
E c«

*sr dD«sr ,r 8dc«sr 8ddrdr 8

E on
uwnsr du2uc«sr du2dr

. s39d

We define this factor in such a way that when used in place
of g in Eq. (37), together withresr d=onuwnsr du2 and rpsr d
= uc«sr du2, it would reproduce correct values of the positron-
atom annihilation rate.

The quantityḡ can also be defined as the ratio of the total
Zeff to the value obtained from the zeroth-order diagramZeff

s0d,
Fig. 5(a). Since large energies of the intermediate virtual
states dominateD« (see Sec. II D), this ratio should depend
weakly on the energy of the incident positron, or the type of
the wave function of the incident positron. In particular, the
use of either HF or Dyson wave functionsc« for the incident
positron should yield similar values ofḡ.

This understanding is confirmed by Fig. 13, which shows
ḡ for the s-, p-, and d-wave positrons on hydrogen. The
values of ḡ depend weakly on the positron energy, except
when the Ps formation threshold is approached. This agrees
with the earlier observation that the energy dependence of
various contributions toZeff in Fig. 11 is approximately the

FIG. 11. Annihilation parameterZeff for the s-, p-, andd-wave
positron on hydrogen. Contributions of individual diagrams from
Fig. 5 are: solid curve, diagram(a); dotted curve,(b); long-dashed
curve,(c); dashed curve,(d); dotted-dashed curve,(e); thick dotted
curve, (f) (all for R=15 a.u.). Thick solid curve is the total forR
=15 a.u., thick dashed curve, total forR=30 a.u.; thick dotted-
dashed curve(s-wave), a calculation forR=30 a.u. with 23 out of
n=60 ninth-orderB splines. Circles are the results of Ref.[60].

FIG. 12. Radial dependence of the integrand(38) of the corre-
lation correction for the annihilation of thes-wave positron with
momentumk=0.06 a.u. on hydrogen. The “ripples” is an artifact of
the reconstruction ofD«

sldsr ,r8d from the matrix elementki uD«u jl.
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same. The values ofḡ obtained with the static and Dyson
orbitals are close to each other, even though the absolute
values ofZeff obtained in the two approximations are very
different (see, e.g., Fig. 10). On the other hand, the enhance-
ment factor increases with the positron angular momentum.
For largerl, the penetration of the positron into the electron-
rich regions of the atom is suppressed by the centrifugal
barrier, and the effect of “pulling the electron out”(i.e., vir-
tual Ps formation), described by the correlation corrections,
becomes more important.

In order to compare the enhancement ofZeff due to the
nonlocal vertex correction term with the local enhancement
factors used in condensed-matter calculations, we need to
“localize” the contribution ofD«sr ,r 8d. We do this by intro-
ducing an effective “electron correlation density”r̃esrd via
the relation

E E P«lsrdD«
sldsr,r8dP«lsr8ddrdr8 ;E r̃esrdP«l

2 srddr,

s40d

for positron annihilation in thelth partial wave. This allows
us to define an effective enhancement factorgesrd through

resrd + r̃esrd ; gesrdresrd, s41d

where resrd=P1s
2 srd /4pr2, and P1s=2re−r for hydrogen.

Equations(40) and(41) guarantee that when we usegesrd in
Eq. (37), correct annihilation rates are recovered.

Equation(40) does not definer̃esrd uniquely. We use two
different methods to obtain it numerically. The first one
states

r̃e
f1gsrd =

E D«
sldsr,r8dP«lsr8ddr8

P«lsrd
s42d

which ensures thatr̃e
f1gsrd satisfies Eq.(40) exactly. However,

it has a disadvantage in that it may have unphysical poles at
the zeroes of the positron wave function. A second method
involves calculating

r̃e
f2gsrd =E

−2r

2r

D«
sldsr + s/2,r − s/2dds, s43d

which follows from Eq.(40) if we change variablesr, r8 to
r ±s /2, and keep the lowest-order term in the Taylor expan-
sion of P«lsr +s /2dP«lsr −s /2d. This approximation may not
be accurate for smallr, where the positron wave function
varies rapidly, but should be correct for largerr values,
where the peaking ofD«

sldsr ,r8d at r =r8 (Fig. 12) means that
P«lsrd varies slowly on the scale of typicals.

