
PHILOSOPHICAL MAGAZINE B, 2000, VOL. 80, NO. 12, 2143± 2173

Statistical theory of ® nite Fermi systems with chaotic
excited eigenstates

V. V. FLAMBAUMy and G. F. GRIBAKINz
School of Physics, University of New South Wales, Sydney 2052, Australia

[Received 10 April 2000 and accepted 22 May 2000]

ABSTRACT
A theory of strongly interacting Fermi systems of a few particles is developed.

At high excitation energies (a few times the single-particle level spacing) these
systems are characterized by an extreme degree of complexity due to strong
mixing of the shell-model-based many-particle basis states by the residual two-
body interaction. This regime can be described as many-body quantum chaos.
Practically, it occurs when the excitation energy of the system is greater than a few
single-particle level spacings near the Fermi energy. Physical examples of such
systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and
multicharged ions, molecules, clusters and quantum dots in solids. The main
quantity of the theory is the strength function which describes spreading of the
eigenstates over many-particle basis states (determinants) constructed using the
shell-model orbital basis. A nonlinear equation for the strength function is
derived, which enables one to describe the eigenstates without diagonalization
of the Hamiltonian matrix. We show how to use this approach to calculate mean
orbital occupation numbers and matrix elements between chaotic eigenstates and
introduce typically statistical variables such as temperature in an isolated
microscopic Fermi system of a few particles.

} 1. INTRODUCTION
As is known, quantum-statistica l laws are derived for systems with in® nite num-

ber of particles, or for systems in a heat bath, therefore, their applicability to isolated

® nite systems of a few particles is, at least, questionable. However, the density of

many-particle energy levels increases extremely rapidly (typically, exponentially)
with an increase in both the number of particles and the excitation energy. For

this reason, even a weak interaction between particles can lead to strong mixing

between large number of simple many-particle states, resulting in the so-called chao-

tic eigenstates. If the components of such eigenstates can be treated as random

variables (onset of quantum chaos), statistical methods are expected to be valid

even for an isolated dynamic system.
One should stress that statistical description of such isolated systems can be quite

diŒerent from that based on standard canonical distributions; therefore, application

of the famous Fermi± Dirac or Bose± Einstein formulae may give incorrect results.

Moreover, for isolated few-particle systems a serious problem arises in the de® nition
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of temperature, or other thermodynamic variables such as entropy and speci® c heat

(in comparison, in in® nite systems, diŒerent de® nitions give the same result).

In this paper we outline a statistical theory of ® nite quantum systems of inter-
acting particles based on generic statistical properties of chaotic eigenstates (the

`microcanonical’ approach). Typical examples of such systems are compound nuclei,

complex atoms, atomic clusters and isolated quantum dots. This work is based on a

number of earlier publications (Flambaum 1993, 1994, Flambaum and Vorov 1993,

Flambaum et al. 1994, 1996a, Gribakin et al. 1995, Flambaum and Izrailev 1997a,b),
which developed diŒerent aspects of the theory.

} 2. STRENGTH FUNCTION OF CHAOTIC EIGENSTATES

2.1. Equation for the strength function

In this section we obtain an equation for the strength function of chaotic eigen-

states. It is derived for Hamiltonian matrices with random uncorrelated oŒ-diagonal

matrix elements. This equation generalizes the result obtained by Wigner (1955,
1957) for in® nite random matrices with a linearly increasing diagonal and oŒ-diag-

onal matrix elements equal to §1, randomly placed within a band of width b along

the diagonal. It also reproduces the equation for the strength function in sparse

random matrices with a diŒuse band derived by Fyodorov et al. (1996) using the

supersymmetry method.
It is important that this equation can be used for calculating strength functions in

real many-body systems where strong mixing is achieved owing to the residual two-

body interaction between the particles. In this case, one usually starts with multi-

particle basis states (determinants) constructed of single-particle orbitals obtained

for a particular mean ® eld, for example in the Hartree± Fock approximation:

jki ˆ
Yn

iˆ1

ay
¸i

j0i: …1†

We use Greek letters to enumerate the single-particle basis states (orbitals), and
every basis state k corresponds to a diŒerent set of ¸1; . . . ; ¸n. The matrix elements

Hkj
of the Hamiltonian

H ˆ
X

¬

"¬ay
¬a¬ ‡ 1

2

X

¬ ®¯

V ¬ ®¯a
y
¬ay

 a®a¯; …2†

calculated with respect to this basis are correlated, even if the residual two-body
interaction V ¬ ®¯ is random (Flambaum et al. 1996a, Brody et al. 1981). However,

the eŒect of these two-body correlations on the strength functions is small (see

below).

Consider an unperturbed system which is described by a diagonal Hamiltonian
matrix with some regular diagonal matrix elements:

H…0†
kj ˆ Ek¯kj : …3†

This Hamiltonian describes a many-body system of non-interacting particles, or a

system of interaction particles in the mean-® eld basis, if we neglect the residual two-

body interaction. It is often convenient to enumerate the basis states in such a way

that their mean energies Ek ˆ hkjHjki increase with increasing k. The eigenstates of
the system
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Hjii ˆ E…i†jii …4†

expanded in terms of the basis states k,

jii ˆ
X

k

C…i†
k jki; …5†

are characterized by their components (`wavefunctions’ ) C…i†
k , that is eigenvectors of

the Hamiltonian matrix

X

j

HkjC
…i†
k ˆ E…i†C…i†

k : …6†

We consider cases when mixing of the basis components due to the oŒ-diagonal

matrix elements V kj ² Hkj is strong. This regime is the opposite of perturbation
theory. Hence, V kj ¾ D must be ful® lled, where D is the mean spacing between

the diagonal `energies’ Ek (see } 2.4). Besides this, the oŒ-diagonal matrix elements

V kj in complex many-body systems appear to behave as random variables with zero

mean V kj ˆ 0 (Flambaum et al. 1994, Gribakina et al. 1995, Horoi et al. 1995a,b,

Frazier et al. 1996, Zelevinsky et al. 1996). In this situation the eigenstates (5) contain
large numbers Np of essentially non-zero `principal’ components of similar sizes

C…i†
k ¹ 1=N1=2

p , due to normalization
P

i jC…i†
k j2 ˆ

P
k jC…i†

k j2 ˆ 1. If D 6ˆ 0 and the

Hamiltonian matrix is large, these components are centred around the corresponding

eigenvalue E…i†, within some characteristic energy interval jEk ¡ E…i†j 9 G, where G is

the so-called spreading width. Its magnitude depends on the strength of the mixing

interaction V kj . This picture allows for variation of both D and V 2
kj along the matrix,

that is, as functions of the energy of the basis states. In real systems this variation is
slow and smooth.

Because of the strong mixing the components C…i†
k of complicated (chaotic)

eigenstate ¯ uctuate almost randomly as functions of k and i. However, these ¯ uctua-

tions aside, nearby eigenstates separated by energy intervals ¢E ¹ D ½ G look

similar. Therefore, one can study the smooth envelope of the weights jC…i†
k j2. This

idea is realized in the strength function, also referred to as the local density of states

»W…E; k† ˆ
X

i

jC…i†
k j2¯…E ¡ E…i†† …7†

introduced by Wigner. It shows how various basis states k contribute to the eigen-
states at energy E. A standard way to calculate »W…E; k† is through the Green’s

function

G…E† ˆ 1

E ¡ H ‡ i²
ˆ

X

i

jiihij
E ¡ E…i† ‡ i²

; …8†

or in the matrix form, using the eigenstate components:

Gkj…E† ˆ
X

i

C…i†
k C…i†*

j

E ¡ E…i† ‡ i²
; …9†

where ² is positive in® nitesimal. The usual rule …E ¡ E…i† ‡ i²†¡1 ˆ
…E ¡ E…i††¡1 ¡ ip¯…E ¡ E…i†† combined with the de® nition (7) then gives the key rela-
tion
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»W…E; k† ˆ ¡ 1

p
Im ‰Gkk…E†Š: …10†

In a similar way, one also ® nds the eigenvalue density (or level density)

»…E† ²
X

i

¯…E ¡ E…i†† …11†

ˆ
X

i;k

jC…i†
k j2¯…E ¡ E…i†† ˆ

X

k

»W…E; k† …12†

ˆ ¡ 1

p
Im

X

k

Gkk…E†
Á !

ˆ ¡ 1

p
Im fTr ‰G…E†Šg: …13†

The Green’ s function G, (equation (8)) can be presented as a perturbation theory

expansion in powers of V, the oŒ-diagonal part of the Hamiltonian H ˆ H…0† ‡ V:

G ˆ 1

E ¡ H…0† ¡ V ‡ i²
…14†

ˆ G…0† ‡ G…0†VG…0† ‡ G…0†VG…0†VG…0† ‡ ¢ ¢ ¢ ; …15†

where

G…0† ˆ 1

E ¡ H…0† ‡ i²
or G…0†

kj ˆ
¯kj

E ¡ Ek ‡ i²
…16†

is the Green’ s function of the unperturbed Hamiltonian. In the matrix form, expan-

sion (15) looks like

Gkj ˆ
¯kj

E ¡ Ek
‡

V kj

…E ¡ Ek†…E ¡ Ej†
‡

X

m

V kmV mj

…E ¡ Ek†…E ¡ Em†…E ¡ Ej†
‡ ¢ ¢ ¢ ; …17†

where we have introduced E ² E ‡ i² for the energy shifted oŒthe real axis.

To obtain a smooth strength function averaged over the level-to-level ¯ uctua-

tions of the eigenstate components we should average the Green’s function (15) over

the random oŒ-diagonal matrix elements V kj . In doing so we assume that they have

zero mean and are uncorrelated:

V kj ˆ 0; V kjV lm ˆ V 2
kj…¯kl¯jm ‡ ¯km¯jl†: …18†

We can also assume that, if the system is not placed in a magnetic ® eld, the phases of

the basis states can be chosen so that V kj ˆ V jk are real. The variance V 2
kj is a local

average. It does not have to be constant over the matrix. On the contrary, in physical
systems, owing to the oscillatory behaviour of the single-particle orbitals the mixing

matrix elements should decrease when distant basis states are considered:

V 2
kj ! 0 for jk ¡ jj ! 1: …19†

Therefore, larger matrix elements are found along the main diagonal, and the
Hamiltonian matrices are often modelled by banded (random) matrices (with

V kj 6ˆ 0 only for jk ¡ jj 4 b). Feature (19) also ensures that various sums containing

products of V kj converge, even if the size of the Hilbert space is in® nite. It is impor-

tant that, while we assume averaging in the course of our derivation, it does not have

to be performed explicitly in the ® nal equations. There it is done automatically owing
to summation over large numbers of basis states.
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The strength function is given by the diagonal matrix element Gkk (equation

(10)). Because of the random signs of V kj , only terms with even powers of V in

the perturbation expansion (15) survive after averaging:

Gkj ˆ
1

E ¡ Ek
‡

X

m

V kmV mk

…E ¡ Ek†…E ¡ Em†…E ¡ Ek†

‡
X

m;l;n

V kmV mlV lnV nk

…E ¡ Ek†…E ¡ Em†…E ¡ El†…E ¡ En†…E ¡ Ek† ‡ ¢ ¢ ¢ : …20†

It is convenient to represent this expansion graphically:

where the thick line is G, the thin lines are G…0†, and the broken lines correspond to

the matrix elements V . The semicircle broken line describes a binary product, for
example V kmV mk in the second-order diagram, which does not vanish upon aver-

aging.

