Atomic processes and plasma diagnostics: from solar atmosphere to tokamak divertor

Last updated February 27, 2018 by Alessandro Ferraro

Wednesday, February 7 2018, 04:00 PM, Bell Lecture Theatre

Speaker: A. Giunta (STFC)


The emissions of photons and in particular all spectral lines have encoded information to diagnose the physical and chemical status of the emitting source, carrying the signature of the underlying plasma parameters.

Such a study is suitable not only in an astrophysical context, but also for laboratory fusion plasmas. Atomic physics provides the link that enables the observed spectra to be interpreted in terms of the properties of the source from which they arise, whether they originate in an experiment on Earth, such as a laser or tokamak device, or in an astronomical object, ranging from the Sun and stars to planetary nebulae and interstellar medium.

Furthermore, the increasing capabilities of the current/new space-borne instrumentation (e.g. Interface Region Imaging Spectrometer, Solar Orbiter, Parker Solar Probe) and controlled fusion devices (e.g. Mega Ampère Spherical Tokamak Super-X upgrade divertor, International Thermonuclear Experimental Reactor, DEMOnstration Power Station), require atomic modelling and the derived spectroscopic techniques to be regularly revised and upgraded.

The present work will strongly exploit this interdisciplinary link between laboratory and astrophysics plasma environments. Atomic data requirements and their accuracy will be discussed, concentrating on the applications to the analysis of the solar upper atmosphere emission and the investigation of controlled fusion plasmas in a tokamak divertor. An example of the exploitation of a common methodology for the detection and assessment of non-equilibrium processes will be described. This will show that the derived atomic data allow equivalent prediction in non-stationary transport regimes and dynamic conditions of both the solar atmosphere and tokamak divertors.


We are a Research Cluster of the School of Mathematics and Physics at Queen’s University Belfast in Northern Ireland. Our research interests are focused primarily on computational and theoretical physics.

Old Physics Building

The Old Physics Building,
where CTAMOP is situated.