Figure 14 shows both electron correlation densities calcu-
lated for thes-wave positron with momentumk=0.5 a.u.
Apart from the small range of distances near the origin, the
values ofr̃e from the two methods are close, althoughr̃e

f2g

shows some numerical “noise” related to the reconstruction
of D«

sldsr ,r8d from its matrix elements. A comparison with the
hydrogen ground-state electron density shows that the latter
drops much faster with the distance from the nucleus. In fact,
r̃e is much greater thanre at thoser where the positron
density is large, in agreement with the correlation contribu-
tion to Zeff being five timesZeff

s0d.
In Fig. 15 the enhancement factor obtained fromr̃e

f1g is
compared with a commonly used parametrization of
gsre,rpd derived by Arponen and Pajanne[66] for a positron
in a homogeneous electron gas,

FIG. 13. Ratioḡ of the totalZeff to Zeff
s0d for positron annihilation

on hydrogen. Values obtained with positron wave function in the
static approximation are shown by solid curves, and those with the
Dyson orbitals, by dashed curves.

FIG. 14. Effective electron correlation densitiesr̃e
f1gsrd (dashed

curve) and r̃e
f2gsrd (dotted-dashed curve) for the annihilation of the

s-wave positron withk=0.5 on hydrogen. Shown for comparison
are the ground-state electron density in hydrogenresrd (solid
curve), and the positron densityP«l

2 srd (dotted curve, arbitrarily
scaled).
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gAP = 1 + 1.23rs − 0.0742rs
2 + 1

6rs
3, s44d

where rs is a measure of the average distance between the
electrons,

rs = S 3

4pre
D1/3

. s45d

Unlike gAP, the factor ge obtained from our many-body
theory approach, depends on the energy and orbital angular
momentum of the positron. The values shown in Fig. 15
correspond to the momentak=0.06(s wave) and 0.5 a.u.(s,
p, andd waves).

A feature common to all enhancement factors in Fig. 15 is
their rapid rise with the distance from the nucleus. This in-
crease is related to the drop of the electron density, a relation
which is explicit in Eq. (44) for gAP. At small distances,
where the electron density is large,gAP compares well with
ge. However, at larger distances, where the electron density
is low, gAP is much greater than all of thege. Such a discrep-
ancy could be expected, given that a homogeneous electron
gas theory used to derivegAP is more reliable in the high-
density limit. The exaggeration of the enhancement bygAP
was reported in Ref.[64] where various forms of the en-
hancement factor were tested by comparison with accurate
annihilation rates for a number of positron-atom bound sys-
tems. For Be and Mg(which haveI .6.8 eV), the values
obtained usinggAP overestimated the accurate annihilation
rates by factors of 5 and 2, respectively. Note also that the
productregAP remains finite asre→0. This means that one
cannot in principle use it in Eq.(37) for a continuous spec-
trum positron, since it would yield infinite values of the an-
nihilation rate andZeff. For the same reason a much stronger
overestimate observed in Ref.[64] with gAP for Be is a direct
consequence of the positron binding energy for Be being
much smaller than for Mg.

Figure 15 shows that the values ofge derived for thep
andd waves are similar to those from thes wave. Hence the

large differences between the average enhancement factors in
Fig. 13 are due to the effect of the centrifugal barrier on the
positron wave function. The distances which effectively con-
tribute to Zeff are greater for the positron in higher partial
waves.

VI. SUMMARY AND OUTLOOK

In this paper we have formulated a many-body theory
approach which accounts for the main correlation effects in
positron-atom interactions. These are(i) polarization of the
target by the positron,(ii ) virtual positronium formation, and
(iii ) strong enhancement of the electron-positron contact den-
sity due to their Coulomb interaction. The key development
for an accurate description of(ii ) and (iii ) is the summation
of the ladder diagram series and calculation of the electron-
positron vertex function.B-spline basis sets and extrapola-
tion over the orbital angular momenta are used to achieve
convergence of the sums over the electron and positron in-
termediate states. The method can be applied to a range of
problems such as positron scattering, annihilation, and for-
mation of bound states. A many-body diagrammatic ap-
proach can also be developed to calculate the angular corre-
lation between the annihilationg quanta, or the spectrum of
the gamma rays[67].

Although our main interest is in exploring many-electron
targets, the method has been first tested for hydrogen, where
accurate benchmark data exist for the scattering phase shifts
and annihilation rates. In the case of hydrogen the present
formalism is exact. Numerically, excellent agreement with
accurate variational calculations for the phase shifts has been
obtained, together with a good agreement for the annihilation
parameterZeff. The calculation of the most difficult part of
the correlation potential, which contains the vertex function,
for many-electron atoms is only marginally more difficult
than for hydrogen. Therefore we expect that application of
our many-body theory to the problems of positron scattering
and annihilation on noble-gas atoms and binding to halogen
ions [68,69] should yield accurate results. In particular, we
would like to re-examine and improve the accuracy of the
many-body theory predictions[35] of positron binding ener-
gies to thens2 atoms such as Mg, Cd, and Zn.