In the fourth order the non-zero contributions are given by the following con-

tractions or binary associations:

The ® rst of them reduces to the product of the two second-order diagrams:

1

E ¡ Ek

X

m

V 2
km

…E ¡ Em†
1

E ¡ Ek

X

l

V 2
kl

…E ¡ El†
1

E ¡ Ek
: …23†

The second is irreducible; it does not contain G…0†
kk ˆ …E ¡ Ek†¡1 anywhere in the

middle. Analytically it is given by

1

E ¡ Ek

X

m;l

V 2
kmV 2

ml

…E ¡ Em†2…E ¡ El†
1

E ¡ Ek
: …24†

If we compare it with the expression for the third diagram in equation (22),

1

E ¡ Ek

X

m

V 4
km

…E ¡ Em†2…E ¡ Ek†
1

E ¡ Ek
; …25†

we immediately see that it has a lower order of summation, that is it is given by a

single sum over m , whereas in the other two the summation runs over m and l. Since

we consider systems in the strong-mixing regime, jV km j ¾ D, every basis state is

essentially coupled to many other basis states. Therefore, the sums over m or l in

equations (23) and (24) and the diagram with the intersecting broken lines in
equation (22) (equation (25)), is parametrically smaller than the other two. This
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rule is valid in all orders of the perturbation theory. For example, among the sixth-

order diagrams, only the following ® ve diagrams must be taken into account:

The diagrams with intersections

should be discarded.

Let us introduce the self-energy Sk as a sum of all irreducible diagrams (without

intersections), which in our case are also diagonal with respect to the end indices:

Similarly to the standard ® eld-theory procedure, the Green’s function can now be

shown as

This geometric series immediately sums into the ® nal expression for the Green’s

function

Gkk…E† ˆ 1

E ¡ Ek ¡ Sk…E† : …30†

However, the most important consequence of the absence of the diagrams with
intersections in Sk is that series (28) can be presented as

which corresponds to the following equation:

Sk…E† ˆ
X

m

V 2
km

E ¡ Em ¡ Sm…E† ‡ i²
: …32†

This nonlinear equation can be solved iteratively. Once Sk…E† is found, the strength

function is obtained from equations (10) and (30) as

»W…E; k† ˆ ¡ 1

p
Im

1

E ¡ Ek ¡ Sk…E†

³ ´
: …33†
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Equations (32) and (33) solve the problem of ® nding the strength function for a

Hamiltonian with random oŒ-diagonal matrix elementsy, and the total density of

states is given by

»…E† ˆ ¡ 1

p
Im

X

k

1

E ¡ Ek ¡ Sk…E†

Á !

: …34†

Note that the strength function (33) can be written as a Breit± Wigner formula

»W…E; k† ˆ 1

2p
Gk

…E ¡ Ek ¡ Dk†2 ‡ G2
k=4

; …35†

where Gk ˆ ¡2 Im ‰Sk…E†Š is the energy (spreading) width of the basis component

and Dk ˆ Re ‰Sk…E†Š is the shift of the centre of the eigenvector with respect to the
basis state energy Ek . Since both Gk and Dk are in general energy dependent, the real

shape of the strength function may be quite diŒerent from the simple Breit± Wigner

pro® le with constant parameters.

2.2. Particular cases

2.2.1. Full uniform random matrices

If the oŒ-diagonal matrix elements V km are distributed uniformly over the

matrix, V 2
km ˆ V2, then Sk…E† does not depend on k and we have

S…E† ˆ V2
X

m

1

E ¡ Em ¡ S…E† ‡ i²
; …36†

»…E† ˆ ¡
1

pV2
Im ‰S…E†Š; …37†

which reproduces the result obtained by Pastur (1972, 1973) for H ˆ H…0† ‡ V, where
V belongs to the Gaussian orthogonal ensemble.

2.2.2. Sparse banded random matrices
Fyodorov et al. (1996) considered the strength functions for large (in® nite)

matrices with equally spaced diagonal matrix elements, Ek ˆ kD, and a sparse and

banded random oŒ-diagonal part. They chose the following probability distribution

of V km :

P…V km† ˆ …1 ¡ pkm†¯…V km† ‡ pkmh1…V km†;

where pkm is the probability to ® nd a non-zero matrix element at …k; m†. It was

parametrized as pkm ˆ …M=b† f …jk ¡ mj=b†, where f is a decreasing function normal-
ized as b¡1 P1

rˆ0 f …r=b† ˆ 1, b characterizes the width of the band, M is the number

of non-zero matrix elements in a row, and the probability density h1 satis® es„
h1…v† dv ˆ 1,

„
vh1…v† dv ˆ 0 and

„
v2h1…v† dv ˆ V 2. With these de® nitions the

locally averaged square of the oŒ-diagonal matrix element is given by
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V 2
km ˆ M

b
f

jk ¡ mj
b

³ ´
V2: …38†

If we use this formula in equation (32), replace summation over m by integration

over dEm=D, take into account that Sk…E† now depends only on E ¡ Ek and intro-
duce new variables x and u as

x ˆ E ¡ Ek

R
; u ˆ E ¡ Em

R
;

using R2 ˆ MV2, the complex conjugate of equation (32) will be cast in the following

form:

g…x† ˆ ¡ 1

µ

…1

1

f …ju ¡ xj=µ† du
iu ¡ g…x† ; …39†

where µ ˆ Db=R, and instead of Sk a new function has been introduced by

i…Sk†* ² Rg…x†. Accordingly, the strength function as a function of z ˆ E ¡ Ek is

now given by

»W…z† ˆ 1

p
Re

1

iz ¡ Rg…z=R†

³ ´
: …40†

Equations (39) and (40) were obtained by Fyodorov et al. (1996) by means of a

technically involved method based on integration over commuting and anticommut-

ing variables.

2.2.3. Wigner random matrices

In the pioneering work of Wigner (1955, 1957) the equations for the strength

functions were obtained for random matrices with a regular diagonal D ˆ 1 and oŒ-

diagonal matrix elements V km ˆ §V , placed randomly within the band jk ¡ mj 4 b.

If we use new variables,

E ¡ Ek

b
ˆ z;

E ¡ Em

b
ˆ ±;

replace the summation over m in equation (32) by integration over ± and introduce

the new function p1…z† ˆ iSk…E†=V2 and parameter q ˆ V2=b, the strength function

will be given by the following two equations:

»W…z† ˆ 1

pb
Re

i

z ‡ iqp1…z†

³ ´
; …41†

p1…z† ˆ
…z‡1

z¡1

i

± ‡ iqp1…±†
d±; …42†

which constituted the main result obtained by Wigner (1955, 1957).

2.3. Exact solutions

2.3.1. Semicircle

Suppose that the Hamiltonian is a full uniform random N £ N matrix with

V 2
km ˆ V2, and the basis states are degenerate: Ek ˆ 0. In this case they are char-

acterized by the same Sk…E† ² S…E†, which satis® es equation (32) with Em ˆ 0:
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S…E† ˆ …N ¡ 1†V2

E ¡ S…E† ‡ i²
; …43†

which gives S…E† ˆ 1
2
‰E ¡ i…4NV2 ¡ E2†1=2Š, where we used N ¡ 1 º N for N ¾ 1.

Substitution in equations (33) and (34) gives the strength function

»W…E† ˆ …4NV2 ¡ E2†1=2

2pNV2
…44†

and the density of states

»…E† ˆ N»W…E† ˆ 2N
pE2

0

…E2
0 ¡ E2†1=2; …45†

which is the famous semicircle, E0 ˆ 2…NV 2†1=2 being its r̀adius’ .

If the diagonal matrix elements ¯ uctuate with Ek ˆ 0, E2
k ˆ 2V2, as in the

Gaussian orthogonal ensemble, the result does not change for N ¾ 1, since such

¯ uctuations of the basis state energies are small compared with the full width E0 of

the eigenvalue spectrum.
The semicircular strength function also describes the spreading in a banded

random Hamiltonian, where V km are non-zero for jk ¡ mj 4 b only. In this case

the size N of the matrix in equation (44) must be replaced by the bandwidth b.

This solution remains valid for a banded Hamiltonian with a non-zero increasing

diagonal, as long as

Db ½ …bV2†1=2; …46†

that is the mean basis-state energy spacing D remains small (Wigner 1955, 1957).

2.3.2. Breit± Wigner pro® le

In the opposite case, Db ¾ …bV2†1=2, the increasing energy denominators reduce

the mixing of distant basis states and make the strength function narrower. If we
consider an in® nite uniform Hamiltonian with evenly spaced diagonal matrix ele-

ments, Em‡1 ¡ Em ˆ D, the sum in equation (32) can be replaced by an integral over

dEm=D. The mean-squared matrix element V 2
km is independent of k (as well as m),

and the function Sk…E† also does not depend on k. Equation (32) then becomes

S…E† ˆ
…

V 2
km

E ¡ Em ¡ Re ‰S…E†Š ¡ i Im ‰S…E†Š
dEm

D
;

which, after closing the integration in the upper half-plane of complex Em, reduces to

the contribution of the pole, S…E† ˆ ¡ipV 2=D. The corresponding strength function

is immediately obtained from equation (35) as

»W…E; k† ˆ
1

2p
G

…E ¡ Ek†2 ‡ G2=4
; …47†

where

G ˆ 2pV2»; …48†

and » ˆ D¡1 is the density of states.

The Breit± Wigner solution is in fact valid for matrices where V 2
km as well as »

change over the matrix, as long as they do not change much on the scale of
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jEk ¡ Emj ¹ G. In particular, equations (47) and (48) are applicable to banded

random matrices at jE ¡ Ek j < Db, if V 2
km ˆ V2 ˆ constant within the band. The

necessary condition for this is G < Db, or V2 < D2b, which is the opposite of
equation (46).

