08/11/2019, 14:00 - 15:00 in MAP/0G/017
Semorádová, Iveta (Technical University Prague and Queen’s University Belfast)
Abstract:
We investigate the spectrum of the Schrödinger operators with complex potentials via a domain truncation method. This approximation is known to be spectrally exact, nonetheless, additional eigenvalues escaping to infinity seem to be a generic feature. We explain the latter by a deeper analysis of truncated operators and proving a generalized norm resolvent convergence of transformed truncated operators.