The advantage of many-body theory methods is their
physical transparency. It allows one to distinguish between
different physical mechanisms and compare their relative im-
portance. Thus we saw that virtual Ps formation in positron-
hydrogen scattering is just as important as the target polar-
ization. Correlation corrections to the annihilation vertex,
which are physically related to the virtual Ps formation, are
even more important. They enhance the annihilation rate in
hydrogen by a factor of 5 or more, depending on the positron
partial wave. Such vertex corrections depend weakly on the
positron energy, and the enhancement they produce is prac-
tically the same for various positron wave functions. There-
fore one could use the average enhancement factors derived
for isolated atoms to obtain reliable annihilation rates for
atoms placed in different environments, provided that a suf-
ficiently accurate single-particle positron wave function is
available. Of course, different atomic subshells will be char-

FIG. 15. Enhancement factors for positron annihilation on hy-
drogen. Solid curve,gAP, Eq. (44); dotted linege for s-wave posi-
trons at k=0.06; dashed line,ge for s-wave positrons atk=0.5;
long-dashed line,ge for p-wave positrons atk=0.5; dotted-dashed
line, ge for d-wave positrons atk=0.5.
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acterized by different enhancement factors. However, they
can all be determined in many-body calculations of the type
described in this paper, and serve as an input for the calcu-
lations of positron annihilation in molecules or condensed
matter.

In this work we have analyzed the spatial dependence of
the nonlocal correlation corrections to the annihilation ver-
tex. We have also derived the equivalent local enhancement
factor and compared it with an expression used in
condensed-matter calculations. Similar comparisons for
larger many-electron targets may test various forms of en-
hancement factors in a much greater range of electron den-
sities.

The rapid development of computers over the past few
decades seems to have favored theoretical methods other
than the many-body theory. Such methods often rely more on
the computer power and numerical techniques than on the
physical insight. They often appear to be “more exact” than
the sophisticated but explicitly approximate many-body
theory approaches, and promise improved results due to
shear growth of computer power. Their drawback is that they
do not always increase one’s physical understanding of the
problem. We believe that a further theoretical development
of many-body methods combined with a judicial use of com-
puters is a healthy alternative.
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APPENDIX: MATRIX ELEMENTS AND DIAGRAMS

For a positron interacting with a spherically symmetric
target, the self-energySEsr ,r 8d and the correlation correction
to the annihilation vertexDEsr ,r 8d can be expanded in par-
tial waves, e.g.,

SEsr ,r 8d =
1

rr 8
o
l=0

`

o
m=−l

m=l

YlmsVdSE
sldsr,r8dYlm

* sV8d.

sA1d

Defining the volume elementdr =r2drdV, and the positron
wave function with orbital angular momentuml, w«sr d
=r−1P«lsrdYlmsVd, we obtain the matrix elementk«uSu«8l as

k«uSEu«8l =E w«
*sr dSEsr ,r 8dw«8sr 8ddr

=E P«lsrdSE
sldsr,r8dP«8lsr8ddrdr8. sA2d

The angular reduction of the various diagrams ink«uSEu«8l

andk«uDEu«l is simplified by the use of graphical techniques
for performing angular momentum algebra[70].

The reduced Coulomb matrix element is defined as

k3,4iVli2,1l = Îfl1gfl2gfl3gfl4gSl1 l l 3

0 0 0
DSl2 l l 4

0 0 0
D

3E P«3l3
sr1dP«4l4

sr2d
r,

l

r.
l+1

3P«2l2
sr2dP«1l1

sr1ddr1dr2, sA3d

wherefl1g;2l1+1, etc. The minus sign in the reduced Cou-
lomb matrix element involving the positron is accounted for
in the overall sign factor for the diagram(see below). The
reduced Coulomb matrix element for an electron-positron
pair coupled into a total angular momentumJ is given by

k3,4iVsJdi2,1l = o
l

s− 1dJ+lk3,4iVli2,1lHJ l3 l4
l l 2 l1

J .

sA4d

This expression is similar to the “exchange” matrix element
that one meets in all-electron problems[22].