2.4. Criterion of equilibrium (ergodicity) of chaotic eigenvectors

2.4.1. Strong mixing

Although the matrix elements Vkm ¯ uctuate, the solution Sk…E† of equation (32)

is a smooth function of both k and E, provided that the summation over m averages

out these ¯ uctuations. To ensure this, the number of terms eŒectively contributing to

the sum must be large. If the Hamiltonian matrix is f̀ull’ , that is V km 6ˆ 0 for any
nearby pair of states k and m, as well distant pairs, the condition of strong mixing

and weak ¯ uctuations is V > D, just opposite to that of perturbation theory.

In many-body systems with a two-body interaction between the particles the oŒ-

diagonal Hamiltonian matrix elements V km couple only those shell-model basis

states k and m (1) which diŒer by positions of no more than two particles. If the

number of active particles in the system is greater than two, there are many zeros in
the Hamiltonian matrix, that is, it becomes increasingly sparse. Denoting the mean

spacing jEk ¡ Emj between the nearest basis states directly coupled by V km by df

(df ¾ D), we can write the condition for averaging of ¯ uctuations as

Gk ¾ df ; …49†

since jE ¡ Emj 9 Im jSk…E†j ˆ 1
2 Gk determines the range of m which eŒectively satu-

rate the sum. The imaginary part of Sk…E† can be estimated from equation (32) as a

usual contribution of a pole in the complex energy plane, which gives

Gk…E† ˆ 2pV 2
km»f…E†; …50†

where »f…E† ˆ d¡1
f is the density of states directly coupled to k, and V 2

km is the

average over non-zero matrix elements only. The condition (49) then becomes

V 2
km > d2

f : …51†

This means that, for the strength functions to be smooth, the interaction must be

large, that is non-perturbative . In this case the eigenvectors contain large numbers of
components. The number of (principal) components is in fact Np ¹ Gk=D rather

than Gk=df , since mixing of the basis states within the energy interval Gk is complete

(ergodicity). In this regime the components C…i†
k display Gaussian statistics, and the

¯ uctuations in the strength function »k…E† are small (equilibrium).

When we reduce the ratio V km=df the ¯ uctuations of Gk increase and at V km < df

the smooth self-consistent solution of equation (32) disappears. Indeed, in this case
the sum in this equation is dominated by one term with a minimal energy denomi-

nator E ¡ Em ¹ df . The absence of a smooth solution for the shape of the eigenstates

and the strength function does not mean that the number of principal components in

the eigenstates is small.y However, the distribution of the components is not ergodic;
it has many `holes’ within the energy interval 2pV 2

km»f…E†, and the ¯ uctuations of
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C…i†
k become large and non-Gaussian. Indeed, the structure of the eigenstate in this

case is governed by an interplay of perturbation theory chains, that is series in

V km=…Ek ¡ Em†, and a possibility of very small denominators in these chains
owing to ¯ uctuations of the intervals between basis state energy levelsz
(Flambaum and Izrailev 1997a,b).

2.4.2. The role of two-body correlations
If the dynamics of a many-body system are governed by two-body interactions,

as in equation (2), the Hamiltonian matrix elements Hkj become, in a certain way,

correlated, even when the underlying two-body matrix elements V ¬ ®¯ are random

(Flambaum et al. 1996a). These correlations aŒect the derivation of equation (32)

and, strictly speaking, make this equation invalid.
This eŒect emerges in the fourth order of the perturbation theory, hence, let us

consider the contractions in the fourth-order diagrams (22). In the ® rst of them the

intermediate many-body basis states m diŒer from k by the positions of at most two

particles, jmi ˆ ay
¬1

ay
 1a a¬jki, that is the summation over states m (or l) in fact

involves moving all possible pairs ¬;  from the state k into unoccupied orbitals

¬1;  1. The corresponding matrix element in the Hamiltonian is Hmk ˆ V ¬1 1 ¬.
Similarly, in the second diagram in equation (22), jmi ˆ ay

¬1
ay

 1
a a¬jki, and

jli ˆ ay
®1

ay
¯1

a¯a® jmi, that is the states m and l are obtained from k and m by moving

the fermion pairs ¬ and ®¯ into unoccupied orbitals ¬1;  1 and ®1¯1 respectively.

Hence, the matrix elements involved are Hmk ˆ V ¬1 1  ¬ and Hlm ˆ V ®1¯1¯®. In both

contractions the same matrix element appears twice, which ensures that these con-
tractions are non-zero and have the same order of summation.

A new feature due to the two-body interaction emerges in the third contraction

and may now involve three diŒerent intermediate states:

The numerator of the corresponding algebraic expression HknHnlHlmHmk contains

four diŒerent Hamiltonian matrix elements. Nevertheless, its average is not zero, nor

has it a lower order of summation than the other two fourth-order diagrams. Indeed,
for jmi ˆ ay

¬1
ay

 1
a a¬jki, and jli ˆ ay

®1
ay

¯1
a¯a®jmi, take jni ˆ ay

¬ay
 a¬1

a 1
jli, which is

equivalent to jni ˆ ay
®1

ay
¯1a¯a®jki. Then

HknHnlHlmHmk ˆ V ®¯¯1®1
V ¬  1¬1

V ®1¯1¯®V ¬1  1  ¬

and, in spite of the fact that all three intermediate states m; n; l are diŒerent, the two

two-body matrix elements V ¬1  1  ¬ and V ®1¯1¯® appear twice each in the contraction.
Therefore, it cannot be discarded in the way that it has been in } 2.1.
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z In most real systems with more then two particles the Hamiltonian matrix is sparse, that
is it contains a certain fraction of zero off-diagonal matrix elements. In this case the non-zero
V kj must be greater than the mean energy spacing between the directly coupled basis states
(Altshuler et al. 1997, Jaquod and Shepelyansky 1997, Mirlin and Fyodorov 1997,
Shepelyansky and Sushkov 1997).
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Another way to see the diŒerence between a random Hamiltonian and that based

on a two-body interaction is to consider the level density (11), which can be written

as a trace

»…E† ˆ Tr ‰¯…E ¡ H†Š; …53†

and its moments

Mm ˆ
…

»…E†EmdE ˆ Tr …Hm†: …54†

Suppose that the diagonal matrix elements are zeros (or have the same order of

magnitude as the oŒ-diagonal matrix elements and hence can be neglected when

calculating the traces). The traces then have the same structure as the numerators

of the perturbation theory expansion of Gkk (20). All odd-m traces vanish, signalling
a symmetric level density. For a full uncorrelated random Hamiltonian the trace for

an even m ˆ 2¸ is determined by the number of ways to arrange ¸ non-crossing

contractions (known as a Catalan number)

M2¸ ˆ 1

¸ ‡ 1

2¸

¸

³ ´
N¸‡1V 2¸; …55†

where V 2 ˆ H2
km . These moments correspond to the s̀emicircular’ density (45) (for

example Brody et al. (1981)).

On the other hand, if the Hamiltonian is generated by the two-body interactions,

all binary contractions give equal contributions to the even moments (if we assume

that the number of particles n is large, and n ¾ m, so that diŒerent pairs of orbitals
dominate in the sums over the intermediate states). The even moments then are

M2¸ ˆ …2¸ ¡ 1†!!N¸‡1V 2¸: …56†

(Note that the second moments M2 here and in equation (55) are the same and the

diŒerence emerges in the fourth order.) The moments (56) correspond to the
Gaussian level density

»…E† ˆ N

…2pNV2†1=2
exp ¡ E2

2NV2

Á !

;

which is characteristic of the random two-body interaction model (Brody et al.

1981). A Gaussian level density is also a common feature of nuclear shell model

calculations (Brody et al. 1981, Horoi et al. 1995a,b, Frazier et al. 1996, Zelevinsky et
al. 1996) based on two-body Hamiltonians. These calculations are usually made in a

restricted one- or two-shell model con® guration space, and it obscures the role of the

diagonal matrix elements Hkk in forming the level density in the full problem.y On

the other hand, if we apply equation (32) to a system with two-body interaction and

degenerate or near-degenerate many-body basis states, the solution for the strength

function and the density of states will come out in the form of a semicircle, and not a
Gaussian.
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y It is well known that the increase of the level density in a Fermi system, for example a
nucleus or an atom, follows the law »…E† / exp …aE1=2†, derived for a non-interacting Fermi
gas (Rosenzweig and Porter 1960, Bohr and Mottelson 1969, Camarda and Georgopulos
1983).



However, there is su� cient evidence that the presence of an increasing diagonal

in the Hamiltonian matrix restores the validity of equation (32). Physically, this is an

eŒect of the mean ® eld on the orbitals, as described by the one-body term in the
Hamiltonian (2). The increase in spacings between the diagonal energies Em in the

perturbation expansion (22) leads to the reduction in the higher-order contributions

(where the two-body nature of the interaction makes a diŒerence). The Breit± Wigner

shape of the strength function (47) corresponding to S…E† ˆ ¡ipV 2=D, is in fact

given by the second-order contribution in S, and all higher-order terms in expansion
(28) are equal to zero in this approximation. Additional evidence comes from numer-

ical calculations for the random two-body interaction model (G. F. Gribakin 1999,

unpublished). This was shown that even a small non-zero diagonal Hkk generated by

the one-body term in equation (2) quickly restores the applicability of equations

(32)± (34) to the calculation of the strength functions and total density of states.

} 3. STATISTICAL DESCRIPTION

3.1. Microcanonical partition function
In this section we are going to derive a partition function for a closed (isolated)

system of a ® nite number of interacting particles. Examples of such systems are

compound nuclei, complex atoms, atomic clusters and isolated quantum dots.

This function allows one to perform analytical and numerical calculations of statis-

tical mean values of diŒerent operators, for example occupation numbers.
Let us use the Hamiltonian (2) as a starting point. The one-body part

incorporates the eŒect of a mean ® eld, "¬ being the energies of the single-particle

states (orbitals) in this ® eld. The two-body part describes the residual interaction.

For simplicity, here we neglect any dynamic eŒects of the interaction such as pairing

and collective modes. Instead, we concentrate on the statistical eŒects of the inter-
action, therefore, in what follows we can assume that the matrix elements V ¬ ®¯ are

random variables.

The exact eigenstates of the Hamiltonian jii are expressed in terms of the simple

s̀hell-model’ basis states jki by means of equation (5). They are characterized by

their energies E…i†. As discussed in } 2, in complex systems they typically contain

large numbers Np ¾ 1 of principal components C…i†
k , which ¯ uctuate r̀andomly’ as a

function of indices i and k.