The sum of the ladder diagram series(the vertex function)
is calculated via the matrix equation(6) solved for all pos-
sible total angular momentaJ of the electron-positron pair:

kn2,m2iGE
sJdim1,n1l = − kn2,m2iVsJdim1,n1l

− o
n,m

kn2,m2iVsJdim,nlkn,miGE
sJdim1,n1l

E − «n − «m

.

sA5d

In the Appendix, the state labelsn, n1, etc., refer to the pos-
itron orbitals «nln, «n1

ln1
, etc. Similarly, m, m1, etc., label

excited-state electron orbitals. Electron orbitals occupied in
the target ground state(holes) are labeled by Latin indices
snd. WhenB-spline basis states are used, Eq.(A5) is a finite-
dimension linear equation solved by standard methods.

For closed-shell atoms, each loop in the diagram gives a
spin factor of 2. This factor should be omitted for hydrogen
which has only one electron in the 1s orbital. The sign factor
for each diagram iss−1da+b+c, wherea is the number of hole
lines, b is the number of electron-hole loops, andc is the
number of positron-electron Coulomb interactions. In the ex-
pressions below« and«8 are the external positron lines, and
the angular momentum of the incident positron islp.

The second-order self-energy diagram, Fig. 1(a), is given
by

2 o
n,m,n

o
l

k«8,niVlim,nlkn,miVlin,«l
flgflpgsE + «n − «n − «md

. sA6d

The virtual-Ps contribution toSE, Fig. 2, is obtained after
finding the vertex function as follows:
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2 o
ni,mi,n

o
J

fJgk«8,niVsJdim2,n2lkn2,m2iGE+«n

sJd im1,n1lkn1,m1iVsJdin,«l

flpgsE + «n − «n1
− «m1

dsE + «n − «n2
− «m2

d
. sA7d

Matrix elements of the annihilationd function are defined
similarly to the Coulomb ones, using the expansion of the
dsr 1−r 2d in terms of spherical harmonics[70]. The reduced
matrix element then is

k3,4idli2,1l =
flg
4p

Îfl1gfl2gfl3gfl4gSl1 l l 3

0 0 0
DSl2 l l 4

0 0 0
D

3E P«3l3
srdP«4l4

srdP«2l2
srdP«1l1

srdr−2dr,

sA8d

and the matrix element for an electron-positron pair coupled
into a total angular momentumJ is given by

k3,4idsJdi2,1l = o
l

s− 1dJ+lk3,4idli2,1lHJ l3 l4
l l 2 l1

J .

sA9d

The diagrams contributing toZeff also contain factors of 2
for each closed loop, which must be removed for hydrogen.
In the diagrams below, we also include factors of 2 to ac-
count for the mirror images of those diagrams that are not
symmetric. To produce correct values ofZeff the expressions
given below must be multiplied by the normalization factor
(25).

The zeroth-order diagram, Fig. 4(a), is a sum of simple
radial integrals over all hole orbitalsn,

2o
n

flng
4p

E P«lp
2 srdP«nln

2 srdr−2dr. sA10d

The first-order contribution, Figs. 4(b) and 4(c), is given by

− 4 o
n,m,n

o
l

k«,nidlim,nlkn,miVlin,«l
flgflpgsE + «n − «n − «md

. sA11d

Expressions for the remaining four contributions, Figs.
5(c)–5(f), are

2 o
ni,mi,n

o
J

fJgk«,niVsJdim2,n2lkn2,m2idsJdim1,n1lkn1,m1iVsJdin,«l
flpgsE + «n − «n2

− «m2
dsE + «n − «n1

− «m1
d

, sA12d

− 4 o
ni,mi,n

o
J

fJgk«,nidsJdim2,n2lkn2,m2iAE+«n

sJd in,«l

flpgsE + «n − «n2
− «m2

d
, sA13d

4 o
ni,mi,n

o
J

fJgk«,niVsJdim3,n3lkn3,m3idsJdim2,n2lkn2,m2iAE+«n

sJd in,«l

flpgsE + «n − «n3
− «m3

dsE + «n − «n2
− «m2

d
, sA14d

2 o
ni,mi,n

o
J

fJgk«,niAE+«n

sJd im3,n3lkn3,m3idsJdim2,n2lkn2,m2iAE+«n

sJd in,«l

flpgsE + «n − «n3
− «m3

dsE + «n − «n2
− «m2

d
, sA15d

where we have introduced

kn2,m2iAE+«n

sJd in,«l = o
n1,m1

kn2,m2iGE+«n

sJd im1,n1lkn1,m1iVsJdin,«l

E + «n − «n1
− «m1

. sA16d
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