Let us consider the occupation number n¬ of a single-particle state ¬ in a chaotic

(`compound’ ) eigenstate jii. It can be presented in terms of the eigenstate compo-

nents as

n…i†
¬ ˆ hijn̂¬jii ˆ

X

k

jC…i†
k j2hkjn̂¬jki; …57†

where n̂¬ ˆ ay
¬a¬ is the occupation number operator. Knowledge of the distribution

of the occupation numbers enables one to calculate the mean value of any single-

particle operator hMi ˆ
P

¬ n¬M¬¬. Moreover, the variance of the distribution of
non-diagonal elements of M which describe transition amplitudes between chaotic

eigenstates, can also be expressed through the occupation numbers n¬ (Flambaum

1993, 1994, Flambaum et al. 1994, 1996a, Gribakina et al. 1995).

As one can see from equation (57), the mean values of occupation numbers

depend on the shape of exact eigenstates, given by the s̀preading function’ F (in
what follows, the F function):
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F…i†
k ² jC…i†

k j2 º F…Ek ; E…i††: …58†

This function is closely related to the strength function (7) and the density of states

(11):

»W…E; k† º F…Ek; E…i††»…E†: …59†

It follows from the consideration in } 2.1 (see equation (35)) that the residual inter-

action V strongly mixes the basis states k in the energy interval G (spreading width)

near the eigenstate energy E…i†. Typically, this spreading function rapidly decreases

with an increase in jEk ¡ E…i†j (since the admixture of distant component is small). In
agreement with the theoretical considerations, recent numerical studies of the

Cerium atom (Flambaum et al. 1994, Gribakina et al. 1995), the s± d nuclear shell

model (Horoi et al. 1995a,b, Frazier et al. 1996, Zelevinsky et al. 1996) and random

two-body interaction model (Flambaum et al. 1996a,b) showed that the typical

shapes F of exact eigenstates are almost the same in diŒerent many-body systems
and have a universal form which essentially depends on the spreading width G. The

latter can be expressed in terms of the parameters of the model (intensity V of the

residual interaction, number ² of particles, excitation energy, etc,; see equation (50)).

One can also measure the width of the F function (58) via the number of principal

components, Np ¹ G=D, where D is the local mean level spacing between the com-

pound states. In many-body systems the value of D decreases exponentially with
increase in the number of active (valence) particles. As a result, Np is very large,

about 104-106 in excited (compound) nuclei and about 102 ± 105 in excited rare-earth

or actinide atoms and many multicharged ions (Gribakin et al. 1999).

Using equations (57) and (58) and the normalization of the F functionP
k F…Ek; E† ˆ 1, we can write

n¬…E† ˆ
P

k n…k†
¬ F…Ek ; E†P

k F…Ek ; E† ; …60†

where n…k†
¬ ² hkjn̂¬jki equals 0 or 1, depending on whether the orbital ¬ is empty or

occupied in the basis state k. This way of averaging the occupation numbers can be

compared with microcanonical averaging, since it is de® ned for a ® xed total energy E
of a system. In fact, equation (60) is equivalent to the introduction of a new kind of
partition function

Z…E† ˆ
X

k

F…Ek ; E†; …61†

which is entirely determined by the shape of the chaotic eigenstates. In what follows,
we term equation (60) the F distribution.

Equation (60) gives a new insight into the problem of statistical description of

complex systems. Indeed, as mentioned above, the shape of the F function has

universal features and can be often described analytically; therefore, in practice

there is no need to diagonalize the huge Hamiltonian matrix of a many-body system
in order to obtain statistical averages. Note that the summation in equation (60) is

carried out over the unperturbed energies Ek de® ned by the mean ® eld, rather than

over the exact eigenstates, as in the standard canonical distribution. As a result, the

distribution of the occupation numbers can be derived analytically (see } 5) even for

a few interacting particles, that is in the situation when the standard Fermi± Dirac
distribution is not valid.
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3.2. Transition to the canonical distribution

It is instructive to compare our F distribution (60) with the occupation numbers

in an open system at a given temperature T (e.g. a quantum dot with a ® xed number
of electrons). We can calculate the eŒect of non-diagonal matrix elements of the

interaction on the distribution of the occupation numbers (the diagonal matrix

elements are included in the de® nition of Ek ˆ Hkk). This distribution is given by

the canonical equation

n¬…T † ˆ
P

i n…i†
¬ exp …¡E…i†=T †

P
i exp …¡E…i†=T †

; …62†

where T is the temperature and the index i enumerates exact eigenstates. The impor-

tant diŒerence between the F distribution (60) and the canonical distribution (62) is

that in the former the occupation numbers are calculated for a speci® c energy E of
the system, while in the latter they correspond to a given temperature T . However,

the results of calculations based on equations (62) and (57) can be compared with

each other using the relation between the energy E and the temperature T :

E ˆ hEiT ˆ
P

i E…i† exp …¡E…i†=T †P
i exp …¡E…i†=T †

: …63†

Let us substitute n…i†
¬ from equation (57) into equation (62) and replace the

summation over i by integration over »…E† dE where »…E† is the eigenvalue density:

X

i

n…i†
¬ exp

³
¡ E…i†

T

´
º

…
n¬…E†FT …E† dE; …64†

where we have introduced the `canonical (thermal) averaging’ function,

FT …E† ˆ »…E† exp ¡
E
T

³ ´
: …65†

As a result, we can transform the canonical distribution (62) into a form similar to
the F distribution (60):

n¬…T † ˆ
P

k n…k†
¬

~F…T ; Ek†
P

k
~F…T ; Ek†

; …66†

where the function ~F…T ; Ek† is the canonical average of F:

~F…T ; Ek† ˆ
…

F…Ek ; E†FT …E†

ˆ exp ¡ Ek

T

³ ´
gk…T † …67†

and

gk…T † ˆ
…

»W…z ‡ Ek; k† exp

³
¡ z

T

´
; …68†

where z ˆ E ¡ Ek . This form of the canonical distribution which expresses the results

in terms of the basis components (instead of exact eigenstates) may be convenient for

the calculation of the occupation numbers and other mean values in quantum dots in
thermal equilibrium with an environment (with no particle exchange). The occupa-
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tion numbers in the basis states are n…k†
¬ ˆ 1 or 0, and it is very easy to perform the

summation in equation (66) for n¬…T † or in equation (60) for n¬…E† numerically.

If the strength function »W…E; k† is a function of E ¡ Ek only, that is we can
neglect the separate dependence of Sk…E† on the energy E and index k (see equation

(35)), the function gk…T † becomes independent of the energy Ek and index k. In this

case g…T † is a common factor which cancels out in the equation (66) for the occupa-

tion numbers. This is a surprising result, because it means that the distribution of the

occupation numbers does not depend on the non-diagonal matrix elements of the
interaction! The diagonal matrix elements of the interaction included in Ek can still

be important, especially in systems with a small number of active particles (see for

example Flambaum et al. (1998b) who discussed the numerical calculation of the

occupation numbers in the cerium atom with four electrons in the open shell).

However, quite often we can strongly reduce the diagonal matrix elements of resi-
dual interaction by a proper choice of the mean-® eld potential (e.g. one can use the

Hartree± Fock potential with temperature-dependent occupation numbers). In this

case, one obtains the Fermi± Dirac (or Bose± Einstein) distribution of the occupation

numbers with single-particle energies which may depend on temperature. Note that

the ìnitial’ interaction between the particles is not assumed to be small!

There are several reasons why this conclusion is not applicable at low tempera-
tures. If the excitation energy Ek ¡ Emin is smaller than the spreading width G, one

has to take into account the energy-dependent limits of the integral in equation (68).

The approximation of a constant shape of the strength function »W may be valid for

highly excited eigenstates only. The low-energy states described by the Breit± Wigner

shape have the width Gk…E† which may have a strong energy dependence. Finally, at
very low excitation energies the condition of equilibrium V km > df is not satis® ed,

and there is no equilibrium distribution F. Therefore, for very low temperatures,

equations (66) and (67) are not applicable. However, in this range there are good

traditional approaches such as the Landau± Migdal Fermi-liquid theory for ® nite

systems.

3.3. Transition to the Fermi± Dirac distribution

Let us now show how the standard Fermi± Dirac distribution emerges directly

from the F distribution (60) for a closed system, in the limit of large number of

particles. By separating the sums over the states k with n…k†
¬ ˆ 0 and n…k†

¬ ˆ 1, equa-
tion (60) can be rewritten as

n¬…E† ˆ 0 ‡ Z¬…n ¡ 1; E ¡ ~"¬†
Z¬…n ¡ 1; E ¡ ~"¬† ‡ Z¬…n; E†

ˆ 1 ‡ Z¬…n; E†
Z¬…n ¡ 1; E ¡ ~"¬†

³ ´¡1

: …69†

Here, two `partial’ partition functions Z¬…n; E† and Z¬…n ¡ 1; E ¡ ~"¬† have been
introduced. In the ® rst (n…k†

¬ ˆ 0), the summation is carried over all basis states of

n particles with the orbital ¬ excluded: Z¬…n; E† ˆ
P 0

k F…Ek ; E†. The second sum

Z¬…n ¡ 1; E ¡ ~"¬† includes all basis states of n ¡ 1 particles with the orbital ¬
excluded. The latter corresponds to the basis states in which the orbital ¬ is ® lled

(n…k†
¬ ˆ 1); hence, the energy ~"¬ ² Ek…n† ¡ Ek…n ¡ 1† of this orbital must be sub-

tracted from the total energy E of the n-particle system. (Here we in fact assume
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that the F function depends on the diŒerence Ek ¡ E only.) The energy ~"¬ can be

obtained as

~"¬ ˆ "¬ ‡
X

 6ˆ¬

U¬ n…k†
 ; …70†

where "¬ is the energy of a single-particle state and U¬ ² V ¬  ¬ ¡ V ¬ ¬ is the
diagonal matrix element of the two-body residual interaction (direct minus

exchange) (see equation (2)). By considering ~"¬ to be independent of k we assume

that averaging over the basis states near the energy E is possible. This assumption is

equivalent to a local (at a given energy) mean-® eld approximation.

We should stress that this approximation is most important in deriving a good
mean-® eld description from equation (2) for realistic systems. For example, in the

cerium atom there are several orbitals belonging to diŒerent open subshells (4f, 6s,

etc.), which are quite close in energies and yet have very diŒerent radii. As a result,

the Coulomb interactions between the electrons in such orbitals are very diŒerent

(Flambaum et al. 1998b). In this case the second (interaction) term in equation (70)
¯ uctuates strongly, depending on the occupation numbers of the other orbitals. As a

result, there is no good mean-® eld approximation, and the equilibrium distribution

of the occupation numbers is very diŒerent from the Fermi± Dirac distribution

(Flambaum et al. 1998b). However, the F distribution (60) gives a good description

of the occupation numbers. In other cases, for example, the two-body random

interaction model (Flambaum et al. 1996a,b, Flambaum and Izrailev 1997a,b) or
the nuclear shell model (Horoi et al. 1995a,b, Frazier et al. 1996, Zelevinsky et al.

1996), the local mean-® eld approximation is quite accurate.

For a large number n ¾ 1 of particles distributed over a large number m ¾ 1 of

orbitals, the dependence of Z¬ on both n and ~"¬ is very rapid, since the number N of

terms in the partition function Z¬ is exponentially large: N ˆ m!=‰…m ¡ n†!n!Š. To
make the dependence on the arguments smooth, we should consider ln Z¬ instead of

Z¬ and then expand

ln ‰Z¬…n ¡ ¢n; E ¡ ~"¬†Š º ln ‰Z¬…n; E†Š ¡ A¬ ¢n ¡ B¬~"¬;

where

A¬ ˆ @…ln Z¬†
@n

; B¬ ˆ @…ln Z¬†
@E

; ¢n ˆ 1: …71†

This immediately leads from equation (69) to a distribution of the Fermi± Dirac type:

n¬ ˆ 1

1 ‡ exp …A¬ ‡ B¬~"¬† : …72†

If the number of essentially occupied orbitals in the de® nition of Z¬ is large, the

parameters A¬ and B¬ are not sensitive as to which particular orbital ¬ is excluded

from the sum and one can introduce A¬ ˆ A ² ¡·=T , and B¬ ˆ B ² 1=T , as in the
standard Fermi± Dirac distribution. The chemical potential · and temperature T are

determined implicitly by the total number of particles and energy of the system:
X

¬

n¬ ˆ n;

X

¬

"sns ‡
X

¬<

U¬ n¬n ˆ 1
2

X

¬

n¬…"¬ ‡ ~"¬† ˆ E:
…73†
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Note that in equations (73) and (70), the terms containing the residual interaction

U¬ can be substantially reduced by an appropriate choice of the mean-® eld basis

(for instance, the terms U¬ may have diŒerent signs in such a basis). In practice, the
values "¬ and ~"¬ can be very close. Since in equations (73) the non-diagonal matrix

elements of the interaction are not taken into account, one can expect that the

distribution of the occupation numbers de® ned by these equations gives correct

results if the interaction is su� ciently weak (ideal-gas approximation) . However, it

can be shown (Flambaum and Izrailev 1997a,b) that even for strongly interacting
particles the Fermi± Dirac distribution can be applied, if the total energy E is cor-

rected by taking into account the increase in temperature due to statistical eŒects of

the interaction.

One should also note that a somewhat similar procedure transforms the cano-

nical distribution (62) into the Fermi± Dirac distribution (for example Reif (1965)) in
the case of many non-interacting particles (ideal gas). It is curious that the Fermi±

Dirac distribution is very close to the canonical distribution (62) even for a very

small number of particles (n ˆ 2), provided that the number of essentially occupied

orbitals is large, that is for T ¾ " or · ¾ ". In fact, this results from a large number

of `principal’ terms in the partition function Z¬, which enables one to replace A¬ by

A in the ratio Z¬…n; T †=Z¬…n ¡ 1; T † ² exp …A¬ ‡ B"¬† in the canonical distribution
(62) (cf equation (69)).

A more accurate consideration shows, however, that the temperature T in the

Fermi-Dirac distribution is diŒerent from that in the canonical distribution. Indeed,

using the expansion A¬ ˆ A…"F† ‡ A 0…"¬ ¡ "F†, where "F is the Fermi energy, one

can obtain a relation between the Fermi± Dirac (BFD† and canonical (B) inverse
temperatures: BFD ˆ B ‡ A 0"F. The de® nition of the chemical potential also

changes: ¡·=T ˆ A…"F† ¡ A 0"F. This is con® rmed by numerical simulations for a

closed system of few interacting Fermi particles (Flambaum et al. 1996a,b,

Flambaum and Izrailev 1997a,b). The simulations show that, for the same total

energy E of the system, the canonical and Fermi± Dirac distributions give identical
distributions n¬. However, they correspond to diŒerent temperatures determined by

equations (63) and (73), respectively.

The similarity of these two distributions for any number of particles is not so

surprising in the presence of a thermal bath, where even a single particle is ìn

equilibrium’. On the other hand, for closed systems with small numbers of particles

the applicability of the Fermi± Dirac distribution is not obvious. To answer this
question, one needs to analyse the role of interaction in the creation of an equili-

brium distribution (} 2).

} 4. STATISTICAL DESCRIPTION OF TRANSITION AMPLITUDES

4.1. Mean-squared matrix elements

Several approaches have been suggested to calculate matrix elements between

compound states. Urin and Vyazankin (1991) expressed the mean-squared matrix
element in terms of the strength function of a cold nucleus and calculated the latter

semiempirically in the framework of t̀emperature mechanism’. The calculations by

Johnson et al. (1991), Johnson (1995) and Johnson and Bowman (1995) were based

on the the work by French et al, (1988) and used the assumption that the mean-

squared matrix element of the parity-non-conserving interaction is proportional to
that of the residual shell-model strong interaction. In this section we consider a
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statistical method described previously (Flambaum 1993, 1994, Flambaum and

Vorov 1993, Flambaum et al. 1994, 1996a, Gribakina et al. 1995). It can be applied

to calculation of mean-square matrix elements between chaotic (compound) states
(5).

Let us consider a single-particle operator

M̂ ˆ
X

¬

ay
¬a M¬ ˆ

X

¬

»¬ M¬ : …74†

It is convenient to express the matrix elements of M̂ in terms of matrix elements of

the density matrix operator »¬ ˆ ay
¬a , which transfers a particle from orbital  into

orbital ¬. One can see that the matrix element of M̂ between the compound states n1

and n2,

hn1jM̂jn2i ˆ
X

¬

M¬ hn1j»¬ jn2i

ˆ
X

¬

M¬

X

ij

C…n1†
i hij»¬ j jiC…n2†

j ; …75†

has zero mean owing to the statistical properties of the components, that is

hn1j»¬ jn2i ˆ 0.

The variance of the matrix elements of M̂ can be presented in the following form:

jMn1n2
j2 ˆ

X

¬

jM¬ j2jhn1j»¬ jn2ij2; …76†

where we have taken into account the result obtained by Flambaum et al. (1996a)

that the average of the correlator

hn1j»¬ jn2ihn2j»¯® jn1i ˆ
X

ijkl

C…n1†
i C…n1†

j C…n2†
k C…n2†

l hij»¬ jkihlj»¯®j ji …77†

is zero, unless ® ˆ ¬, ¯ ˆ  . Therefore, the calculation of jMn1n2
j2, or a correlator

Mn1n2
W n2n1

is reduced to the calculation of jhn1j»¬ jn2ij2. The variance of the matrix

element »¬ between the two compound states can be transformed into

j»…n1n2†
¬ j2 ˆ hn1j»¬ jn2ihn2j» ¬jn1i

ˆ
X

ijkl

C…n1†
i C…n1†

j C…n2†
k C…n2†

l hij»¬ jkihlj» ¬j ji

ˆ S …n1n2†
d ‡ S …n1n2†

c ; …78†

where we separate the diagonal and non-diagonal contributions to the sum (78):

S …n1n2†
d ˆ

X

ik

jC…n1†
i j2jC…n2†

k j2jhij»¬ jkij2; …79†

S …n1n2†
c ˆ

X

i 6ˆj; k 6ˆl

C…n1†
i C…n1†

j C…n2†
k C…n2†

l hij»¬ jkihlj» ¬j ji: …80†

Note that the diagonal term S …n1n2†
d is essentially positive. If the eigenstates are

completely r̀andom’ (diŒerent components both inside each eigenstate and of dif-
ferent eigenstates are uncorrelated), the correlation sum Sc is zero, and the variance
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is determined by the the diagonal sum Sd (this assumption was used in the previous

calculations of matrix elements between the compound states (Sushkov and

Flambaum 1982, Flambaum 1993, 1994, Flambaum and Vorov 1993, Flambaum
et al. 1994, Gribakina et al. 1995)). However, as we show below, in many-body

systems these two terms are of the same order, Sc º Sd, even if the two-body inter-

action V is random.

Following Flambaum et al. (1994) and Gribakina et al. (1995), let us replace the

squared eigenstate components in equation (79) by their averages (F functions),
equation (58).y The diagonal sum now takes the form

S …n1n2†
d ˆ

X

ik

F…Ei; E…n1††F…Ek; E…n2††hij»¬ jkihkj» ¬jii: …81†

The summation over k for a ® xed i includes only one state, jki ˆ » ¬jii, with

Ek ˆ Ei ‡ ! ¬, where ! ¬ is the diŒerence between the single-particle energies:

! ¬ º " ¡ "¬. On the other hand, we can write
X

k

hij»¬ jkihkj» ¬jii ˆ hij»¬ » ¬jii ˆ hijn̂¬…1 ¡ n̂ †jii; …82†

where n̂¬ ˆ ay
¬a¬ and n̂ ˆ ay

 a are the occupation number operators. Thus, we
obtain

S …n1n2†
d ˆ

X

i

F…Ei; E…n1††F…Ei ‡ ! ¬; E…n2††hijn̂¬…1 ¡ n̂ †jii: …83†

The matrix element hijn̂¬…1 ¡ n̂ †jii is equal to unity if the orbital ¬ is occupied
and  is vacant in the basis state jii; otherwise, it is zero. Both F values in equation

(83) are smooth functions of energy normalized as
P

i F…Ei; E…n1†† ˆ 1. This allows

one to replace the matrix element of n̂¬…1 ¡ n̂ † by its expectation value:

hijn̂¬…1 ¡ n̂ †jii ˆ
X

i

F…Ei; E…n1††hijn̂¬…1 ¡ n̂ †jii

ˆ
X

i

jC…n1†
i j2hijn̂¬…1 ¡ n̂ †jii

º hn̂¬…1 ¡ n̂ †in1
: …84†

The sign º above is a reminder that the left-hand side is the local average over the

states jn1i. Practically, when the number of components is large, the ¯ uctuations of

hn̂¬…1 ¡ n̂ †in1
are expected to be small. Now we can rewrite equation (83) in the

following form:

S …n1n2†
d ˆ hn̂¬…1 ¡ n̂ †in1

X

i

F…Ei; E…n1††F…Ei ‡ ! ¬; E…n2††: …85†

It was shown in Flambaum et al. (1994) and Gribakina et al. (1995) that, under

some reasonable assumptions about the F functions, one can introduce a s̀pread ¯
function’ ~̄…D†,
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~̄…D† ˆ D¡1
2

X

i

F…Ei; E…n1††F…Ei ‡ ! ¬; E…n2††

ˆ D¡1
2

…
dEi

D1

F…Ei; E…n1††F…Ei ‡ ! ¬; E…n2††; …86†

where D ˆ E…n2† ¡ E…n1† ¡ ! ¬ and D1 and D2 are local mean level spacings for the n1

and n2 eigenstates. The function ~̄…D† is symmetric, its characteristic width is deter-

mined by the spreading widths of the eigenstates n1 and n2, G º G1 ‡ G2, and it is
normalized to unity,

„
~̄…D† dD ˆ 1, just as the standard ¯ function. If the F values

have Breit± Wigner shapes (see } 2), ~̄ is also a Breit± Wigner function:

~̄…D† ˆ 1

p
G=2

D2 ‡ G2=4
; …87†

with G ˆ G1 ‡ G2. The fact that S …n1n2†
d is proportional to the function ~̄…D† is a

particular manifestation of the energy conservation for transitions between the qua-

sistationary basis states (Flambaum 1993, 1994, Flambaum and Vorov 1993) (if

G ! 0, then ~̄…D† ! ¯…D†). Using equations (76), (85) and (86) we can ® nally present
the diagonal contribution to the variance of the matrix element Mn1n2

in the follow-

ing form:

jMn1n2
j2diag ˆ

X

¬

jM¬ j2hn̂¬…1 ¡ n̂ †in1
D2

~̄…E…n2† ¡ E…n1† ¡ ! ¬†: …88†

This expression is apparently asymmetric with respect to the states n1 and n2. By

performing the calculation in a diŒerent way we can obtain

S …n1n2†
d ˆ hn̂ …1 ¡ n̂¬†in2

X

k

F…Ek ¡ ! ¬; E…n1††F…Ek ; E…n2†† …89†

instead of equation (85), thereby arriving at a diŒerent formula for the variance:

jMn1n2
j2diag ˆ

X

¬

jM¬ j2hn̂ …1 ¡ n̂¬†in2
D1

~̄…E…n2† ¡ E…n1† ¡ ! ¬†: …90†

In this form the occupation-number factor is calculated for the state n2; it represents

the probability of ® nding orbital  occupied and ¬ empty. If the assumptions made

in the above derivations are correct, the two equations (88) and (90) should give

identical results.

Previously (Flambaum et al. 1996a) we used the random two-body interaction

model to check the accuracy of the statistical formulae derived above and found that
the values of S …n1n2†

d given by equations (85) and (89) almost coincided and were in

good agreement with the initial expression (79). Similar tests were also made in the

calculations for the cerium atom (Flambaum et al. 1994, Gribakina et al. 1995).

It is quite important for applications of the statistical approach (Flambaum

1993, 1994, Flambaum and Vorov 1993, Flambaum and Gribakin 1995,
Flambaum et al. 1998a) that further simpli® cations be made by replacing the corre-

lated occupancies product hn̂¬n̂ in1
in equation (84) by the product hn̂¬in1

hn̂ in1
of the

two mean values. This is de® nitely a valid operation when the numbers of excited

particles and active orbitals are large, so that the occupation numbers for diŒerent

orbitals become statistically independent. Then one would be able to use the follow-
ing relation:
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hn̂¬…1 ¡ n̂ †i º n…"¬†‰1 ¡ n…" †Š; …91†

where n…"¬† and n…"¬† are the occupation numbers. This approximation was tested

by Flambaum et al. (1996a) using the random two-body interaction model. Even for
a system of four particles the accuracy of equation (91) remained reasonable, the

error being about 10% . This error is larger for the lowest eigenstates where the

number of principal basis components is small and there is little or no thermalization

and `chaos’ . In order to make a more direct test of the validity of equation (91), a

correlator hn̂¬n̂ in1
=…hn̂¬in1

hn̂ in1
† was calculated as function of n1. For a small num-

ber of particles (n ˆ 4), this correlator displayed large ¯ uctuations, however, its
average value of about 0.8 was still rather close to 1.

If the number of excited particles is large, one can use the Fermi± Dirac formula

for the occupation numbers:

n…"† ˆ 1

1 ‡ exp ‰…" ¡ ·†=T Š
…92†

(see } 3.3) with the temperature T and chemical potential (Fermi energy) · found

from equations (73). Equations (88)± (91) together with equation (73) allow one to

make computer calculations of the mean-squared matrix elements between com-

pound states.

Following the same steps for a two-body operator

Û ˆ 1
2

X

¬ ®¯

U¬ ®¯a
y
¬ay

 a®a¯ ; …93†

we obtain the following expression for the mean-squared matrix element:

jUn1n2
j2diag ˆ 1

4

X

¬ ®¯

jU¬ ®¯ ¡ U¬ ¯®j2hn¬n …1 ¡ n®†…1 ¡ n¯†in1
D2

~̄…! ¡ !®¯;¬ †; …94†

where ! ² E…n2† ¡ E…n1† and !®¯;¬ ˆ "® ‡ "¯ ¡ "¬ ¡ " is the energy of the two-

particle transition ¬;  ! ®; ¯.

We can also calculate the correlator CMW between the matrix elements of two
operators M and W with identical selection rules:

CMW ²
Mn1n2

W n2n1

…jMn1n2
j2 jW n1n2

j2†1=2

ˆ
P

¬ M¬ W  ¬j»…n1n2†
¬ j2

…
P

¬ jM¬ j2j»…n1n2†
¬ j2†1=2…

P
¬ jW ¬ j2j»…n1n2†

¬ j2†1=2
: …95†

One can easily see that jCMWj ˆ 1 if the matrix elements W ¬ and M¬ are propor-

tional to each other …M¬ ˆ constant £ W ¬ ), or if there is only one dominating

single-particle transition, say, s ! p (Msp ¾ M¬ and W sp ¾ W ¬ for all ¬ 6ˆ s,

 6ˆ p†. Usually there are several important single-particle transitions near the
Fermi surface (q º 10). If there are no special reasons for the coherence or cancella-

tions one may expect jCMWj º 1=q1=2 º 0:3. However, in the most interesting case of

P-odd and P; T -odd interactions there are pairs of opposite-sign contributions.

Indeed, the matrix elements of the weak parity-non-conserving interaction are

imaginary, W  ¬ ˆ W *¬ ˆ ¡W ¬ , while the matrix elements of the P; T -odd
interaction are real, M ¬ ˆ M¬ . Therefore, we have pairs of opposite-sign terms:
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W ¬ M ¬j»…n1n2†
¬ j2 ‡ W  ¬M¬ j»…n1n2†

 ¬ j2 ˆ W ¬ M ¬…j»…n1n2†
¬ j2 ¡ j»…n1n2†

 ¬ j2†;

which is proportional to n¬…1 ¡ n † ¡ n …1 ¡ n¬†. This partial cancellation makes the
correlator small (jCMWj 4 0:3), which means that in practice the matrix elements of

the P; T -odd and the P-odd weak interactions are statistically independent.

Note that equations (88) and (94) for the matrix elements Mn1n2
and Un1n2

respec-

tively have a simple interpretation. The transition ¬ !  takes place if the orbital ¬
is occupied and  is vacant. Accordingly, the factor n¬…1 ¡ n † selects transitions
near the Fermi surface. In the limit G1 ‡ G2 ! 0, the function ~̄ transforms into a

conventional ¯ function. Therefore, it re¯ ects the `conservation of energy’ for the

quasistationary states with ® nite widths G1 and G2. The M̂ operator f̀avours’ the

transitions between the compound states with the energy diŒerence E…n2† ¡ E…n1† ² !,

close to ! ¬, where ! ¬ is the energy diŒerence between the energies of the single-

particle orbitals coupled by M̂. In the case when ! º ! ¬,

…jMn1n2
j2†1=2 ¹ jM¬ j 2D2

pG

³ ´1=2

¹
jM¬ j
N1=2

p2

; …96†

where M¬ is the single-particle matrix element, and we have used equation (87) and

assumed that the number Np2 of principal components is large (much greater than
unity). Far from r̀esonance’ , at j! ¡ ! ¬j > G the matrix element is suppressed by

the factor G=j! ¡ ! ¬j (in the Breit± Wigner model). This suppression is especially

important for the calculations of the weak matrix element between nearby com-

pound states in nuclei, where ! ˆ 0, ! ¬ º 5± 10 MeV 5 G º 2 MeV.

4.2. Correlations due to the two-body interaction

In this section, following Flambaum et al. (1996a), we show how the basic two-

body interaction gives rise to speci® c correlations between the Hamiltonian matrix

elements, components of `chaotic’ eigenstates, and transition amplitudes.
Our consideration is based on the random two-body interaction model, origin-

ally introduced by French and Wong (1970) and Bohigas and Flores (1971). In this

model, n Fermi particles are distributed among m non-degenerate orbitals with

energies ", coupled by random two-body matrix elements V ¬ ®¯. The many-body

basis states jii are constructed by specifying the n occupied orbitals. The energy Ei
of the basis state equals the sum of the single-particle energies over the occupied
orbitals. The total number of the many-particle states in the model is

N ˆ m!=‰n!…m ¡ n†!Š ¹ exp fn ln …m=n† ‡ …m ¡ n† ln ‰m=…m ¡ n†Šg. The latter estimate

relates to large m and n and shows that N is exponentially large for n; m ¡ n ¾ 1.

The number of independent parameters of the many-body Hamiltonian is given

by the number of diŒerent two-body interaction matrix elements V ¬ ®¯ and equals
N2 ˆ m2…m ¡ 1†2=2. Because of the two-body character of the interaction, the

Hamiltonian matrix element Hij ˆ hijHj ji is non-zero only when jii and j ji diŒer

by no more than two occupied single-particle orbitals. As a result, the number K of

the non-zero matrix elements Hij is given by

K ˆ N…K0 ‡ K1 ‡ K2†;

where

K0 ˆ 1; K1 ˆ n…m ¡ n†; K2 ˆ 1
4
n…n ¡ 1†…m ¡ n†…m ¡ n ¡ 1†; …97†
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are the numbers of the Hamiltonian matrix elements coupling a particular basis state

i to another basis state j which diŒers from i by the positions of no particles, one

particle and two particles respectively. Therefore, for n; m ¡ n ¾ 1 we have
N2 ½ K ½ N2, that is the Hamiltonian matrix is essentially sparse and, in a sense,

strongly correlated.

To see the correlation between non-zero matrix elements, let us consider a pair of

basis states jii and j ji which diŒer in the states of two particles, for example the state

j ji can be obtained from the state jii by transferring the particles from the orbitals

¬;  into the orbitals ®; ¯. For all such pairs, the Hamiltonian matrix elements are the

same: Hij ˆ V ¬ ¯® (or, strictly speaking, Hij ˆ §V ¬ ¯®, owing to Fermi statistics). It

is easy to calculate the total number Neq of the matrix elements Hij equal to V ¬ ¯®,

using the fact that the remaining n ¡ 2 particles can be arbitrarily distributed over

m ¡ 4 orbitals:

Neq ˆ …m ¡ 4†!
…n ¡ 2†!…m ¡ n ¡ 2†!

: …98†

For basis states jii and j ji which diŒer in the state of one particle …¬ !  † the matrix

element Hij equals the sum of the n ¡ 1 two-body interaction matrix elements,

Hij ˆ
P

® V ¬®® (the index ® runs over the rest n ¡ 1 occupied orbitals). In this

case Hij for diŒerent jii and j ji (with ® xed ¬ and  ) do not coincide but may contain

identical terms V ¬®® , that is they are also correlated.
The eigenstates jn1i of the model are determined by their components C…n1†

i with

respect to the many-particle basis states jii and can be found by solving the

SchroÈ dinger equation:
X

j

HijC
…n1†
j ˆ E…n1†C…n1†

i : …99†

It is rather straightforward to show that the correlations between Hij result in

correlations between the components C…n1†
i . Indeed, let us multiply the SchroÈ dinger

equation by the coe� cient C…n1†
i and sum over n1. Using the orthogonality conditionP

n1
C…n1†

i C…n1†
j ˆ ¯ij, one obtains

Hij ˆ
X

n1

C…n1†
i E…n1†C…n1†

j : …100†

In what follows, we assume that the matrix elements of the two-body interaction V

are random variables with the zero mean, therefore, Hij ˆ 0 for i 6ˆ j. In this case,

one can obtain C…n1†
i C…n1†

k ˆ 0 where the line stands for averaging over diŒerent

realizations of V. However, if matrix elements of the Hamiltonian are correlated,

HijHkl 6ˆ 0, the components of diŒerent eigenvectors jn1i and jn2i are also correlated,

since

HijHkl ˆ
X

n1n2

C…n1†
i E…n1†C…n1†

j C…n2†
k E…n2†C…n2†

l 6ˆ 0: …101†

The latter relation shows that C…n1†
i C…n1†

j C…n2†
k C…n2†

l 6ˆ 0.

This eŒect has important consequences. Below we show how these correlations

emerge in the non-diagonal term Sc (equation (80)). First, note that for a given i the

sum over k in equation (79) for Sd contains only one term, for which
jki ˆ ay

 a¬jii ² ji 0i, determined by transferring one particle from the orbital ¬ to
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the orbital  in the state jii (hereafter we shall use the notation i 0 to denote such

states). Accordingly, the index i runs over those states in which ¬ is occupied and  is

vacant. For such i and i 0 the matrix element hij»¬ ji 0i ˆ 1; otherwise, it is zero.
Therefore, in fact, the sum in equation (79) is a single sum, with a number of

items less than N:

S …n1n2†
d ˆ

X

i

0jC…n1†
i j2jC…n2†

i 0 j2; …102†

where the sum
P

i
0 runs over the speci® ed i. Analogously, equation (80) can be

written as the double sum over i and j speci® ed as above:

S …n1n2†
c ˆ

X

i 6ˆj

00
C…n1†

i C…n1†
j C…n2†

i 0 C…n2†
j 0 ; …103†

where j 0 is a function of j, j j 0i ˆ ay
 a¬j ji. Note that the energies of the basis states

and their primed partners are connected as Ei 0 ¡ Ei ˆ " ¡ "¬ ˆ Ej 0 ¡ Ej.

One can expect that maximal values of the sum (102) and, possibly, the sum (103)

are achieved when the C values are principal components of the eigenstates.

This means that the mean square of the matrix element jhn1j»¬ jn2ij2 is maximal
when the operator »¬ couples the principal components of the state jn1i with those

of jn2i, that is for E…n1† ¡ E…n2† º !¬ ² "¬ ¡ " . Far from the maximum

(jE…n1† ¡ E…n2† ¡ !¬ j > G) a principal component of one state, say, n1, is coupled

to a small component k of the other state n2 (jEk ¡ E…n2†j > G†. The latter case is

simpler to consider analytically, since the admixture of a small component in the

eigenstate can be found by means of perturbation theory. This approach reveals the

origin of the correlations in the sum Sc (equation (103)). For example, if C…n1†
j is a

small component of the eigenstate n1, then it can be expressed as a perturbation

theory admixture to the principal components. If C…n1†
i is one of the latter, then there

is a term in the sum (103), which is proportional to the principal component squared,

jC…n1†
i j2.

Indeed, there are four possibilities:

(i) C…n1†
i and C…n2†

j 0 are among the principal components, and C…n1†
j and C…n2†

i 0

correspond to the small components. Then, one can write

C…n1†
j ˆ h jjHj~n1i

E…n1† ¡ Ej
ˆ gX

p

Hjp

E…n1† ¡ Ej
C…n1†

p ; …104†

C…n2†
i 0 ˆ hi 0jHj~n2i

E…n2† ¡ Ei 0
ˆ gX

p

Hi 0q

E…n2† ¡ Ei 0
C…n2†

q : …105†

The tilde above the summation sign indicates that the summation runs

over the principal components only. The `coherent’ contribution to the sum

Sc in equation (103) is obtained by separating the squared contributions of
the principal components in the sums in S …n1n2†

c (i.e. p ˆ i; q ˆ j 0†:

gX

i;j 0

00 Hi 0j 0 Hji

…E…n2† ¡ Ei 0 †…E…n1† ¡ Ej†
jC…n1†

i j2jC…n2†
j 0 j2: …106†
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Taking into account that for the principal components we have Ei º E…n1†

and Ej 0 º E…n2†, we can replace the energies, Ei 0 ! E…n1† ‡ ! ¬ and

Ej ! E…n2† ¡ ! ¬ and thus obtain the following contribution to S …n1n2†
c :

¡ 1

…E…n2† ¡ E…n1† ¡ ! ¬†2

gX

i;j 0

00jC…1†
i j2jC…2†

j 0 j2 Hi 0 j 0Hij : …107†

(ii) C…n1†
j and C…n2†

i 0 correspond to the principal components, and C…n1†
i and C…n2†

j 0

correspond to the small components. Then, the result is the same as

equation (107).

(iii) C…n1†
i and C…n1†

j are principal components and C…n2†
i 0 and C…n2†

j 0 are small

components (or (iv) C…n2†
i 0 and C…n2†

j 0 are principal components, and C…n1†
i and

C…n1†
j are small components). In these cases there are no coherent terms in

the sum for Sc in equation (80). This follows from the fact that for chaotic
eigenstates the mixing among the principal components is almost complete,

which makes them, to a good accuracy statistically independent.

Thus, far from the maximum, jE…n2† ¡ E…n1† ¡ ! ¬j > G, one obtains

S …n1n2†
c º ¡ 2

…E…n2† ¡ E…n1† ¡ ! ¬†2

gX

i;j 0

00jC…1†
i j2jC…2†

j 0 j2 Hi 0 j 0Hij : …108†

A similar calculation of the diagonal sum S …n1n2†
d (equation (79)) yields

S …n1n2†
d º 1

…E…n2† ¡ E…n1† ¡ ! ¬†2

£ gX

i

0 gX

j 0

0jC…n1†
i j2jC…n2†

j 0 j2H2
i 0 j 0 ‡ gX

i

gX

j 0

0 jC…n1†
i j2jC…n2†

j 0 j2H2
ij

Á !

: …109†

The two terms in the large parentheses, result from the contribution of principal i
and small i 0 components in equation (102), and vice versa. From equation (108) we

see that S …n1n2†
c ˆ 0 if Hi 0 j 0 Hij ˆ 0. However, there is nearly a 100% correlation

between these matrix elements. Indeed, the basis state i 0 diŒers from i by the location
of only one particle (the transition from the orbital ¬ to  ), and the same is true for j 0

and j.
Let us estimate the relative magnitudes of Sd and Sc. First, consider the case

when jii and j ji diŒer by two orbitals: j ji ˆ ay
¸2

ay
·2

a·1
a¸1

jii. In this case,

Hij ˆ V ¸1·1·2¸2
. Since the basis states ji 0i and j j 0i must diŒer by the same two orbi-

tals, we have Hi 0 j 0 ˆ V ¸1·1·2¸2
ˆ Hij (note that ¸1; ·1; ¸2; ·2 6ˆ ¬;  , since both states

jii and j ji contain ¬ and do not contain  , whereas ji 0i and j j 0i contain  and do not

contain ¬). Therefore, the averages over the non-zero matrix elements between such

pairs of states are HijHi 0j 0 ˆ H2
ij ˆ H2

i 0 j 0 ˆ V2.

Now, let us consider the case when jii and j ji diŒer by one orbital j ji ˆ ay
¸2

a¸1
jii.

In this case the Hamiltonian matrix elements are the sums of the n ¡ 1 two-body
matrix elements,
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Hij ˆ
Xn¡2

·6ˆ¬

V ¸1··¸2
‡ V ¸1¬¬¸2

;

Hi 0 j 0 ˆ
Xn¡2

·6ˆ

V ¸1··¸2
‡ V ¸1  ¸2

:

The sums of n ¡ 2 terms in Hij and Hi 0j 0 coincide; the diŒerence is due to the one term

only (orbital ¬ is replaced by the orbital  ). Thus,

HijHi 0 j 0 ˆ …n ¡ 2†V2;

…Hij†2 ˆ …Hi 0 j 0 †2 ˆ …n ¡ 1†V2;

where we took into account that V µ¶·¸V µ1¶1·1¸1
ˆ V2¯µµ1

¯¶¶1
¯··1

¯¸¸1
.

The contributions of one-particle and two-particle transitions in equations (108)

and (109) representing Sc and Sd respectively will be determined by the numbers of

such transitions allowed by the corresponding sums. For the single-prime sums in
equation (109) these numbers are proportional to K1 and K2 (equation (97)). In

the double-prime sum in equation (108) these numbers are proportional to ~K1

and ~K2, the numbers of the two-body and one-body transitions i ! j, in the

situation when one particle and the two orbitals (¬ and  ) do not participate

in the transitions. These numbers can be obtained from equation (97) if we

replace n by n ¡ 1, and m by m ¡ 2, so that ~K1 ˆ …n ¡ 1†…m ¡ n ¡ 1†,
~K2 ˆ …n ¡ 1†…n ¡ 2†…m ¡ n ¡ 1†…m ¡ n ¡ 2†=4. Finally we obtain that at

jE…n2† ¡ E…n1† ¡ ! ¬j > G the contribution of the correlation term to the variance

of the matrix elements of »¬ can be estimated in the ratio as

R ²
Sc

Sd

ˆ ¡ …n ¡ 2† ~K1 ‡ ~K2

…n ¡ 1†K1 ‡ K2

ˆ ¡ …n ¡ 2†…m ¡ n ¡ 1†…m ¡ n ‡ 2†
n…m ¡ n†…m ¡ n ‡ 3† : …110†

This equation shows that for n ˆ 2 we have Sc ˆ 0, which is easy to check directly,

since hHi 0 j 0Hiji ˆ 0 in this case. For n > 2 the correlation contribution Sc is negative
at the tails of the strength distribution. This means that it indeed suppresses the

transition amplitudes oŒ-resonance. For n; m ¡ n ¾ 1 the ratio R is approaching its

limit value ¡1. It is easy to obtain from equation (110) that, for m ¡ n ¾ 1,

Sd ‡ Sc

Sd

ˆ 1 ‡ R º 2m
n…m ¡ n† : …111†

Thus, surprisingly, the role of the correlation contribution increases with increasing

number of particles.

For n ˆ 4, m ˆ 11 (N ˆ 330), one obtains R ˆ ¡0:39, which means that the
correlation contribution reduces the magnitude of the squared matrix elements

M2 ˆ j»…12†
¬ j2 between compound states almost by a factor of 2 (for

jE…n2† ¡ E…n1† ¡ ! ¬j > G). The ratio found in numerical experiment is R º ¡0:45.
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We would like to stress that the role of the correlation term does not decrease

with increases in the numbers of particles and orbitals. This prediction is supported

by numerical experiment for n ˆ 7 and m ˆ 14, N ˆ 3432. The numerically found
ratio is R º ¡0:7 versus R ˆ ¡0:55 obtained from equation (111). The correlation

contribution should be even more important in compound nuclei, where N º 105.

This case can be modelled by the parameters n ˆ 10, m ˆ 20; then we have

R ˆ ¡0:66 or, equivalently, …Sd ‡ Sc†=Sd ˆ 0:34, which means that the correlations

suppress the squared element M2 between compound states by a factor of three (far
from its maximum).

It is worth emphasizing that the existence of correlations due to the perturbation

theory admixtures of small components to the chaotic eigenstates, which leads to a

non-zero value of Sc (equation (103)), is indeed non-trivial . For example, if one

examines the summand of equation (103) as a function of i and j, it would be
hard to guess that the sum itself is essentially non-zero, since positive and negative

values of C…n1†
i C…n1†

j C…n2†
i 0 C…n2†

j 0 seem to be equally frequent and have roughly the same

magnitude (Flambaum et al. 1996a).

Since
P

n1
S …n1n2†

c ˆ
P

n2
S …n1n2†

c ˆ 0 (see below), the suppression of M
2

at the tails

should be accompanied by correlational enhancement of the matrix elements near

the maximum (at jE…2† ¡ E…1† ¡ ! ¬j < G). Thus, we come to the important conclu-
sion that, even for a random two-body interaction, the correlations produce some

sort of a `correlation resonance’ in the distribution of the squared matrix elements

M2. One should note that this increase in the correlation eŒects in the matrix ele-

ments of a perturbation can be explained by the increased correlations between the

Hamiltonian matrix elements when the number of particles and orbitals increases
(N=n / exp n†.

Now we can estimate the size of the correlation contribution Sc near the max-

imum of the the M2 distribution (at jE…n2† ¡ E…n1† ¡ ! ¬j < G†. First, we show that,

after summation over one of the compound states, the correlation contribution

vanishes. Indeed,

X

n2

S …n1n2†
c ˆ

X

n2

X

i 6ˆj;k 6ˆl

C…n1†
i C…n1†

j C…n2†
k C…n2†

l hij»¬ jkihlj» ¬j ji

ˆ
X

i 6ˆj;k 6ˆl

C…n1†
i C…n1†

j hij»¬ jkihlj» ¬j ji
X

n2

C…n2†
k C…n2†

l

ˆ 0; …112†

where we take into account that the sum over n2 in the expression above is zero for

k 6ˆ l. Therefore, the negative value of S …n1n2†
c at jE…n2† ¡ E…n1† ¡ ! ¬j > G must be

compensated by its positive value near the maximum. The sum rule (112) allows one

to make a rough estimate of Sc near the maximum of Sd (and M2).
Let us assume that Sc ˆ RmSd at jE…n2† ¡ E…n1† ¡ ! ¬j < G=2, whereas Sc ˆ RtSd

at jE…n2† ¡ E…n1† ¡ ! ¬j > G=2 (Rt is given by equation (111)). The distribution of

S …n1n2†
d can be reasonably approximated by the Breit± Wigner shape (see } 2):

S …n1n2†
d ˆ A

E2 ‡ G2=4
; …113†

where E ˆ E…n2† ¡ E…n1† ¡ ! ¬, and G ˆ Gn1
‡ Gn2

. The sum rule (112) implies that
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Rm

…G=2

0

dE
E2 ‡ G2=4

‡ Rt

…1

G=2

dE
E2 ‡ G2=4

ˆ 0: …114†

Since the two integrals in the above equation are equal, we have Rm ˆ ¡Rt. Thus,

near the maximum the correlation contribution Sc is positive and enhances the

squared matrix element with respect to the diagonal contribution:

Sd ‡ Sc

Sd

ˆ 1 ‡ Rm

ˆ 2 ¡ …1 ‡ Rt†

º 2 1 ¡ m
n…m ¡ n†

³ ´
: …115†

For larger n and m the correlation enhancement factor asymptotically reaches its

maximal value of 2. The numerical calculations for n ˆ 4, m ˆ 11, and n ˆ 7,

m ˆ 14; show that the enhancement of M2 with respect to Sd at the maximum is

even greater in size than that predicted by equation (115). This is not too surprising
since in equations (113)± (115) we estimated the average value of Rm over an interval

¢E º G around the maximum rather than the peak value at the maximum.

It is interesting that the correlations create a sharp spike-like form of the dis-

tribution, instead of a smooth Gaussian or Breit± Wigner form (see the details given

by Flambaum et al. (1996a)) . With such sharp peaks, the strength function for any

particular operator M̂ can have the so-called gross-structure, owing to many single
particle transition terms in equation (76). Without these speci® c correlations, the

strength function would be much smoother and the gross structure would not be

seen. It is also interesting to note that there are very large mesoscopic-type ¯ uctua-

tions in the distribution near the maximum, depending on a speci® c (random) reali-

zation of the two-body interaction V. This is also the consequence of strong
correlations.

A similar estimate of Sc near the maximum can be obtained by the direct calcu-

lation of the small component contribution to Sc (equation (103)). On an assumption

that there are no correlations between principal components of compound states we

can separate the contribution of small components. For example, in the resonance
situation, E…n2† ¡ E…n1† º ! ¬, if the components S …n1†

j and S …n2†
j 0 are small

(jEj ¡ E…n1†j > G and, consequently, jEj 0 ¡ E…n2†j > G), then they contain contribu-

tions proportional to the principal components C…n1†
i and C…n2†

i 0 (see equations (104)

and (105)). Analogously, S …n1†
j and S …n2†

j 0 may be among the principal components,

and then the small components C…n1†
i and C…n2†

i 0 will contain correlated contributions.

Thus, we have the following estimate:

S …n1n2†
c º 2

gX

p

0
X

small; j

0 jC…n1†
i j2jC…n2†

i 0 j2
HijHi 0j 0

…E…n1† ¡ Ej†…E…n2† ¡ Ej 0 †
: …116†

Since Ej 0 ¡ Ej ˆ Ei 0 ¡ Ei º E…n2† ¡ E…n1† for the principal components i and i 0,

E…n1† ¡ Ej and E…n2† ¡ Ej 0 in the denominator always have the same sign, and Sc is

positive (recall that HijHi 0 j 0 > 0). Equation (116) can be estimated using the spread-

ing width G ˆ 2pH2
ij=D, where D is the mean level spacing for the many-body states.

This yields Sc º Sd, in agreement with the previous estimate (115).
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} 5. CONCLUSIONS
In this work we have formulated a statistical approach to isolated ® nite systems

of interacting particles, which plays the same role as the canonical approach for
systems in equilibrium with the thermal bath. It can be applied to complex many-

body systems, for example compound nuclei, rare-earth and actinide atoms and

multicharged ions, atomic clusters and quantum dots. The key point of this

approach is a new kind of partition function de® ned by the shape of chaotic (com-

pound) eigenstates (F function) with respect to the many-particle basis of a system
without residual interaction (Slater determinants). This function is related to the

strength function, which can be found from a set of equations obtained by statistical

self-averaging in the system.

The F distribution allows one to calculate mean values of diŒerent operators as a

function of the total energy E of the system. As an example, we have considered the
occupation numbers n¬…E† and made comparisons with the standard canonical

approach, which gives n¬…T †, where T is the temperature of an open system. In

large systems (thermodynamic limit) the distribution of the occupation numbers

n¬ tends to the canonical distribution with the temperature T ¡1 ˆ d…ln»†=dE
where »…E† is the energy level density.

Another important area of applications of our approach is the calculation of
non-diagonal mean-squared matrix elements (transition amplitudes) between the the

chaotic eigenstates in complex many-body systems. We show that the two-body

nature of the interaction between the particles gives rise to speci® c correlations

between the components of `chaotic’ compound eigenstates. These correlations,

together with the correlations between the many-body Hamiltonian matrix elements,
result in a relatively large correlation contribution to the mean-squared matrix ele-

ment. The correlations exist even if the two-body matrix elements are independent

random variables, for example in the random two-body interaction model. We

demonstrate that the correlations can be understood in terms of the perturbative

mixing of distant (small) components to the principal components of the eigenstates.
If the Hamiltonian matrix elements are random variables the correlations of this type

vanish.

One of the most interesting feature of the correlations found in our work is that

they do not decrease with increase in the number of excited particles or active

orbitals. In particular, this means that they must be taken into account in calcula-

tions of matrix elements of weak interactions between compound states in nuclei.
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